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Abstract

Around 40% of school leavers in the UK attend university and individual universities generally 

host thousands of students each academic year. Bringing together these student communities 

during the COVID-19 pandemic may require strong interventions to control transmission. 

Prior modelling analyses of SARS-CoV-2 transmission within universities using compartmental 

modelling approaches suggest that outbreaks are almost inevitable.

We constructed a network-based model to capture the interactions of a student population in 

different settings (housing, social and study). For a single academic term of a representative 

campus-based university, we ran a susceptible–latent–infectious–recovered type epidemic process, 

parameterised according to available estimates for SARS-CoV-2. We investigated the impact 

of: adherence to (or effectiveness of) isolation and test and trace measures; room isolation of 

symptomatic students; and supplementary mass testing.

With all adhering to test, trace and isolation measures, we found that 22% (7%–41%) of the 

student population could be infected during the autumn term, compared to 69% (56%–76%) when 

assuming zero adherence to such measures. Irrespective of the adherence to isolation measures, 

on average a higher proportion of students resident on-campus became infected compared to 

students resident off-campus. Room isolation generated minimal benefits. Regular mass testing, 

together with high adherence to isolation and test and trace measures, could substantially reduce 

the proportion infected during the term compared to having no testing.

Our findings suggest SARS-CoV-2 may readily transmit in a university setting if there is limited 

adherence to nonpharmaceutical interventions and/or there are delays in receiving test results. 
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Following isolation guidance and effective contact tracing curbed transmission and reduced the 

expected time an adhering student would spend in isolation.
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1 Introduction

Globally, many countries have employed social distancing measures and nonpharmaceutical 

interventions (NPIs) to curb the spread of SARS-CoV-2 (Hale et al., 2020). In the United 

Kingdom (UK), the enaction of lockdown on 23rd March 2020 saw the closure of 

workplaces, pubs and restaurants, and the restriction of a range of leisure activities. The 

education sector was also impacted, with schools closed (with the exception of children of 

key workers) and higher education establishments, such as universities, delivering the end of 

the 2019/2020 academic year via online means.

In the summer months, the national implementation of strict measures transitioned to a 

localised approach, targeting regions experiencing the highest level of transmission. As the 

number of SARS-CoV-2 confirmed hospitalised cases and deaths began to decline, many 

sectors of society cautiously reopened, with measures in place to reduce transmission. 

Universities began to develop plans to reopen, with several adopting a blended learning 

strategy of limited face-to-face teaching combined with online lectures. Higher education in 

the UK comprises a sizeable population of students, with over 2.3 million higher education 

students enrolled in the 2018/2019 academic year across over 160 higher education 

providers (Higher Education Statistics Agency, 2020). The amount of students results in 

a sizeable movement of students nationwide at the beginning and end of academic terms (in 

addition to international student travel). The migration of students contributes to increased 

population mobility, which had already grown since the easing of lockdown measures 

(Our World in Data, 2020; Google, 2020). Thus, there is an associated need for careful 

management in order to minimise the risk of seeding outbreaks in low prevalence locations.

As of 1st March 2021, the UK had reported in excess of 4 million cases and more 

than 120,000 COVID-19 deaths (UK Government, 2021). There is, however, a lower risk 

of severe outcomes in typical student age groups compared with older sections of the 

population; a higher proportion of cases are expected to be asymptomatic (Viner et al., 

2020), while hospitalisation and mortality rates are lower (Verity et al., 2020). In particular, 

of 83,529 COVID-19 associated deaths in hospitals reported in England by 1st March 2021, 

573 (0.7%) were 20-39 years of age (NHS England, 2021).

Nevertheless, the typical contact patterns of students could result in a significant potential 

to transmit the virus within their social group, amplifying the risk of infection to staff 

members and those in the local community who may be more vulnerable. Contact studies 

indicate that students, and in general those aged 20 to 30, report higher numbers of social 

contacts in their everyday lives compared with other age-groups and occupations (Danon 

et al., 2009, 2012, 2013). In addition, as a consequence of younger age groups more often 
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experiencing asymptomatic infection, there is the prospect of asymptomatically infected 

students returning home at the end of term and unwittingly transmitting to more vulnerable 

family members.

The data and science surrounding the SARS-Cov-2 infection is fast moving, so much so that 

publications can rarely keep pace. This paper was originally written in October 2020, and is 

a record of the state of our modelling as of that time. At the original time of writing, a small 

number of modelling analyses had already been carried out pertaining to transmission of 

SARS-CoV-2 within universities, and subsequent levels of COVID-19 disease (Christensen 

et al., 2020). These modelling studies had been predominately US-focused (Paltiel et al., 

2020; Cashore et al., 2020; Gressman and Peck, 2020; Lopman et al., 2020; Martin et 

al., 2020), potentially due to their earlier return. Paltiel et al. (2020) modelled the effect 

of a variety of testing strategies on the number of infections that would arise among 

5000 students during an 80-day semester. Cashore et al. (2020) and Lopman et al. (2020) 

investigated the impact of testing, screening and isolation for Cornell’s Ithaca campus and 

Emory University in Atlanta, Georgia, respectively.

The size and set-up of UK universities can differ markedly to US counterparts, influencing 

contact patterns and thus the spread of infection. Though the majority of prior work has 

not had access to realistic contact structures within the university setting, Brooks-Pollock 

et al. (2020) developed a stochastic transmission model based on realistic mixing patterns 

between students and applied to the University of Bristol. Other UK-centric work has 

included investigations into the expected number of cases that may be present at the 

outset of the autumn term in 2020 (Perez-Reche and Strachan, 2020), and a working paper 

looking at how mathematical approaches may help inform the reopening of higher education 

spaces to students whilst minimising risk (Virtual Forum for Knowledge Exchange in the 

Mathematical Sciences (V-KEMS), 2020).

Many of the previous studies of SARS-CoV-2 outbreaks in a university setting have adopted 

compartmental modelling approaches, in which individual behaviour and interventions such 

as contact tracing cannot be readily captured. In this paper, we present an individual-level 

network-based model framework for transmission of SARS-CoV-2 amongst a student 

university population, including test, trace and isolation interventions. Contacts occur across 

household, study and social settings, underpinned by empirical data where possible.

