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Abstract: Magnetic resonance imaging (MRI) represents one modality in atherosclerosis risk
assessment, by permitting the classification of carotid plaques into either high- or low-risk lesions.
Although MRI is generally used for observing the impact of atherosclerosis on vessel lumens, it can
also show both the size and composition of itself, as well as plaque information, thereby providing
information beyond that of simple stenosis. Software systems are a valuable aid in carotid artery
stenosis assessment wherein commercial software is readily available but is not accessible to all
practitioners because of its often high cost. This study focuses on the development of a software
system designed entirely for registration, marking, and 3D visualization of the wall and lumen, using
freely available open-source tools and libraries. It was designed to be free from “feature bloat” and
avoid “feature-creep.” The image loading and display module of the modified QDCM library was
improved by a minimum of 10,000%. A Bezier function was used in order to smoothen the curve of
the polygon (referring to the shape formed by the marked points) by interpolating additional points
between the marked points. This smoother curve led to a smoother 3D view of the lumen and wall.

Keywords: magnetic resonance imaging (MRI); carotid artery plaque; lumen and wall; digital imaging
and communications in medicine (DICOM); open-source

1. Introduction

Cardiovascular diseases are one of the leading causes of death in the West [1]. Strokes and
heart attacks are mostly caused by rupture of atherosclerotic lesion, resulting in blocking of distal
vessels due to the release of emboli or the local formation of a thrombus [2]. The structural features
that tend to cause lesions to rupture can be analyzed through magnetic resonance imaging (MRI),
especially for large-sized vessels such as the carotid arteries [3,4]. Quantitative characterization of
lesion distribution, composition, and size can be obtained from magnetic resonance (MR) images
which can assist researchers in understanding lesion progression, pharmacologists in assessing the
response of patients to drug therapy, as well as clinicians in evaluating the specific risks associated
with a particular lesion [5,6]. These analyses can be facilitated by software tools that can make the
work both simpler and more efficient.

Diabetes mellitus (DM) is known to be associated with a specific pattern of vascular change [7]
wherein type 2 DM signifies a known risk factor for atherosclerosis but its specific influence on plaque
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vulnerability was not fully understood until Esposito et al. [8] explored this aspect. They investigated
if MRI-based plaque imaging can be utilized to detect probable differences between diabetic and
nondiabetic patients in terms of carotid plaque features. They also studied if MRI-detected high-risk
lesion types can help assess if diabetic patients are at higher risk than nondiabetics in terms of cerebral
ischemia development after endarterectomy of carotid artery stenosis. Plaque imaging through MRI
represents one modality in atherosclerosis risk assessment. It permits the classification of carotid
plaques as either high- or low-risk lesions (type I–type VIII).

Cai et al. [8] introduced the modified American Heart Association (AHA) classification of
Stary [9,10] specifically for MRI use (Table 1) which categorized the intermediate to advanced
atherosclerotic lesions in the carotid artery and enabled the noninvasive identification of advanced
lesions from early and intermediate plaques. Esposito gathered that lesion types IV to VI are high-risk
unstable plaques that are more prone to rupture and lead to cerebral ischemia, as well as were certainly
more dominant in symptomatic carotid artery stenosis patients compared to asymptomatic ones.
They also showed that Type 2 diabetes mellitus can be a predictor for the development of carotid artery
plaques, irrespective of the degree of stenosis or other risk factors. MRI provides a useful method for
assessing the risk status of diabetic patients because it can detect differences in carotid plaque features
when comparing diabetic with non-diabetic patients. Although MRI is generally used for observing the
impact of atherosclerosis on vessel lumens, it can also show both the size and composition of plaque
itself, as well as plaque information, thereby providing information beyond that of simple stenosis [11].

Table 1. Conventional and modified American Heart Association (AHA) classification of
atherosclerotic plaque.

Conventional AHA Classification (Stary) Modified AHA Classification for MRI (Cai et al. [8])

Type I: initial lesion with foam cells Type I–II: near-normal wall thickness, no calcification
Type II: fatty streak with multiple foam cell layers

Type III: preatheroma with extracellular lipid pools Type III: diffuse intimal thickening or small eccentric
plaque with no calcification

Type IV: atheroma with a confluent extracellular lipid core Type IV–V: plaque with a lipid or necrotic core surrounded
by fibrous tissue with possible calcificationType V: fibroatheroma

Type VI: complex plaque with possible surface defect,
hemorrhage, or thrombus

Type VI: complex plaque with possible surface defect,
hemorrhage, or thrombus

Type VII: calcified plaque Type VII: calcified plaque

Type VIII: fibrotic plaque without lipid core Type VIII: fibrotic plaque without lipid core and with
possible small calcifications

