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Abstract: In this work, porous biochar was obtained from sugarcane bagasse by alkali activation and
pyrolysis and then magnetized with γ-Fe2O3 by calcination. After functionalization with chitosan
and activation with glutaraldehyde, the as-prepared chitosan/magnetic porous biochar served as
a support to immobilize cellulase by covalent bonds. The immobilization amount of cellulase was
80.5 mg cellulase/g support at pH 5 and 25 ◦C for 12 h of immobilization. To determine the enzymatic
properties, 1% carboxymethyl cellulose sodium (CMC) (dissolved in 0.1 M buffer) was considered
as a substrate for hydrolysis at different pH values (3–7) and temperatures (30–70 ◦C) for 30 min.
The results showed that the optimum pH and temperature of the free and immobilized cellulase did
not change, which were pH 4 and 60 ◦C, respectively. The immobilized cellulase had a relatively
high activity recovery of 73.0%. However, it also exhibited a higher Michaelis–Menten constant (Km)
value and a slower maximum reaction velocity (Vmax) value compared to the free enzyme. In the
reusability assay, the immobilized cellulase showed initial glucose productivity of 330.9 mg glucose/g
CMC and remained at 86.0% after 10 uses. In conclusion, the chitosan/magnetic porous biochar has
great potential applications as a support for enzyme immobilization.
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1. Introduction

In recent years, using biomass for bioethanol production has garnered great interest. Cellulose and
hemicellulose can be hydrolyzed to reducing sugars, and then the sugars can be fermented into ethanol.
For the process of hydrolyzing lignocellulosic materials, the use of strong acids or alkalis increases
the burden on the environment and equipment, but enzymatic hydrolysis would not. Therefore,
enzymatic hydrolysis of lignocellulosic should be a greenway to produce fermentable reducing
sugars [1–3]. Cellulase, a composite enzyme, is mainly composed of endo-l, 4-β-d-glucanase, exo-l,
4-β-d-glucanase, and β-glucosidase. Its classification is based on attacking the depolymerization stage
of the substrate. Endoglucanases randomly hydrolyze the glycosidic bonds in the amorphous regions of
cellulose to produce oligomers with several degrees of polymerization. Then, exoglucanase hydrolyzes
the β-1,4-glycosidic bond of the oligomer to produce cellobiose. Finally, cellobiose is degraded to
glucose by β-glucosidase [4]. However, some factors limit the application of free cellulases, such as
changes in pH, temperature, and ionic strength, product inhibition, and difficulty in recovering from the
reaction medium. Therefore, it is meaningful to improve the stability and reusability of cellulase [5,6].
Several methods can be used for enhancing the stability of the enzyme, such as protein engineering,
chemical modification, and immobilization [7,8]. Among them, immobilization has more advantages
in heterogeneous enzymatic reactions and reusability [9].
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Immobilization on a solid support can improve an enzyme’s stability and makes it easier
to recover said enzyme from the medium and soluble substrate, as previously proven [10,11].
For a solid substrate, immobilization can also provide a way to improve the stability and reusability
of enzymes. Covalent bonding can provide a stable structure for an enzyme, and an immobilized
enzyme with a magnetic base can be easily separated from the respective slurry by a magnetic
bar [12]. In recent years, various types of solid supports have been used for enzyme immobilization,
such as natural clays [13,14], gels [15,16], and porous materials. Usually, natural materials have
good biocompatibility and rich functional groups, but the low surface area limits their application.
Therefore, porous materials have a large specific surface area that could provide more space for enzyme
immobilization. Mesoporous silica [17], metal–organic framework materials [18], and zeolites [19]
are popular supports in enzyme immobilization. However, their preparations are complicated and
normally require precision, which increases the costs.

Biochar, a solid porous particle obtained by the pyrolysis of biomass in the absence of oxygen [20],
is popular in soil amendments [21], wastewater treatments [22], and electrode materials [23].
Simultaneously, it is emerging as a promising support for immobilizing enzymes. Porous biochar has
a high specific surface area (~1600 m2/g) and different types of pore structures [24,25]. Compared to other
materials (e.g., mesoporous silica, zeolite, graphene, and metal–organic framework), porous biochar
has the advantages of abundant sources, a simple preparation method, and a cheap cost. However,
the insufficient number of reactive and hydrophilic groups and inconvenient recovery limit its
application to the immobilization of hydrophilic enzymes.