We find that maintaining strong adherence to isolation guidance and engagement in test 

and trace could both curb the amount of infection throughout the academic term and limit 

SARS-CoV-2 prevalence at the beginning of the winter break. The use of room isolation 

offers marginal reductions in the total number of infections, as well as the number of tests 

administered and time spent in isolation. Mass testing can lead to significant reductions 

in the total number of infections, though this strongly depends on the adherence of 

students and the testing procedure implemented. Finally, resource expenditure (including 

time spent in isolation by students) generally follows a non-monotonic relationship with 

the strength of and adherence to interventions. Small increases in the latter can lead to 

increased expenditure. These results show the possible impact of SARS-CoV-2 transmission 

intervention measures that may be enacted within a university population.
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2 Methods

We adopted a network approach to capture the interactions between students in different 

settings, upon which we ran an epidemic process. In this section we provide details 

regarding the (i) network generation, (ii) data sources used to parameterise the network 

contact structure, (iii) model for SARS-CoV-2 transmission and COVID-19 disease 

progression, and (iv) simulation protocol used to assess the scenarios of interest.

2.1 Network model description

Our network model comprised four layers: (i) households, (ii) study groups/cohorts, (iii) 

organised societies and sports clubs, and (iv) dynamic social contacts.

Household contact layer—We considered contact networks for on-campus and off­

campus households separately. The network for on-campus accommodation contained 

a hierarchical structure, from the smallest scale to the largest: household (typically 

based around a shared kitchen), floor, block and hall. We constructed the on-campus 

accommodation units to match that of a representative campus based university. We assigned 

students resident off-campus to households with sizes sampled from an estimated student 

household size distribution (see Supporting Text S1).

Within a household, irrespective of on-campus or off-campus location, we assumed a fully 

connected network. Thus, we assumed every member of the household to be in regular 

contact with every other member, with no variability between members. In addition, on­

campus students could make contact with other students situated in the same floor or 

accommodation block. These contacts were randomly generated each day with a fixed 

probability (this probability was greater for students within the same floor, compared to the 

same block; see Table 1).

Study group/cohort contact layer—We assumed that the enforcement of COVID­

secure measures within the classroom was sufficient to prevent any transmission between 

students in that setting. However, the study group/cohort contact layer does account for the 

fact that students in the same classes are likely to regularly study and socialise together 

outside of the classroom. To construct this layer, we partitioned the student population 

into 84 cohorts based on department and stage of study: first year undergraduate, non-first 

year undergraduate, and postgraduate (see Supporting Text S2). To generate the contacts 

made within each cohort, we used a configuration model (Newman, 2010) to allow the 

specification of a desired degree distribution.

Contacts in organised societies and sports clubs—A prominent aspect of the 

university experience is the presence of societies and sports clubs. We allocated each student 

to between 0 and 5 such groups (further details in the next section). To construct contacts 

within these groups, we applied a constant probability of forming a contact with each 

other individual in the group, with that probability differing based on whether the group 

was a society or sports club. These links did not alter during the course of a simulation. 

We assumed each social group met on three fixed days each week of the academic term 

(meeting schedules could differ between groups), with all members attending all meetings.
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Dynamic social contacts—In this layer, we captured random, dynamic contacts made 

each day with any other individual in the student population. Each day, random connections 

were selected for each student according to a specified distribution, dependent on their level 

of study (Table 1).

2.2 Contact parameterisation

We characterised the network structure across the various contact layers by applying two 

different approaches.

The first method was a data-driven approach, using data from the Social Contact Survey 

(Danon et al., 2009, 2012, 2013). The Social Contact Survey was a paper-based and online 

survey of 5388 participants in the United Kingdom, conducted in 2010. We extracted records 

provided by 341 students, with a total of 10,275 contacts. These data informed the network 

construction parameters for the study group/cohort and dynamic social contact layers. We 

divided the data according to level of study: undergraduate (282 students) or postgraduate 

(59 masters and Ph.D. students). Part-time, remote and mature students were excluded. We 

fit parameters for these contact distributions using maximum likelihood estimation via the 

FITDISTRPLUS package in R.

The second method was a subjective approach, used when we did not have relevant data 

available to parameterise the given contact layer. This was applied to the formulation 

of random contacts within on-campus accommodation blocks and organised social club 

contacts. We provide a summary of the network parameterisation in Table 1.

Study group/cohort contacts—We used student contacts recorded in the Social Contact 

Survey, restricted to those listed as occurring in a work or school setting. We kept entries 

specifying a duration of 60 min or more, occurring more than once per week. We assumed 

that the retained contacts with these characteristics would be reflective of contacts made in 

a classroom/study group context. There were a total of 135 students with 2497 relevant 

contacts (111 undergraduates contributed 2309 contacts, 24 postgraduates contributed 

188 contacts). We fitted log-normal distributions for undergraduates and postgraduates 

independently, using a mean and standard deviation parameterisation, acquiring distributions 

of Log-normal(1.646, 1.590) and Log-normal(1.211, 1.128), respectively (Fig. 1(a)).

Dynamic social contacts—We used student contacts recorded in the Social Contact 

Survey, excluding those occurring at home and those occurring for the first time. 

Furthermore, we limited valid contacts to those recorded as either involving touch or lasting 

longer than 10 min. Finally, valid contacts had to last less than 60 min, as longer duration 

contacts would be captured by the cohort and society contact layers. A total of 206 students 

with 2249 relevant contacts were included (168 undergraduates contributed 1888 contacts, 

38 postgraduates contributed 361 contacts).

Overall, undergraduates and postgraduates had a very similar number of social contacts 

(daily medians of 5.19 and 4.9 respectively). We fitted a Log-normal(1.748, 1.331) 

distribution for undergraduates, and Log-normal(1.223, 1.125) for postgraduates (Fig. 1(b)).
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Random on-campus accommodation contacts—Given the limited data available to 

parameterise a degree distribution for these contacts, we took a pragmatic approach and 

assumed a low constant probability of contacts occurring in the broader accommodation 

unit. We assumed these contact probabilities lessened for higher levels of accommodation 

hierarchy. Specifically, we attributed a higher chance of interacting with someone on the 

same floor (daily chance of contact of 10% per student with each other student) than 

someone on another floor within the same block (daily chance of contact of 5%). We 

assumed no random contacts at the highest accommodation levels, i.e. between separate 

blocks of the same hall, or between different halls.