A software package for analyzing atherosclerotic arterial lesions visualized in vivo via MRI was
initially presented by Kerwin et al. [1]. Known as quantitative vascular analysis system (QVAS),
it allows the interactive identification of lesion and vessel boundaries, tissue class segmentation within
lesions, quantitative analysis of lesion features, and three-dimensional rendering of lesion structure.
A more advanced computer-based system for cardiovascular disease evaluation (CASCADE) has also
been proposed by Kerwin et al. [12] to streamline and automate the analysis of carotid-artery MRI for
evaluating atherosclerotic plaque burden. The present study focuses on the design and development
of a software system for marking both the wall and lumen and then generating a 3D visualization,
using freely available open-source tools and libraries. It was designed with the guiding principle
that it should be a specific software tool free of feature bloat and avoiding feature-creep. The image
loading/display of QDCM library was improved while the generated 3D view was smoother because
of the use of quadratic Bezier function. The specific technical advantages/contributions of the proposed
system are as follows:

• The loading of the images is not dependent on the specific names of the folders for each DICOM
image type as long as each of the five folders contain valid DICOM files. All the labels/information
displayed for each sub-window are extracted from the DICOM files themselves.
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• Minimum 10,000% factor improvement in QImage loading for all the MRI image types in the
modified code compared to the routine in the existing original QDCM library.

• In terms of system development, all the sub-windows for each of the MRI image type are inherited
from a parent sub-window which makes it easier for the developer to write specific functions for
the MRI images.

This paper is arranged with a brief backgrounder in the succeeding sub-section followed by
a description of the proposed architecture in Section 2. The opensource tools utilized are given in
Section 3 while the design and development process are discussed in Section 4. The resulting system is
then presented in Section 5 followed by the concluding remarks.

Background

Commandeur et al. [13] have reviewed recent advances in computed topography (CT)
software/hardware technologies as well as machine learning algorithms for cardiovascular imaging
that have led to an expansion of the clinical utility of CT. They elaborate on significant developments
in CT hardware, such as faster gantry rotation that enables improved temporal resolution. CT has also
enabled higher coverage of the patient and enhanced spatial resolution, resulting in faster acquisition.
In particular, Cardiac CT software has been developed for characterizing coronary plaque and adipose
tissue around the heart as well as measurement of non-invasive FFR. Machine-learning algorithms
have improved detection and prognosis of risks of lesion-specific ischemia. Such improvements can
be expected to continue, as they are being utilized in clinical procedures for image acquisition and
analysis as well as predicting patient outcomes. It is worth noting that Coronary CT Angiography
(CTA) has enabled the evaluation of atherosclerotic plaques that were previously measurable only via
invasive procedures [14,15].

The advantages of MRI over CT or digital subtraction angiography (DSA) as a diagnostic tool for
cerebrovascular pathology include excellent tissue contrast, blood-vessel visualization, as well as the
use of radiofrequency pulses and magnetic fields instead of ionizing radiation. Harteveld et al. [16]
have identified three assessment levels of cerebrovascular diseases using MRI: (a) pipes; (b) perfusion;
and (c) parenchyma. Pipes refer to the arteries that feed the brain from the heart and the aortic arch, up
to the carotid and vertebral arteries, the circle of Willis, as well as smaller intra-cranial arterial branches.
Perfusion involves the volume of blood reaching brain-tissue level, including the vascular reserve
and perfusion territories. Parenchyma is concerned with chronic and acute problems of brain-tissue
damage. These include smaller microinfarcts, larger infarcts, and small vessel diseases such as lacunar
infarcts, matter lesions, and microbleeds.

With regard to pipes, there have been numerous developments over the past decade related
to 7 tesla (7-T) magnetic resonance imaging of the extracranial vasculature that feeds the brain.
The focus of this research can be generally subdivided into vessel-wall and vessel-lumen imaging.
Vessel-lumen imaging for cerebrovascular diseases is generally performed either through time-of-flight
MR angiography (TOF-MRA) or phase-contrast MR angiography (PC-MRA). Ultrahigh-field MRI
such as 7-T has a longer T1 relaxation time, and thus produces greater contrast between blood flow
and surrounding tissues [17–20]. However, 7-T is less useful as a “one-stop-shop” imaging tool as
well as especially challenging in performing robust imaging of the neck region [21]. Studies related
to imaging of extracranial atherosclerotic plaque and vessel wall at 1.5T have received considerable
attention over the past decade [22], with much of this attention focusing on characterizing proximal
internal carotid artery atherosclerotic plaques as a possible method for identifying high-risk patients
for carotid surgery (carotid endarterectomy).