In order to conveniently and quickly recycle and reuse enzymes, magnetic base material has
been paid much attention because it can be easily separated from the reaction system by simply
applying a magnet. [26–29]. Co-precipitation and hydrothermal methods are commonly used to
prepare magnetic base materials. However, it is difficult to use these two methods to prepare magnetic
biochar because there are few functional groups on the surface of activated porous biochar. If the iron
ions are firstly dispersed and attached to the biochar, the magnetic particles can be uniformly grown in
the biochar after calcination. This is a good strategy to prepare magnetic biochar. In order to improve
the biocompatibility of magnetic biochar, chitosan is usually used to modify the supports because it
has good hydrophilic, biocompatible, and non-toxicity properties. In addition, chitosan can allow
amino groups to covalently bind with enzymes [30–32].

Covalent attachment is a very convenient method for enzymatic immobilization. It has been
proven to be more efficient and can provide more stable biocatalysis [33]. Glutaraldehyde should be
the most widely used cross-linking agent because it is facile, efficient, and can improve the stability of
an enzyme by multipoint or multisubunit immobilization. A support with primary amino groups can
be activated by glutaraldehyde; then, the glutaraldehyde-activated support reacts with the primary
amino groups of the enzyme. For immobilized cellulase, the glutaraldehyde-activated carrier may
be sterically hindered because of its spacer arms. However, it can be considered a hetero-functional
support that can provide chemical reaction groups and anion exchange, and it offers the highest
reactivity with the amino groups of a protein [34]. Epoxy- and di-vinyl-sulfone (DVS)-activated
supports are also popular for enzyme immobilization via multipoint covalent attachment, but they
have some limitations; for example, the low reactivity of epoxy-activated supports [34] and the low
activity recovery of DVS-activated supports [35]. In addition, dithiocarbamate (DTC) is of great interest
as a new functional group for covalent immobilization. The amination carrier is firstly modified with
carbon disulfide to generate a DTC group, and is then covalently bonded to the amine group on the
surface of an enzyme [36,37]. Though this is an effective technique and DTC has a shorter spacer arm,
carbon disulfide is an enzyme inhibitor and this method still needs further discussion. Therefore,
glutaraldehyde was selected as the covalent agent for cellulase immobilization in this work.

Based on the above, the main objective of this work was to use porous biochar (obtained from
agricultural waste sugarcane bagasse) as a basis to obtain chitosan/magnetic porous biochar after
magnetization and functionalization. Then, it was used as a support for cellulase immobilization via
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glutaraldehyde. The structure and morphology of the support were characterized, and the enzymatic
properties of the free and immobilized enzymes were evaluated in hydrolyzed carboxymethyl cellulose
sodium, including optimum pH and temperature, kinetic parameters, and reusability.

2. Materials and Methods

2.1. Materials

Sugarcane bagasse was produced in Guangxi, China. Potassium hydroxide (KOH), hydrochloric acid
(HCl; 35–37 wt%), ferric chloride hexahydrate (FeCl3·6H2O), ferrous chloride tetrahydrate
(FeCl2·4H2O), chitosan (CS), acetic acid (HAc), sodium acetate (NaAc), glutaraldehyde (GA; 25%, v/v),
and carboxymethyl cellulose sodium (CMC) were purchased from Nacalai Tesque, Inc. (Tokyo, Japan).
Cellulase (pale yellow powder) was bought from Meiji Seika Pharma Co., Ltd. (Tokyo, Japan).

2.2. Support Preparation

First of all, the porous biochar was prepared from the sugarcane bagasse by pyrolysis with KOH
activation [38]. After boiled processing at 95 ◦C for 8 h, impurities on the surface of the sugarcane
bagasse were removed. The dry pretreated sugarcane bagasse was mixed with KOH and ethanol at
a ratio of 1 g/1 g/12 mL. The mixture was thoroughly mixed (500 r/min, 60 ◦C for 5 h) and then dried
(60 ◦C for 12 h). Then, it was pyrolyzed in a tube furnace with nitrogen protection at 800 ◦C for 2 h
(heating rate: 10 ◦C/min). After grinding and soaking in a 1.5 M HCl solution to remove ash and alkali,
the porous biochar was washed with distilled water and dried (80 ◦C for 24 h), and then denoted as C.

In order to improve the combination of the porous biochar and the magnetic base, a calcination
method was used [39]. First, 0.1 g of porous biochar, 0.2 mmol of FeCl3·6H2O, and 0.1 mmol of
FeCl2·4H2O were dispersed in 2 mL of an ethanol solution. The mixture was calcined in a tube furnace
at 500 ◦C for 1 h under nitrogen protection (heating rate: 10 ◦C/min). Finally, magnetic porous biochar
was obtained and denoted as C/γ-Fe2O3.