Contacts in organised societies and sports clubs—We did not have the necessary 

information to parameterise contacts within this layer using a data-driven approach. 

Therefore, we stress that the values stated here are subjective and alternative proposals 

would add to result variability.

We considered a community of 335 organised social groups, comprising 270 societies and 

65 sports clubs. We allowed a breadth of group sizes, randomly assigning each group a 

membership size of 10 to 100 (in increments of 10). We chose a monotonically decreasing 

probability mass function for the number of groups each student actively participated in: 

50% of students not in any group; 40% involved in a single group; 2.5% for each of two, 

three, four and five groups.

Following group assignment, we established contacts between members with a fixed 

probability of each link existing. We set these probabilities to 0.05 for societies and 0.1 

for sports clubs. Accordingly, a student was likely to make more contacts in groups with 

large membership. For simplicity, we retained the same arrangement of contacts for each 

meeting.

2.3 Epidemiological model

Disease states—We ran a susceptible–latent–infectious–recovered (SEIR) type disease 

process on the network structure. Once infected, we assumed infectiousness could start 

from the following day. We assumed an Erlang-distributed incubation period, with shape 

parameter 6 and scale parameter 0.88 (Lauer et al., 2020).

The distribution of infectiousness had a four day pre-symptomatic phase, followed by a 

ten day symptomatic phase. This gave a total of 14 days of infectivity and a minimum 

15 day infection duration. The infectiousness temporal profile weighted the contact setting 

transmission risk (see the subsequent subsection on Setting transmission risk) across the 

duration of the infectious period (for the full temporal profile, see Table 2). It was based on 

a Gamma(97.2, 0.2689) distribution, with shape and scale parameterisation, shifted by 25.6 

days (He et al., 2020; Ashcroft et al., 2020). Following completion of the infectious period, 

the individual entered the recovered state (see Fig. S7 for a schematic representation of the 

model).

Asymptomatic transmission—Infected individuals could be either asymptomatic or 

symptomatic, according to a specified asymptomatic probability. There remains significant 
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uncertainty as to what this probability should be, however community surveillance 

studies informed this parameter. The REaltime Assessment of Community Transmission-1 

(REACT-1) study found approximately 70% of swab-positive adults and 80% of swab­

positive children were asymptomatic at the time of swab and in the week prior (Riley et al., 

2020a). Note that this included presymptomatic infected individuals who would later go on 

to display symptoms. This fell to 50% at later stages of the study (Riley et al., 2020b). To 

reflect this uncertainty, for each simulation we sampled the asymptomatic probability from a 

Uniform(0.5, 0.8) distribution.

There remains limited data available to provide a robust quantitative estimate of the 

relative infectiousness of asymptomatic and symptomatic individuals. However, there 

are indications that asymptomatic individuals could be less infectious than symptomatic 

individuals (McEvoy et al., 2020; Buitrago-Garcia et al., 2020). Therefore, we assumed 

that asymptomatic individuals had a lower risk of transmitting infection compared to 

symptomatic individuals. To reflect the uncertainty in this area, for each simulation we 

sampled the relative infectiousness of asymptomatics compared to symptomatics from 

a Uniform(0.3, 0.7) distribution. This was sampled independently to the asymptomatic 

probability. The sampled value was applied as a scaling on transmission risk, applied evenly 

throughout the duration of infectiousness (i.e. with no time dependence, see the subsection 

Probability of transmission per contact).

Setting transmission risk—Attributing risk of transmission to any particular contact in 

a particular setting is complex, due to the huge heterogeneity in contact types. We used a 

data-driven approach to obtain the relative risk of transmission within each network layer. 

We then scaled these risks equally in order to obtain an appropriate growth rate of the 

disease.

For each contact setting (network layer), the transmission risk corresponded to the 

probability of a susceptible individual being infected over the course of the entire infectious 

period for an infected individual with a relative infectiousness of 1, assuming the susceptible 

and infectious individual were in contact in the specified setting every day. The transmission 

risk was then scaled to obtain the probability of transmission occurring across a susceptible–

infectious contact pair on a given day (see the subsection Probability of transmission per 

contact).

For household transmission, we used estimates of adjusted household secondary attack rates 

from a UK based surveillance study (Lopez Bernal et al., 2020). We attributed a household 

secondary attack rate to each student based on the size of their household. We sampled the 

attack rates from a normal distribution with mean dependent on the household size: 0.48 for 

a household size of two, 0.40 for three, 0.33 for four, and 0.22 for five or more. The standard 

deviation of the normal distribution for households of size two or three was 0.06, and for 

households of four or more was 0.05.

For transmission risk in other settings, we performed a mapping from the Social Contact 

Survey (Danon et al., 2009, 2012, 2013) to obtain a relative transmission risk compared 

to household transmission. To obtain the means, we used the central estimate of adjusted 
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household secondary attack rate for those aged 18–34 of 0.34 (Lopez Bernal et al., 2020) 

and scaled this based on the characteristics of contacts in different locations, obtained from 

the contact survey (further details in Supporting Text S3). Standard deviations were set 

to have a constant size relative to the mean. Transmission risks were consistent across 

all non-household settings, except within organised societies where we assigned a lower 

transmission risk to reflect the implementation of COVID-secure measures that would be 

required to permit these meetings to take place. We also reiterate that we attributed zero 

transmission risk to face-to-face classes, for the same reason.

To calibrate the relative transmission risks to achieve an uncontrolled reproductive number, 

Rt, in the expected range of 3–4, we applied an equal scaling of 0.8 to all of the transmission 

risks calculated above (see Supporting Text S4).

Probability of transmission per contact—We outline here how the setting 

transmission risk, infectiousness temporal profile and relative infectiousness of an individual 

were used to compute the probability of transmission across an infectious–susceptible 

contact pair.

For an infectious individual j on day t of their infectious state, the probability of 

transmission per susceptible contact in contact setting s, denoted pj,s(t), was given by the 

product of four components:

pj, s t = rs × i t × aj × 0.8,

with rs the transmission risk in setting s, i(t) the value of the infectiousness temporal profile 

on day t (Table 2), aj the relative infectiousness of individual j (taking either value 1 for 

cases that were symptomatic during the infection episode, or the sampled value for relative 

infectiousness of asymptomatics compared to symptomatics otherwise), and 0.8 the scaling 

applied to calibrate the system to achieve (in the majority of simulations) an Rt in the range 

of 3–4 for the initial phase of the outbreak.