Hosseini et al. [23] have shown that MRI-defined carotid-plaque hemorrhage (MRIPH) can
independently predict recurrent ipsilateral ischemic events as well as stroke in symptomatic carotid
disease, which can be useful in identifying patients for carotid intervention in lower risk-benefit
scenarios. Singh et al. [24] have pointed out the effectiveness of clinically adopting carotid MRI in
cardiovascular risk assessment, specifically as a potential imaging biomarker for future risk, due to its
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reliability and high level of accuracy. On the other hand, intracranial vasculature imaging is better
performed using ultrahigh field MRI since intracranial arteries are smaller. Detailed imaging with
higher spatial resolution is readily available at ultrahigh field strength within reasonable scan times.
Works in this field can also be split into vessel wall and vessel lumen. 7-T may be seen as bridging the
gap in vascular pathology between the larger extracranial and smaller intracranial arteries but there
are distinct safety issues related to its use. Hoff [25] discussed these safety issues of great concern such
as the increased forces on metallic implants, unpredictable tissue heating that arises at 7-T due to the
radiofrequency as well as several bioeffects like magnetophosphenes, nystagmus and vertigo which
are also a problem and more prevalent for 7-T as compared to lower-field strengths. Hansson et al. [26]
recently presented their result on a large-scale three-year study on the effects experienced in 7-T MRI
systems, specifically peripheral nerve stimulation (PNI) and caregiving wherein 63% of the subjects
agreed that the experience was comfortable enough and a majority (93%) were willing to undergo 7-T
MRI in the future either as patient while 82% were willing to do it for research purposes.

Ultrasound also performs well when utilized for carotid arterial plaque assessment. Roy
Cardinal et al. [27] conducted a study wherein ultrasound noninvasive vascular elastography (NIVE)
provided an understanding of in vivo mechanical imaging. Neovascularized and vulnerable plaques
were detected based on shear and lower axial strains, lateral and axial translations, as well as higher
cumulated axial strain to cumulated axial translation ratio. The American Society of Echocardiography
through Johri’s [28] work reviewed the use of both two-dimensional (2D) and three-dimensional (3D)
ultrasound for carotid arterial plaque quantification. They recommended standards for acquisition
and measurement by formulating cardiovascular disease stratification.

Biermann et al. [29] have evaluated the impact of advanced software assistance on carotid artery
stenosis assessment, specifically regarding inter-observer variance in users with varying levels of
experience. Patients with suspected carotid-artery stenosis underwent dual-energy CT angiography on
the head and neck. The images were blind-interpreted in the usual way by four readers with varying
levels of expertise. An advanced vessel-analysis software tool was then used by the readers several
days later for quantification such as automatic hard plaque and bone removal, vessel segmentation,
or curved planar reformation creation. The results of the study showed that whereas the two more
experienced readers achieved inter-observer variability results of very good (k = 0.85) and good
(k = 0.78) respectively, the results for the less-experienced readers were only moderate (k = 0.6) and fair
(k = 0.24). By contrast, the inter-observer variability results obtained when the readers were using the
advanced vessel-analysis software were all in the good range (k = 0.77, k = 0.72, k = 0.71, and k = 0.77).
The study thus demonstrated that standard image interpretation coupled with advanced software
for vessel analysis produced very good results for experienced readers performing vascular lesion
diagnosis. Even inexperienced readers were able to achieve good results during stenosis quantification
when using advanced vessel-analysis software.

2. Proposed Architecture

2.1. Research Purpose

Analysis and diagnosis of plaque build-up in carotid arteries using MRI usually involve a manual
process and take a long time, while also being harder for patients to visualize. A large number of
software packages are commercially available but they are neither cheap nor affordable [12,30,31].
While open-source medical software systems with similar functionalities are available, they are complex
and are often bloated with extra features unnecessary for the specific task at hand [32–34]. There is
thus a need for a specific system tool of minimal cost that can provide effective assistance in processing
carotid artery MRI images of patients, to expedite analysis and diagnosis as well as enabling patients
themselves to gain a better understanding of their medical condition. While a number of open-source
software packages are available, they are somewhat complicated to use. Accordingly, we set out to
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design and develop a single-purpose software tool for 3D visualization of marked lumen and wall that
is as simple to use as possible.