Before cellulase immobilization, it is very effective and convenient to modify biochar with chitosan
to improve its biocompatibility and to increase its surface functional groups. First, 0.5 g of C/γ-Fe2O3

was added to 25 mL of a 1% (v/v) acetic acid solution (containing 50 mg of chitosan) with strong
stirring at room temperature for 30 min; then, it was mixed with 25 mL of a 1 M NaOH solution.
The products were recovered by a magnet and washed with distilled water 5 times, before being
denoted as C/γ-Fe2O3@CS.

2.3. Cellulase Immobilization

Here, C/γ-Fe2O3@CS was activated by glutaraldehyde. The support obtained above was dispersed
in 25 mL of a 2.5% (v/v, dissolved in distilled water, pH 7) glutaraldehyde solution at room temperature
for 2.5 h. Afterward, the activated support was washed with distilled water and a 0.1 M HAc–NaAc
buffer solution (pH 5) 3 times.

In the cellulase immobilization process, the activated support was put into 25 mL of a 4 mg mL−1

cellulase solution (400 mg of cellulase powder was dissolved in 100 mL of a 0.1 M pH 5 HAc–NaAc buffer
solution at room temperature) with low stirring at room temperature for 12 h. The products were washed
with a 0.1 M pH 5 HAc–NaAc buffer solution 3 times and recovered by a magnet. The immobilized
cellulase was stored at 4 ◦C, and the supernatant was used to determine the concentration of residual
cellulase by the Bradford protein assay method [40]. The cellulase immobilization amount and yield
were calculated by the following equation:

Cellulase immobilization amount = C0V0 − C1V1

where C0, C1, V0, and V1 refer to the concentration and volume before and after cellulase
immobilization, respectively.
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2.4. Characterizations

X-ray diffraction (XRD) was used to determine the structure and composition of the samples,
while a scanning electron microscope (SEM; Hitachi S-4300, Tokyo, Japan) was used to analyze the
morphologies of the particles. The magnetism of the samples was characterized by a vibrating-sample
magnetometer (VSM; Riken Denshi Co. Ltd., Tokyo, Japan). Brunauer–Emmett–Teller (BET;
Micromeritics, Norcross, GA, USA) analysis determined the average pore size, the BET surface
area, and the total pore volume of the samples using the nitrogen adsorption method at 77 K.
The chemical structures of the samples were confirmed by Fourier transform infrared spectroscopy
(FT-IR; IRT-7000, Jasco, Tokyo, Japan). The amount of cellulase and reducing sugar were determined
using a UV spectrophotometer (UV-vis; U-5100, Tokyo, Japan).

2.5. Activity Assay

The enzyme activity was determined using the IUPAC method [41]. The steps of the activity
assay were as follows: For the free cellulase, 0.5 mL of cellulase solution (0.02 mg mL−1, dissolved in
a 0.1 M HAc–NaAc buffer) was reacted with 0.5 mL of 1% (m/v) CMC for 30 min; for the immobilized
cellulase, the samples (containing 0.2 mg of cellulase) were dispersed in 10 mL of a 0.1 M buffer
solution and mixed with 10 mL of a 1% (m/v) CMC solution (both of them were preheated) for 30 min.
The supernatant was used for measuring the amount of reducing sugars via the dinitrosalicylic acid
(DNS) colorimetric method. The cellulase activity (IU/mg cellulase) was defined as the production of
µ mol of glucose per minute through the hydrolysis of CMC by cellulase. To evaluate the effects of pH
and temperature on cellulase activity, the hydrolysis reactions were carried out at different pH (3.0–7.0
at 50 ◦C) and temperatures (30–70 ◦C at pH 4).

2.6. Kinetic Assay

This assay was performed by measuring the glucose produced by the cellulase hydrolyzation of
different concentrations of substrates at the optimum pH and temperature for 5 min. The samples
(containing 0.2 mg of cellulase) were dispersed in 10 mL of a 0.1 M pH 4 HAc–NaAc buffer solution
and mixed with 10 mL of different concentrations of a CMC solution (5, 7.5, 10, 12.5, and 15 g L−1 of
a 0.1 M pH 4 HAc–NaAc buffer solution) at 60 ◦C for 5 min. The Michaelis–Menten constant (Km) and
the maximum reaction velocity (Vmax) were determined by Lineweaver–Burk plots.