2.4 Isolation, test and trace

Testing and isolation measures—Upon symptom onset, an adhering infected student 

would immediately take a test and enter isolation for 10 days. At that time, their household 

would also enter self-isolation for 14 days (matching the UK government guidance prior to 

14th December 2020, when self-isolation for contacts of people with confirmed coronavirus 

was shortened from 14 days to 10 days across the UK) (Public Health England, 2020). 

Isolation was assumed to remove all non-household contacts for the period of isolation.

We assumed that an isolating student would remain in isolation for the required amount 

of time, or until a negative test result was returned. We included a two day delay between 

taking the test and receiving the result. We assumed the test had 100% specificity and its 

sensitivity was dependent upon time since infection (we used the posterior median profile of 

the probability of detecting infection reported by Hellewell et al., 2021).
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In the event that the test result from the index case was negative, household members 

would be released from isolation, as long as no other members had become symptomatic 

during that time. The index case remained in self-isolation if they had independently been 

identified via contact tracing as a contact of a known infected; otherwise, that student also 

left self-isolation.

Forward contact tracing—The modelled tracing scheme looked up contacts for an index 

case up to five days in the past. It was assumed that tracing took place on the third day 

after symptom onset, following testing and a two day delay to return a positive result. Thus, 

contacts may be recalled up to two days prior to the onset of symptoms. We assumed 

that a student would be able to recall all of their regular contacts for that time. However, 

we assumed that the probability of a student being able to recall their ‘dynamic’ contacts 

diminished with time, from 0.5 one day previously, reducing in increments of 0.1, such that 

the probability of successfully tracing a contact five days in the past was 0.1. Once again, 

other assumptions could be explored and a wider range of assumptions, collectively, would 

generate more variation in the results.

Contacts of a confirmed case were required to spend up to 14 days in self-isolation 

(Department of Health and Social Care, 2020) (matching the UK government guidance 

prior to 14th December 2020, when self-isolation for contacts of people with confirmed 

coronavirus was shortened from 14 days to 10 days across the UK). We set the isolation 

period to elapse 14 days after the index case became symptomatic.

We give an overview of isolation, test and trace related parameters in Table 3.

2.5 Simulation outline

We used this model framework to evaluate the transmission dynamics of SARS-CoV-2 

amongst a university student population during the autumn term of the 2020/2021 

academic year, and the potential impact of both adherence to the guidance and additional 

interventions.

We ran all simulations with an overall student population of 25,000, with 7155 students 

resident on-campus and the remainder off-campus. Simulation time corresponded to 77 

days, encompassing the length of welcome week plus the ten week academic term.

We seeded the number of latent, asymptomatic and recovered individuals based on 

UK regional prevalence estimates for 26th September 2020 and student flow data (we 

provide further methodological details in Supporting Text S5). We assumed there were no 

symptomatic infected students present at the beginning of each simulation.

Unless stated otherwise, for each parameter configuration we ran 1000 simulations, 

amalgamating 50 batches of 20 replicates; each batch of 20 replicates was obtained using a 

distinct network realisation. We performed the model simulations in Julia v1.4–1.5. Code for 

the study is available at https://github.com/EdMHill/covid19_uni_network_model.

Our analysis comprised of three strands, assessing the impact of: (i) adherence to isolation 

requirements and engagement with test and trace, (ii) adopting a policy of strict room 
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isolation for on-campus residents displaying symptoms, and (iii) mass testing. In each 

area of analysis, we reported various measures relating to the prevalence of infection and 

expenditure of resources due to intervention. The former included cumulative infections 

over the duration of the autumn term, to measure overall disease burden, and prevalence 

at the end of term, to provide a measure of risk of disease spread to the wider community 

once students return to out-of-term households. Expenditure of resources due to intervention 

largely focused on the time spent in isolation by students, a measure of burden on both 

students and the university. We outline each of the three strands in further detail below.

Adherence to isolation, test and trace—We varied adherence to isolation from no 

adherence (value 0) to full adherence (value 1) at increments of 0.1. This value was 

treated as the probability that a student adheres. Whether or not each student will adhere 

to guidelines was randomly set at the start of each simulation and remained fixed for the 

duration of that simulation.

Under full adherence, every student who was required to isolate would do so. Isolation was 

required if a student had symptoms, was in the same household as someone with symptoms, 

or had been identified as a contact of an infected individual by contact tracing. Additionally, 

every student would also engage with test and trace. Under no adherence, no students would 

isolate for any reason, or engage with test and trace. For intermediate values of adherence, 

an adhering student would adhere to all isolation requirements and engage with testing 

and tracing, whereas a non-adhering student would adhere to no isolation requirements and 

would not engage with test and trace. As such, there was no partial adherence to measures 

by individual students.

Use of room isolation—For those resident in on-campus accommodation and suffering 

from COVID-like symptoms, another applicable intervention may be the use of room 

isolation. Successful implementation of such an intervention would require the student to 

remain in their room at all times. Sufficient support for the isolating students is vital, 

including the delivery of meals and other essentials, as well as rehousing those students 

that reside in accommodation with communal bathrooms (those in rooms with en-suite 

bathrooms would be able to isolate in their own rooms).

We modelled this intervention by assuming those put into room isolation had no 

contacts. This extended the standard isolation measures, which still allowed contacts 

within households. We applied these measures on the same day that the student reported 

being symptomatic. We assumed students stayed in room isolation until the end of their 

symptomatic period, irrespective of the test result received.

Mass testing—We explored the implementation of mass testing, varying the timing and 

frequency of tests: a single instance on day 21 (end of week 2 of the academic term); 

a single instance on day 63 (end of week 8 of the academic term); regular mass testing 

every two weeks (on the first Monday of each fortnight); regular mass testing on a weekly 

basis (on the Monday of each week). Additionally, we varied coverage amongst the eligible 

student population: all students, on-campus resident students only and off-campus resident 

students only. We carried out sensitivity to the underlying adherence to isolation measures 
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by performing this analysis for adherence probabilities of 0.2 (low), 0.5 (moderate) and 0.8 

(high), respectively.