2.2. Algorithm

The existing process for identifying carotid artery plaque usually involves loading and opening
MRI image files and then displaying them to patients while explaining the findings. A major drawback
of this method, however, is that it is left to the medical practitioner as to how to characterize the
plaque build-up to the patient. For their part, patients are expected to visualize or imagine what the
practitioner is referring to. The current manual method is time-consuming (approximately 30 min
per patient). Shorter processing times mean that more cases can be diagnosed, as well as enabling
practitioners to show patients 3D visualizations of plaque buildup.

A simplified version of the algorithm used in the proposed system is provided in Figure 1a,
from loading of digital imaging and communications in medicine (DICOM) files to 3D visualization.
The workflow (Figure 1b) is divided into three categories: (1) processing of MRI DICOM files; (2) settings
and configuration for the programming environment, operating systems, as well as libraries to be used;
and (3) design, development, and testing of the system itself.
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3. Open Source Tools

3.1. Qt-Anywhere on Ubuntu Linux

Our research focused on utilizing Open Source tools as much as possible. We began by selecting
the programming and development environment, followed by the existing library for processing
DICOM files as well as for 3D-image rendering. The system we have designed and developed was
based on the RBCDWBPA-SFA (Rapid By-Customer Demand with Business Process Approach with
Systems Features Analysis) method on a desktop computer running a 64-bit Ubuntu operating system,
using the Qt-anywhere 5.12.3 open-source version [35]. Qt-anywhere was selected as the programming
environment because it is platform-independent in terms of design, development, and deployment.
Although developed in an Ubuntu Linux environment, the program can thus be ported to a Microsoft
Windows system with some minimal changes in the library. An advantageous aspect of Qt is its
SIGNAL-SLOT feature, which allows data/information to be transmitted via signals to other parts of
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the system and to be processed by the slots. The SIGNAL can be seen as like a switch that triggers the
execution of a function (the SLOT) as well as provide the necessary input for the slot to run properly.

3.2. DICOM and QDCM Library

DICOM [36] is the international standard for the interoperability of processes involving the
transmission, storage, retrieval, printing, processing, and display of medical imaging data. It is very
useful in meeting the diverse requirements of the various actors involved in medical imaging, including
physicians (better access to images and reports assists in faster diagnosis), patients (faster and more
effective care), as well as device manufacturers and medical institutions (by ensuring compatibility
with other imaging devices). DICOM also plays an important role in the development of software
systems related to medical imaging. The standard is managed by the Medical Imaging and Technology
Alliance, which is a division of the National Electrical Manufacturers Association.

DICOM information is grouped into datasets, which generally comprise four types of information:
image data, whether raw or compressed; patient data (identification and demographics); technical
information regarding the imaging device used; and exam, series and slice/image data. A DICOM
data object comprises several attributes, including name, identification, and other details, as well as
special attribute that contain image pixel data. One of these attributes, DICOM Modality, identifies the
DICOM file type. Additionally, each of the other attributes includes a value multiplicity that tracks the
number of data elements enclosed in the attribute. The primary components of a DICOM attribute are:

• A Tag (Figure 2): identifies the attribute; usually in (XXXX,XXXX) hexadecimal format; can be
further split into group number and element number.

• A Name: descriptive text that describes the tag.
• A Value Representation (VR): identifies the data type and format of the attribute value.
• A Value Multiplicity (VM): defines whether an attribute can or cannot include multiple elements.
• The Value: the attribute itself.
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Figure 2. Extracted tag data.

QDCM [37] is a Qt-based open-source library that can be used for reading, writing, and modifying
DICOM data. A DICOM data set is identified through its key, which is composed of two 16-bit values:
a group number and an element number. Since DICOM tags are identified through this group and
element key combination, the QDCM library maintains a dictionary of tag keys mapped to tag names
and information tag data types.
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3.3. OpenGL

OpenGL (Open Graphics Library) is the most widely used 3D and 2D graphics API (application
program interface) in the industry, and is utilized on wide range of computer platforms [38]. It is
both operating system and window system independent that is also network transparent. It runs on
all major operating systems, including Windows (95/98, 2000, NT, 8, 10), MAC (OS, OS/2), almost
all flavors of Linux (Ubuntu, Fedora, RedHat), BeOS, and OPENStep. OpenGL can be called using
various languages, including Ada, C/C++, Fortran, Perl, Python, and Java, as well as offering
complete independence from network topologies and protocols. OpenGL encourages innovation
and accelerates application design and development via a comprehensive set of texture mapping,
rendering, effects, and many other visualization tools. For developers, OpenGL’s advantages include
being of industry standard, stability, reliability and portability, continuous development, scalability,
ease of use, and extensive documentation.