Students who had previously reported infection and subsequently received a positive test 

were excluded from mass testing. We also assumed that all tests were performed on a 

single day and those who received a positive test result were immediately placed into room 

isolation. Contact tracing was performed rapidly such that those contacts who were both 

traceable and adhered to isolation guidance were isolated from the next day.

In a mass testing campaign, the test’s ability to correctly identify asymptomatic infections is 

an additional source of uncertainty. While symptomatic and asymptomatic individuals have 

similar average peak viral loads and proliferation stage duration, the average duration of 

their clearance stages has been observed to differ (Kissler et al., 2020; Uhm et al., 2020). 

Since the probability of testing positive is likely a function of viral load, this suggests that 

symptomatic and asymptomatic test sensitivity may differ. We assumed that the probability 

of asymptomatic individuals testing positive was equal to that of symptomatic individuals 

until the peak of infection. However, after the peak it was assumed to decay more rapidly, 

such that the probability of an asymptomatic individual testing positive 6.7 days after the 

peak would equal the probability of a symptomatic individual testing positive 10.5 days after 

the peak (corresponding with findings from Kissler et al., 2020, who estimated an average 

duration of clearance of 10.5 days in symptomatic cases versus 6.7 days in asymptomatic 

cases). However, we highlight that this is an area of considerable uncertainty. Future studies 

detailing the testing probability of asymptomatic individuals, and the specific relationship 

between viral load and testing probability, would be a valuable contribution to this area.

3 Results

3.1 Adherence to isolation, test and trace

We assessed how changes in adherence to isolation, test and trace interventions affected 

the spread of the virus within the student population over the autumn term. We reported 

measures pertaining to both the level of infection and the resources expended in 

implementing the interventions (including time spent by students in isolation).

As adherence to isolation, test and trace increased, we observed a lower number of total 

infections (the sum of both identified cases and undiagnosed infections; Fig. 2(a), Table 

S3). Specifically, with no adherence (equivalent to the absence of interventions), we 

estimated a median proportion of 0.69 (95% prediction interval: 0.56–0.76) of the entire 

student population would be infected during the term. In contrast, with full adherence, the 

median proportion infected was 0.22 (95% prediction interval: 0.076–0.41). Irrespective of 

adherence, the proportion of students infected was consistently higher for those living in 

on-campus accommodation compared to off-campus.

Although increased adherence resulted in fewer infections overall, this was not necessarily 

true for the number of infections present at the end of term. We found that for adherences 

between 0–0.7, increasing adherence resulted in a greater number of infected students at the 

end of term, rising from a median estimate of approximately 1% of the student population 
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to almost 6% (Fig. 2(b)). In the temporal profiles, at very low adherence levels, we observed 

the outbreak quickly spread through the student population, peaking long before the end of 

term. Increasing the adherence resulted in slower spread, so that the peak occurred closer 

to the end of term and increased the end of term prevalence (Fig. S8). For adherence levels 

above 0.7, the outbreak no longer peaked before the end of term, hence the prevalence at 

the end of term began to fall again, reaching a median estimate of approximately 4% (Fig. 

2(b)). For all adherence levels, the majority of students infected at the end of term were 

non-symptomatic (either asymptomatic or presymptomatic). This was more pronounced for 

higher levels of infection at the end of term (Fig. 2(c)).

The level of adherence also affected the resources expended due to the isolation, test and 

trace interventions. We consider the amount of time spent in isolation by students to be a 

significant component within this (Fig. 3(a), Table S3). An increase from low to medium 

adherence levels (0–0.5) resulted in an increase in the time spent in isolation by adhering 

students. However, further increases in adherence (0.5–1) had the opposite effect. Across 

all levels of adherence and averaging across the student population, adhering students were 

expected to spend between approximately 5%–30% of their time in isolation throughout the 

course of the term. Those students resident on-campus were expected to spend a greater 

proportion of their time in isolation (up to 40%) compared to those off-campus (up to 25%).

We observed a similar relationship for both the maximum proportion of students isolating at 

any one time and the proportion of the population tested over the term, initially increasing as 

adherence increased, then falling again as adherence increased further towards 1 (Figs. 3(b) 

and 3(c)). The maximum proportion of students isolating at any one time was highest for 

adherence values between 0.8–0.9, on average peaking at between 20%–30% of the student 

population (Fig. 3(b)). The median estimate for the proportion of students tested during the 

term reached a maximum of almost 10%, at adherence levels close to 0.7 (Fig. 3(c)).

The non-monotonic relationship between adherence and resource expenditure is due to the 

interplay between the number of students isolating and infections levels: if more students 

adhere, then more students will get tested and isolate when necessary, increasing the number 

of tests and possibly the time and number of students in isolation. However, if the increased 

testing and isolation of students causes a large enough reduction in prevalence over the term, 

this will lead to an overall reduction in the expenditure of both resources. This trade-off 

between isolation and prevalence can be seen in the temporal profiles of infection prevalence 

and proportion of students isolating (Fig. S8).

We note that, for a fixed adherence, there was significant variation in infection and resource 

expenditure outcomes. This was primarily due to the variability in epidemiological factors 

between simulation runs, such as the distribution of initial infections, the asymptomatic 

probability, and the relative infectiousness of an asymptomatic case, all of which were 

randomly generated at the start of each simulation. The different network structures 

contributed relatively less variation. Results from a collection of simulations performed on a 

single network realisation also displayed a large amount of variation (Figs. S9, S10).
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3.2 Use of room isolation

Room isolation for symptomatic students has been proposed as an additional measure of 

social distancing and control. Overall, across all adherence levels, the added use of room 

isolation had only a marginal impact on all previously reported measures related to both 

infection levels and resource expenditure (Fig. 4).

We find that room isolation resulted in a small decrease in the total infections throughout 

the term, with most pronounced effects at higher levels of adherence (Fig. 4(a)). We also 

observe slightly higher levels of infection at the end of term for mid-range adherence values 

(Fig. 4(b)), but the opposite for adherence values close to 1 (once more due to the interplay 

between the number of students isolating and infections levels).

Adding room isolation also slightly decreased the time spent in isolation and the number of 

tests required across all adherence levels (Figs. 4(c)–4(e)). Room isolation also resulted in 

an additional outlay of resources in the form of rehousing infected students where necessary 

(if they did not have access to a private bathroom). Median estimates for the total number 

of students rehoused ranged from 0 to 400, depending on adherence levels. We observed a 

similar non-monotonic relationship between adherence and the number of students rehoused 

as previously noted for other measures of resource expenditure. The number of students 

rehoused was highest for adherence levels between 0.6 and 0.8 (Fig. 4(f)).

3.3 Mass testing

We assessed the effect of mass testing on the total proportion of students infected and 

the proportion of time spent in isolation by adhering students. We did this for a range of 

mass testing scenarios, varying the timing and frequency of tests, the coverage amongst the 

eligible student population, and the underlying level of adherence to isolation, test and trace. 

Each scenario was compared to an identical scenario with mass testing removed. We report 

relative median values for ease of comparison between testing scenarios.

In general, implementing mass testing reduced the overall proportion of students infected 

throughout the term. This reduction was more pronounced at higher adherence levels, with 

more frequent testing and at a greater coverage of the student population. If testing could 

occur only once, a test date earlier in the term (end of week 2) appeared slightly more 

effective in reducing infections than later in the term (end of week 8). Similarly, if only 

a subset of the population was to be tested, the larger amount of off-campus residents 

(than on-campus residents) meant testing off-campus residents only was more effective at 

reducing infections than testing on-campus residents only. From the scenarios considered, 

we found a greatest reduction in median infection levels of approximately 87% for a weekly 

mass testing strategy involving all students, with 80% of students adherent (Fig. 5).

The effect of mass testing on infection levels was also observed in the end of term 

prevalence. As previously explained, the suppression of growth can delay the peak of the 

outbreak and thus result in a higher prevalence at the end of term (Figs. S11–S13). We 

observed this for many of the mass testing scenarios considered (Fig. S14, Tables S6&S7). 

However, with 80% underlying adherence, regular mass testing (at any considered coverage) 

sufficiently suppressed the outbreak such that prevalence levels were lower at the end of 
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term than without mass testing. This was most pronounced when all students were tested. 

Similarly, a one-off test at the end of week 8 also had this effect, at any level of adherence.

Mass testing generally increased the proportion of time adhering students spent in isolation, 

in all but two of the considered scenarios. This increase was highly dependent on the 

underlying adherence level, with higher levels of adherence resulting in a smaller increase. 

For the highest adherence level considered (0.8; Fig. 5(c)), regular testing of the entire 

student population led to a decrease in the time spent in isolation, due to a significantly 

suppressed prevalence of infection throughout the term. For lower adherence levels (Figs. 

5(a) and 5(b)), increased testing frequency and greater coverage resulted in a relatively 

larger increase in isolation time caused by mass testing. This again displays the non­

monotonic relationship between the number of students isolating and infection levels. At 

worst, weekly mass testing of the entire student population increased the time spent in 

isolation by a factor of nearly 2.5 if only 20% of students were adhering (Fig. 5(a)). 

However, if 80% of students adhered, the same weekly testing gave a relative median of 

0.56 for time spent in isolation per adherent student, corresponding to a reduction in the time 

spent in isolation by approximately 45% (Fig. 5(c)).

4 Discussion

In this paper, we have described the construction and application of a network model 

to characterise the transmission of SARS-CoV-2 amongst a student population in a UK 

campus-based university. Our findings suggest SARS-CoV-2 could readily transmit amongst 

a student population within a university setting over the course of a single academic 

term. Maintaining nonpharmaceutical interventions and effective contact tracing curbed 

transmission, however NPIs can also increase the expected time an adhering student would 

spend in isolation compared to not using such interventions.

Our findings demonstrate the efficacy of isolation and tracing measures in controlling the 

spread of SARS-CoV-2 if they are broadly adhered to. Our network model results add to 

similar conclusions drawn from analyses using compartmental models showing that the 

spread of SARS-CoV-2 within a university student population can be curbed by effective 

testing, isolation, contract tracing and quarantine (Lopman et al., 2020; Brooks-Pollock et 

al., 2020; Enright et al., 2021). This is also in line with observations outside of a university 

setting, with the use of nonpharmaceutical interventions to control spread of SARS-CoV-2 at 

a national scale previously documented (Ferguson et al., 2020; Davies et al., 2020; Keeling 

et al., 2021).

During the autumn academic term in the UK, some higher education students were asked 

to complete surveys regarding their adherence to isolation and tracing measures. Our study 

was completed prior to such data becoming available, however analysis of these surveys now 

offers us further insights. These empirical data indicate the majority of students reported 

adhering to interventions. In particular, the Student Covid Insights Survey, conducted by 

the Office for National Statistics, collected information in three pilots during October and 

November 2020 that indicated student adherence to isolation, test and trace guidance was in 

the region of 80–90% (Office for National Statistics, 2020). For example, when students 
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were asked what actions they would take if they developed symptoms of COVID-19, 

between 85% and 89% of students reported that they would request a test and between 

82% and 86% reported that they would stay home for 10 to 14 days (7 to 14 days in pilot 

1). When students were asked if they would share details of people that they had most 

recently been in contact with, if contacted by the contact tracing service, around 85% said 

they would be likely, or extremely likely to do so. Assessing our results retrospectively, these 

data suggest that the results we have presented with adherence in a range of 80%–90% are 

more relevant than those outside it. In particular, results presented for very low adherence 

values are unlikely to be relevant in light of this new information.

Irrespective of adherence probability, we predicted that a higher proportion of the on­

campus population would typically be infected compared to those living off-campus. In 

general, household sizes within on-campus halls of residence are larger than those living 

in households off-campus. As a consequence, a higher level of mixing is expected in 

on-campus residences, with an associated increased risk of infection. Halls of residence have 

been identified as environments conducive to the transmission of other respiratory illnesses 

(White et al., 2003). This outcome reinforces the importance of monitoring the situation in 

halls of residence, in agreement with previous modelling work using (Brooks-Pollock et al., 

2020).