4. Design and Development

The current manual process includes the following major sub-processes: selection of primary image
set, registration/landmarking of images, and marking/identification of the lumen/wall. The existing
process was analyzed and reformatted into an algorithm of the proposed system, divided into the
system design modules shown in Figure 3. It begins with loading and opening the MRI image files to
display a 3D visualization of the carotid artery plaque. The step-by-step process is divided as follows:

1. Browse, open, and load MRI files from patient folder.
2. Select MRI image file to be set as the primary image set (T1, T2, T1CE, TOF, MPRAGE).
3. Rationalize the image set by ensuring that all image types are slice aligned and include the same

number of images per set for processing.
4. Identify by marking lumen and wall for each image slice.
5. Generate 3D rendering of marked lumen and wall.

1 
 

 

Figure 3 
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(b) 

Figure 4 

 

 

 

 

 

 

Figure 3. System design.

4.1. Image/Data Loading Module

This module begins by browsing for the patient directory folder and checking that it contains six
sub-folders: one each for the T1, T2, T1CE, TOF, and MPRAGE, sorted alphabetically. After verifying
that the sub-directories are not empty, the individual files are sorted, counted, and then loaded to
display the extracted images, as well as patient information from the relevant DICOM files using the
QDCM library. There is a separate sub-window for each of the MRI image types.

A scrolling function between the loaded images involves monitoring the mouse scroll action in
either an upward or downward direction. When a mouse scroll-up action is detected, the next image
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counter is checked as being either less than or equal to the total number of files in the subdirectory,
while a mouse scroll-down checks that the current image counter is greater than or equal to zero (since
the count starts from zero). The current image/information is then deleted and the image/information
from the next or previous DICOM file in the sub-directory is processed.

Faster Image Loading

An important aspect in the development of this module was modifying the existing codes in the
QDCM library to improve the time required to convert the image to QImage format for utilization
in QT by utilizing registers and pointers for faster operation. Figure 4a,b with Table 2 show average
conversion times for initial image loading, scroll up, and scroll down, as well as the improvement
factor for the same set of DICOM files as the updates made to the existing algorithm.

1 
 

 

Figure 3 

 
(a) 

 
(b) 

Figure 4 

 

 

 

 

 

 

Figure 4. Improved image conversion process. (a) Original algorithm; (b) modified algorithm.

Table 2. Improvement in the conversion to QImage for display.

Image to QImage
Conversion
Algorithm

MRI Types

3D
MP-RAGE_UW_d8000 T1 FS TSE BB T1 FS TSE BB CM T2 FS TSE BB 3D TOF Neck

Original QDCM 74.00 ms 249.67 ms 249 ms 244.33 ms 280.33 ms

Modified 0.67 ms 2.33 ms 1.67 ms 2.00 ms 1.67 ms

Factor Improvement 11,100.00% 10,700.00% 14,940.00% 12,216.67% 16,820.00%

4.2. Registration Module

This module is concerned with selection of the primary image set process and then finalizing the
image sets to be utilized for marking. The primary image serves as the main image on which markup
is performed, which is then automatically reproduced on the other (secondary) image sets. In primary
image selection mode, the user can easily select the primary image set by hovering the cursor over the
various sub-windows, clicking to select, then confirming the selection.

After the primary image set has been selected, the registration process can be activated. It begins
with the selection of the initial or number 1 image in the other image sets, based on slice location value
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and the expertise of the user. The image sets can then be registered only when the initial image of
all the secondary image types has been assigned. The main registration process checks that: (1) The
primary and the secondary sets include the same number of images; (2) the “gap” or interval between
successive images in the set is similar; and (3) all the image sets are aligned as closely as possible.

The first step is required because T1 FS TSE BB, T1 FS TSE BB XM, and T2 FS TSE BB include
the same number of DICOM files, whereas 3D MP-RAGE and 3D TOF usually include a much larger
number. For the second step, the gap or interval between the images also varies depending on the
image sets, with T1, T1 CE, and T2 usually including a gap of more than 1.8 while for 3D MP-RAGE and
3D TOF it is less than 1.8. Through these “Slice Location” values, all the image sets can automatically
be set to have the same gaps or intervals, by alternately removing images from 3D MP-RAGE and
3d TOF. At the same time, the image slices are aligned based on the selected primary image for each
image set.

4.3. Marking Module

This module performs two functions: (1) marking the lumen, and (2) marking the wall.
The marking procedure is performed by adding points by continuously moving the mouse clockwise
around the selected lumen and then completing the point marking by double-clicking. Points already
marked may have additional points added, while points may also be moved or deleted. This procedure
is performed on the primary image and is reproduced on the secondary image sets.