We also analysed the impact on the spread of infection of separating on-campus residents 

who were confirmed infected from household members (for the duration of the infected 

individual’s isolation period). We saw only marginal improvements compared to not 

including the intervention, presumably due to the minimal impact that an isolating 

household will have on overall disease spread, regardless of whether individuals interact 

within the household. Furthermore, the practicalities of such a strategy and the outlay on 

required resources may prohibit it as an implementable option. In particular, it requires 

sufficient spare housing capacity with suitable facilities to accommodate those that require 

rehousing, as well as a safe way of moving infectious individuals to their new rooms.

Mass testing had the ability to significantly reduce overall infection levels, however only 

if performed regularly and when adhered to. We found that running a single mass test 

on the student population had only a small impact on overall infection levels. However, 

it also illustrated that the optimal timing of such a test was dependent on the objective. 

Based on our modelling framework, if one was looking to minimise the total proportion 

of students infected, then earlier testing would be selected. However, an additional concern 

is the potential risks of asymptomatic students returning home for the winter break and 

unwittingly spreading infection to their domiciled community. To minimise the prevalence 

of infection at the end of term, performing the mass test later in the term would be 

preferable.

Our findings regarding mass testing strategies are in agreement with prior modelling work 

indicating that mass testing of students would need to take place at regular intervals, such 

as fortnightly or weekly, to suppress SARS-CoV-2 transmission (Brooks-Pollock et al., 

2020; Paltiel et al., 2020). There have been calls that, before universities allow students to 

return home, community transmission must first be curbed and frequent testing subsequently 
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provided (Yamey and Walensky, 2020). As an additional aid to help track and monitor the 

spread of COVID-19 in their student and staff communities, several universities have set up 

public-facing data dashboards in both the USA (Anon, 2020) and the UK (UniCovid, 2020).

Where possible, we have taken a data-driven approach to parameterise the system and 

instruct heterogeneities we expect to be present, such as in student contact patterns. 

Nevertheless, this work has made simplifying assumptions and our results therefore have 

limitations. Student numbers and estimates of regional movements between termtime and 

out-of-term time addresses were taken from pre-pandemic academic years; these movements 

may not accurately reflect the situation for the 2020/2021 academic year during the 

COVID-19 pandemic. Additionally, we assumed there would be no students beginning 

term with COVID-like symptoms, no transmission in face-to-face teaching settings and no 

transmission to students from the wider community. These assumptions may lead to an 

underestimate of transmission potential, with relaxation of any of these assumptions likely to 

generate a larger outbreak throughout the term.

We assumed, for simplicity, that each student maintained consistent and unchanging 

household, study and social contacts throughout the entire term. While the assumption 

for households may reasonably hold, given shared use of communal spaces, one would 

expect less rigidity in the study and organised social group related contacts. We also 

used a fixed distribution for drawing random daily social contacts throughout the term, 

whereas in reality we might expect the distribution of such contacts to vary temporally. 

A set of distributions could instead be used to capture these temporal heterogeneities, 

were the necessary data available to determine the distinct time periods and parameterise 

each distribution. Finally, the level of transmission through this network is contingent 

on the behaviour of students and their compliance with social distancing measures. We 

have assumed an uncontrolled reproduction number in the range 2–5 (dependent on the 

proportion of students that are asymptomatic and the relative transmission rate from 

asymptomatic infections); more precise values may be measured for emerging outbreaks. 

In the event of student populations at universities suffering outbreaks, there is scope for 

the network model framework presented here to be used for real-time parameter estimation. 

Larger values of R are likely to result in a higher number of cases and greater pressure being 

exerted on test and trace services earlier in the term.

Multiple refinements of the model structure are still possible and may yield a better 

understanding of the outbreak impact on the broader university community. We have 

not included university staff members, or infection to and from the local community. 

Students with asymptomatic infection interacting with elder individuals in non-COVID 

secure environments may result in silent transmission of SARS-CoV-2 into more vulnerable 

groups at risk of severe outcomes from COVID-19. Similarly, given that older individuals 

are at greater risk of severe health outcomes due to COVID-19 disease (Verity et al., 2020), 

in the event of widespread community transmission, staff and surrounding communities 

would be likely to experience higher levels of morbidity than students. Another aspect we 

have not included here is the presence of other respiratory infections. Such an extension 

would permit the study of test capacity requirements when levels of cough and fever are 

high due to non-COVID-19 causes, especially of concern in the winter period; were such a 
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scenario to arise it would apply significant stress to the national test and trace system (Eyre 

et al., 2020).

In the context of the COVID-19 pandemic the movement of students to attend universities, 

creating large communities of predominately young adults, poses specific challenges in 

controlling transmission. Infectious disease models may be a useful part of the public 

health decision-making process, determining the most appropriate interventions to be 

applied in a university setting. Our work highlights a network modelling approach to 

capture heterogeneities in contact structure that are particular to the university student 

population and its projected impact on transmission of SARS-CoV-2. This model suggests 

that encouraging student adherence with test–trace-and-isolate rules (as well as good social­

distancing, mask-use and hygiene practices) is likely to lead to the greatest reduction in 

cases both during and at the end of term; mass testing is also found to produce strong 

benefits in terms of reducing infection, generally leading to a greater number of cases being 

found and isolated.
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Fig. 1. Cumulative distribution functions for the number of daily contacts for all students, 
undergraduates and postgraduates.
Black dots and lines depict the empirical data. The red solid line corresponds to the best­

fit log-normal distribution. (a) Daily cohort contacts using a total of 135 students with 

2497 relevant contacts (111 undergraduates contributed 2309 contacts, 24 postgraduates 

contributed 188 contacts). (b) Daily social contacts, using a total of 206 students with 