The procedure for marking the wall can also be performed using a different color set for points
and lines to distinguish between the two. The points essentially form a closed polygon for each image
layer, each of which represents the marked lumen and wall. Each point set is saved as part of the
node of a doubly linked list that contains pointers to the previous or next nodes, as well as the slice
location value. It is worth noting that the marking process involves only the {X, Y} axis while the
points in the polygon saved to the doubly linked list are in {X, Y, Z} format. This is made possible by
deriving the Z-axis values from the slice location values for each image layer in the set. For the moment,
the marking procedure described is performed on all images in the image set and is reproduced in all
the image sets before the algorithm moves on to the next module.

4.4. 3D View Module

4.4.1. Smoother Contour of Polygon

The original marked points from the previous steps are not enough on their own to form a
smoother shape of the polygon. Hence, the Bezier Curve was utilized to generate additional points
between the marked points to show a much smoother polygon. But using the Bezier curve requires the
use of control point(s) to trace the path of the function. We narrowed the choice between Quad Bezier
(Figure 5a) or the Cubic Bezier (Figure 5b).

The Quadratic Bezier curve mathematically represented in Equation (1) is a path that is traced by
the function Bq(t), given the points M1, M2, and C1.

Bq(t) = (1− t)[(1− t)(M1) + t(C1)] + t[(1− t)(C1) + t(M2)], 0 ≤ t ≤ 1
= (1− t)2M1 + 2(1− t)tC1 + t2M2, 0 ≤ t ≤ 1

(1)

where M1 is the first marked point, M2 is the succeeding marked point, and C1 is the control point.
As t changes value from 0 to 1, the curve leaves M1 into the direction of C1, and then the curve bends
to finally arrive at M2 from the direction of C.

For the cubic Bezier curve (Equation (2)), it is a path traced by the function Bc(t), given the points
M1, M2, C1, and C2.

Bc(t) = (1− t)3M1 + 3(1− t)2tC1 + 3(1− t)t2C2 + t3M2, 0 ≤ t ≤ 1 (2)
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where M1 and M2 are the first and succeeding marked points, respectively, while C1 and C2 are the
first and second control points. As time t increases, the curve starts from point M1 going toward the
direction of the control points C1 and C2, but then it bends to finish at the point M2. The cubic Bezier
curve usually will not pass through the control points C1 and C2, since these points are only used for
directional information. The distance between the control points determine the speed and distance
that the curve moves into the direction of C1 before it turns toward C2.

The cubic Bezier function Bc(t) could be described as the affine combination of two quadratic
Bezier functions, similar to Equation (1), represented in Equation (3).

Bc(t) = (1− t)BM1,C1,C2(t) + tBC1,C2,M2(t), 0 ≤ t ≤ 1 (3)

where BM1,C1,C2(t) is the quadratic Bezier curve function for marked point M1, control points C1 and
C2. On the other hand, the quadratic Bezier function BC1,C2,M2(t) is for the control points C1, C2 and
marked point M2. Visually comparing the results between quad Bezier and cubic Bezier (Figure 6),
quadratic Bezier gave the smoothest curve without overshooting the marked points. Hence quadratic
Bezier curve function was chosen for this purpose.
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Figure 6 Figure 6. Quad- and curve-Bezier curves. (a) Control and generated points; (b) traced path;
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4.4.2. Generation of the 3D View

This part of the module depends heavily on the OpenGL libraries since it involves generating a
3D rendering of the lumen and wall (depending on the doubly-linked list passed from the marking
module steps). The marking points are extracted from the doubly linked list and converted to polygons
(triangles to be exact) between the succeeding layers, which are subsequently filled with texture
patterns for better viewing (Figure 7).

Diagnostics 2020, 10, x FOR PEER REVIEW 11 of 15 

 

4.4.2. Generation of the 3D View 

This part of the module depends heavily on the OpenGL libraries since it involves generating a 

3D rendering of the lumen and wall (depending on the doubly-linked list passed from the marking 

module steps). The marking points are extracted from the doubly linked list and converted to 

polygons (triangles to be exact) between the succeeding layers, which are subsequently filled with 

texture patterns for better viewing (Figure 7). 

 

Figure 7. OpenGL Triangle forming using marked and generated points. 

The marked plus generated points that form the corners of the triangle, known as vertices, are 

insufficient on their own to generate the openGL triangle; the texture coordinates and vertex normal 

attributes also need to be passed to it in order to be saved as the vertex, texture, and normal buffers 

of the triangle generated. These vertex points are then projected onto the space with the 

corresponding scaling and rotations in order to display the three-dimensional object in the necessary 

view, depending on the values set for the projection, view, and model matrices. 

5. Resulting System 

The design and development process is conducted using the RBCDWBPA methodology (Rapid 

By-Customer Demand with Business Process Approach) in conjunction with SFA (Systems Features 

Analysis). In the developed system, regardless of the name given to the sub-directory folder (Figure 

8a), the classification type utilized for the process is extracted from the DICOM file itself, not based 

on the name of the sub-directory folder. Additional features included in the developed system are 

the ability to zoom in or out as well as panning the view horizontally or vertically. Scrolling, zooming, 

and panning taking place on a particular MRI-type window are simultaneously performed on the 

five other types.  

The current version displays several forms of tag data for basic information purposes only: Series 

Description (Image type), Study Description, and Patient Name (instead displayed as Anonymous) 

(Figure 8b). After the primary image set has been selected (Figure 8c), the loaded DICOM files are 

then registered (Figure 8d). The registered image sets are then ready for marking of lumen and walls 

(Figure 8e), with the markings then being utilized to generate the 3D-rendered image (Figure 8f). 

  
(a) (b) 

Figure 7. OpenGL Triangle forming using marked and generated points.

The marked plus generated points that form the corners of the triangle, known as vertices, are
insufficient on their own to generate the openGL triangle; the texture coordinates and vertex normal
attributes also need to be passed to it in order to be saved as the vertex, texture, and normal buffers of
the triangle generated. These vertex points are then projected onto the space with the corresponding
scaling and rotations in order to display the three-dimensional object in the necessary view, depending
on the values set for the projection, view, and model matrices.

5. Resulting System

The design and development process is conducted using the RBCDWBPA methodology (Rapid
By-Customer Demand with Business Process Approach) in conjunction with SFA (Systems Features
Analysis). In the developed system, regardless of the name given to the sub-directory folder (Figure 8a),
the classification type utilized for the process is extracted from the DICOM file itself, not based on the
name of the sub-directory folder. Additional features included in the developed system are the ability to
zoom in or out as well as panning the view horizontally or vertically. Scrolling, zooming, and panning
taking place on a particular MRI-type window are simultaneously performed on the five other types.

Diagnostics 2020, 10, x FOR PEER REVIEW 11 of 14 

 

polygons (triangles to be exact) between the succeeding layers, which are subsequently filled with 
texture patterns for better viewing (Figure 7). 

 
Figure 7. OpenGL Triangle forming using marked and generated points. 

The marked plus generated points that form the corners of the triangle, known as vertices, are 
insufficient on their own to generate the openGL triangle; the texture coordinates and vertex normal 
attributes also need to be passed to it in order to be saved as the vertex, texture, and normal buffers 
of the triangle generated. These vertex points are then projected onto the space with the 
corresponding scaling and rotations in order to display the three-dimensional object in the necessary 
view, depending on the values set for the projection, view, and model matrices. 

5. Resulting System 

The design and development process is conducted using the RBCDWBPA methodology (Rapid 
By-Customer Demand with Business Process Approach) in conjunction with SFA (Systems Features 
Analysis). In the developed system, regardless of the name given to the sub-directory folder (Figure 
8a), the classification type utilized for the process is extracted from the DICOM file itself, not based 
on the name of the sub-directory folder. Additional features included in the developed system are 
the ability to zoom in or out as well as panning the view horizontally or vertically. Scrolling, zooming, 
and panning taking place on a particular MRI-type window are simultaneously performed on the 
five other types.  

The current version displays several forms of tag data for basic information purposes only: Series 
Description (Image type), Study Description, and Patient Name (instead displayed as Anonymous) 
(Figure 8b). After the primary image set has been selected (Figure 8c), the loaded DICOM files are 
then registered (Figure 8d). The registered image sets are then ready for marking of lumen and walls 
(Figure 8e), with the markings then being utilized to generate the 3D-rendered image (Figure 8f). 

  
(a) (b) 

  
(c) (d) 

Figure 8. Cont.



Diagnostics 2020, 10, 1111 12 of 14

Diagnostics 2020, 10, x FOR PEER REVIEW 12 of 14 

 

  
(e) (f) 

Figure 8. The MRI-CAPIDS. (a) Browsing DICOM files; (b) initial loading; (c) primary set selection; 
(d) registration; (e) marked images; (f) generated 3D rendering. 

6. Conclusion 

This study has presented the use of entirely open-source tools in the design and development of 
a highly specific software system to assist medical practitioners in processing carotid MRI images, as 
well as for providing patients with a better visualization of their condition. The initial version of the 
developed system represents a proof-of-concept that is open-source, platform-independent, and can 
be expanded to accommodate either a few or a selected number of additional features, to avoid both 
of feature-bloat and feature-creep. The current version of the program is classified as a research-only 
tool for now up until a version submitted to relevant authorities, such as the Ministry of Food and 
Drug Safety, can be approved for clinical/medical use in the future. 