2249 relevant contacts (168 undergraduates contributed 1888 contacts, 38 postgraduates 

contributed 361 contacts).
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Fig. 2. Infection associated epidemiological measures over the autumn term under differing 
levels of adherence to NPIs.
Outputs summarised from 1000 simulations (with 20 runs per network, for 50 network 

realisations) for various levels of adherence to NPIs. In all the violin plots, the white markers 

denote medians and solid black lines span the 25th to 75th percentiles. (a) Over the duration 

of the autumn term, distributions for proportion infected relative to students resident on­

campus only (green violin plots), students resident off-campus only (orange violin plots) and 

to the overall student population (purple violin plots). Maintenance of nonpharmaceutical 
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interventions and effective contact tracing curbed transmission. On-campus residents were 

more likely to become infected compared to students living off-campus. For percentile 

summary statistics, see Table S3. (b) Proportion of students in an infected state at the end 

of the autumn term. (c) Under each level of adherence, we display the median proportion 

of the student population in latent (blue), asymptomatic (orange), presymptomatic (yellow), 

symptomatic (purple) infected states at the end of the autumn term; for a given adherence 

value the height of the bar in panel (c) corresponds to the median point in panel (b). For 

percentile summary statistics, see Table S4.
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Fig. 3. Non-infection epidemiological measures over the autumn term under differing levels of 
adherence to NPIs.
Outputs summarised from 1000 simulations (with 20 runs per network, for 50 network 

realisations) for various levels of adherence to NPIs. In all the violin plots, the white 

markers denote medians and solid black lines span the 25th to 75th percentiles. (a) Over 

the duration of the autumn term, distributions for the proportion of time adhering students 

spend in isolation relative to students resident on-campus only (green violin plots), students 

resident off-campus only (orange violin plots) and to the overall student population (purple 

violin plots). Maintenance of nonpharmaceutical interventions and effective contact tracing 
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reduced the expected time an adhering student would spend in isolation. On-campus 

residents were more likely spend a greater proportion of time in isolation compared to 

students living off-campus. For percentile summary statistics, see Table S3. (b) Maximum 

proportion of students isolated on a single day. (c) Proportion of population infected by 

SARS-CoV-2 and tested during the autumn term.
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Fig. 4. Impact on epidemiological measures across the student population of including rehousing/
room isolation as part of the intervention strategy.
For specified adherence levels, we compare two scenarios: one without rehousing/room 

isolation as part of the management strategy (red boxplots), and one including rehousing/

room isolation as part of the management strategy (blue boxplots). We ran 1000 replicates 

for each scenario. (a) Proportion of students infected during the autumn term. (b) Proportion 

of students in an infected state at the end of the autumn term. (c) Proportion of time 

adhering students spend in isolation. (d) Maximum proportion of students isolated at any 
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single time. (e) Proportion of population infected by SARS-CoV-2 and tested. (f) Maximum 

number of students rehoused at any one time for the additional isolation strategy. For 

percentile summary statistics, see Table S4. The addition of a rehousing/room isolation 

control measure generally resulted in slight reductions in central estimates and a narrowing 

of distributional ranges across all measures.
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Fig. 5. Measures of relative case load and isolation burden under the considered mass testing 
options.
Mass testing was either not used (baseline scenario), a single instance took place at the 

end of week two or week eight of the academic term (corresponding to simulation day 

numbers 21 and 63, respectively), or regular mass testing was performed on a fortnightly 

or weekly basis. We present in each panel evaluations under adherence probabilities of: 

(a) 0.2 (low); (b) 0.5 (moderate); (c) 0.8 (high). Estimates in each scenario were made 

from 1000 simulations for mass testing covering all eligible students (red), on-campus only 

(blue), off-campus only (grey). The left hand side of each panel corresponds to the relative 

proportion (compared to the baseline scenario) of the student population infected over the 

duration of the autumn academic term under each mass testing strategy. In a similar way, the 

right hand side of each panel presents data on the relative time adherent students spent in 

isolation. Full estimates are given in Table S5.
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Table 1
Description of network contact parameters.

Description Degree distribution Source

Household (static) Fully connected Assumption

Within accommodation block (on­
campus only)

Floor contact: daily contact probability of 0.1. 
Block contact: daily contact probability of 0.05.

Assumption

Study cohort (undergraduate) Log-normal(1.646,1.590) Fitted from Social Contact Survey (Danon et al., 
2009, 2012, 2013)

Study cohort (postgraduate) Log-normal(1.211,1.128) Fitted from Social Contact Survey (Danon et al., 
2009, 2012, 2013)

Societies & sports clubs Probability of link with each group member: 0.05 
for societies, 0.1 for sports clubs

Assumption

Dynamic social (undergraduate) Log-normal(1.748,1.331) Fitted from Social Contact Survey (Danon et al., 
2009, 2012, 2013)

Dynamic social (postgraduate) Log-normal(1.223,1.125) Fitted from Social Contact Survey (Danon et al., 
2009, 2012, 2013)
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Table 2
Description of epidemiological parameters. Note the transmission risk parameters 
correspond to the probability of transmission (to a susceptible individual) over the entire 
duration of the infectious period for a symptomatic case.

Description Distribution Mean Source

Incubation period Erlang(6,0.88) 6.82 days Lauer et al. (2020)

Infectiousness profile Infectivity profile over 14 
days: [0.0369,0.0491, 0.0835,0.1190, 
0.1439,0.1497,0.1354,0.1076, 
0.0757,0.0476,0.0269,0.0138, 
0.0064,0.0044]

N/A He et al. (2020), Ashcroft et 
al. (2020)

Proportion of cases asymptomatic Uniform(0.5,0.8) 0.65 Riley et al. (2020a,b)

Relative infectiousness of an asymptomatic Uniform(0.3,0.7) 0.5 McEvoy et al. (2020), 
Buitrago-Garcia et al. 
(2020)

Household contact transmission risk (household 
size 2, 3, 4, 5+)

Size 2: Normal(0.48,0.06) 0.48 Assumption

Size 3: Normal(0.40,0.06) 0.40

Size 4: Normal(0.33,0.05) 0.33

Size 5+: Normal(0.22,0.05) 0.22

Society contact transmission risk Normal(0.12,0.018) 0.12 Assumption

Class contact transmission risk Normal(0.0,0.0) 0.00 Assumption

All other non-household contact transmission risk Normal(0.24,0.035) 0.24 Assumption
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Table 3
Description of isolation, test and trace related parameters.

Description Value Source

Duration of self-isolation if 
symptomatic

10 days UK government guidance (Public Health England, 
2020)

Household isolation period 14 days UK government guidance (prior to 14th December 
2020) (Public Health England, 2020)

Duration of isolation if contact traced 14 days (beginning from the day the index case 
first displays symptoms)

UK government guidance (prior to 14th December 
2020) (Department of Health and Social Care, 
2020)

Delay in receiving test result 2 days Assumption

Dynamic contact recall For five previous days, [0.5,0.4,0.3,0.2, 0.1]. 
Zero probability beyond five days.

Assumption
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