There was a minimum of 10,000% improvement in the image loading and display of the utilized 
QDCM library while the quadratic Bezier function was used to smoothen the curve of the polygon 
formed by the marking points. It was also designed to be as simple as possible to use, with only 
minimal procedural steps. A limitation of our work is the manual processes in the system especially 
the process manually marking and identifying the wall and lumen. This will be taken into 
consideration for future works wherein the first step would be utilizing image processing and then 
explore the possibility of using AI/deep learning with the review paper of Jodas et al. [39] being a 
good place to start. It is envisioned that this work would be further improved to include the 
possibility of being integrated into existing or new electronic health records (EHR) which have been 
shown to help expand health services offered to people especially in remote locations [40]. 

Author Contributions: Conceptualization, F.P.V.IV, M.T.N., and H.S.K.; data curation, M.T.N., S.B.C., and 
H.S.K.; formal analysis, M.T.N.; funding acquisition, H.S.K. and K.T.C.; investigation, F.P.V.IV and M.T.N.; 
methodology, F.P.V.IV, M.T.N., and H.S.K.; resources, H.S.K. and K.T.C.; software, F.P.V.IV; supervision, H.S.K. 
and K.T.C.; validation, F.P.V.IV and M.T.N.; writing—original draft, F.P.V.IV, S.B.C., H.S.K., and K.T.C.; 
writing—review and editing, F.P.V.IV, S.B.C., H.S.K., and K.T.C. All authors discussed and contributed to the 
final version of the manuscript. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was supported in part by the National Research Foundation of Korea(NRF) grant funded 
by the Korea government(MSIT) (No. 2020R1A2C2005612) and in part by the Brain Research Program of the 
National Research Foundation (NRF) funded by the Korean government (MSIT) (No. NRF-2017M3C7A1044816). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Kerwin, W.S.; Han, C.; Chu, B.; Xu, D.; Luo, Y.; Hwang, J.-N.; Hatsukami, T.; Yuan, C. A Quantitative 
Vascular Analysis System for Evaluation of Atherosclerotic Lesions by MRI. In Proceedings of the Medical 
Image Computing and Computer-Assisted Intervention—MICCAI 2001, Utrecht, The Netherlands, 14–17 
October 2001; pp. 786–794. 

2. Fuster, V.; Stein, B.; Ambrose, J.A.; Badimon, L.; Badimon, J.J.; Chesebro, J.H. Atherosclerotic plaque 
rupture and thrombosis. Evolving concepts. Circulation 1990, 82, II47–II59. 

Figure 8. The MRI-CAPIDS. (a) Browsing DICOM files; (b) initial loading; (c) primary set selection;
(d) registration; (e) marked images; (f) generated 3D rendering.

The current version displays several forms of tag data for basic information purposes only: Series
Description (Image type), Study Description, and Patient Name (instead displayed as Anonymous)
(Figure 8b). After the primary image set has been selected (Figure 8c), the loaded DICOM files are
then registered (Figure 8d). The registered image sets are then ready for marking of lumen and walls
(Figure 8e), with the markings then being utilized to generate the 3D-rendered image (Figure 8f).

6. Conclusions

This study has presented the use of entirely open-source tools in the design and development
of a highly specific software system to assist medical practitioners in processing carotid MRI images,
as well as for providing patients with a better visualization of their condition. The initial version of the
developed system represents a proof-of-concept that is open-source, platform-independent, and can be
expanded to accommodate either a few or a selected number of additional features, to avoid both of
feature-bloat and feature-creep. The current version of the program is classified as a research-only tool
for now up until a version submitted to relevant authorities, such as the Ministry of Food and Drug
Safety, can be approved for clinical/medical use in the future.

There was a minimum of 10,000% improvement in the image loading and display of the utilized
QDCM library while the quadratic Bezier function was used to smoothen the curve of the polygon
formed by the marking points. It was also designed to be as simple as possible to use, with only
minimal procedural steps. A limitation of our work is the manual processes in the system especially the
process manually marking and identifying the wall and lumen. This will be taken into consideration
for future works wherein the first step would be utilizing image processing and then explore the
possibility of using AI/deep learning with the review paper of Jodas et al. [39] being a good place to
start. It is envisioned that this work would be further improved to include the possibility of being
integrated into existing or new electronic health records (EHR) which have been shown to help expand
health services offered to people especially in remote locations [40].
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