2.7. Reusability Assay

Based on the viewpoint of practical applications, a longer hydrolysis time was used to determine
the reusability of the immobilized cellulase [5]. The immobilized cellulase containing 3 mg of cellulase
was mixed with 10 mL of a 1% (m/v) CMC solution (pH 4) for 24 h at 60 ◦C. Then, the immobilized
cellulase was recycled by a magnet and added to a fresh CMC solution for another cycle. The reusability
was evaluated by the production of reducing sugars from each cycle, and the reusability assay was
repeated 10 times.

3. Results

3.1. Characterization of Supports and Cellulases

Figure 1 shows the XRD patterns of the biochar (black curve), biochar/γ-Fe2O3 (red curve),
biochar/γ-Fe2O3@chitosan (blue curve), and immobilized cellulase (pink curve). There are two broad
diffraction peaks that appear at 23.1◦ and 43.4◦ in the pattern of Figure 1a, which should be the (002)
and (100) planes of graphite [42]. Based on the patterns of the biochar/γ-Fe2O3, all of the diffraction
peaks can be indexed to γ-Fe2O3 according to JCPDS no. 39-1346 [43], which indicates that γ-Fe2O3

grew on the surface of the porous biochar. After coating chitosan and immobilizing cellulase, the crystal
of γ-Fe2O3 did not change, as indicated by the blue and purple curves.
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Figure 1. The X-ray diffraction (XRD) patterns of biochar (a, black curve), biochar/γ-Fe2O3 (b, red curve),
biochar/γ-Fe2O3@chitosan (c, blue curve), and immobilized cellulase (d, pink curve).

The SEM images of the porous biochar and its magnetic composites are given in Figure 2. A porous
structure can be found in porous biochar (Figure 2d), which has a smooth surface. After mixing with
the iron and calcination, a lot of crystals grew on the surface of the porous biochar, indicating that
the porous biochar can be well combined with magnetic particles by calcination. As per Figure 2c,f,
a thin layer can be seen covering the surface of the biochar and magnetic particles following chitosan
modification, and the macropore structure of the porous biochar was well maintained, which was
helpful for the substrate to diffuse into the pores so as to improve the enzymatic performance.
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Figure 3 shows the magnetization curves of the biochar/γ-Fe2O3 and biochar/γ-Fe2O3@chitosan
at room temperature. It can be seen that the saturation magnetization of the biochar/γ-Fe2O3 was
0.81 emu/g. However, the saturation magnetization of the biochar/γ-Fe2O3@chitosan decreased to
0.67 emu/g. This could have been caused by the coating of non-magnetic chitosan on the surface of the
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biochar/γ-Fe2O3 and the weight conversion of the coating. It can be clearly seen from the photos in
Figure 3 that most of the biochar/γ-Fe2O3@chitosan could be easily recovered by a magnet.Polymers 2020, 12, x FOR PEER REVIEW 6 of 13 
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Figure 4 shows the N2 adsorption–desorption isotherm (Figure 4a) and the pore size distribution
(Figure 4b) of the porous biochar, biochar/γ-Fe2O3, and biochar/γ-Fe2O3@chitosan using the BJH
method. The nitrogen adsorption–desorption isotherms of the samples exhibit a combination of
type I and IV shapes according to the IUPAC classification, which explains that the samples contain
both micropores and mesopores [39]. However, the N2 adsorption capacity of the biochar decreased
after modification with γ-Fe2O3 and chitosan. The average pore size, BET surface area, and total
pore volume of the porous biochar, biochar/γ-Fe2O3, and biochar/γ-Fe2O3@chitosan are given in
Table 1. After modification of the magnetic base material and chitosan, the BET surface area of the
support reduced from 1595.7 to 271.6 m2 g−1. This is because, during the process of modifying the
support, the modification coated the surface of the porous biochar and the inner wall of the pores,
thereby blocking a part of the mesopores of the biochar. After modification, the average pore size
of the sample increased. This is because the iron ions adhered to the biochar and then the magnetic
iron oxide crystals grew after calcination. During this process, some of the small pores were blocked,
so the average pore size of the biochar/γ-Fe2O3 became larger than that of the biochar. After chitosan
modification, flocculent chitosan covered the surface of the sample, causing some of the small pores to
become blocked, leading to an increase in the average pore size.
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Table 1. The average pore size, Brunauer–Emmett–Teller (BET) surface area, and total pore volume of
the biochar, biochar/γ-Fe2O3, and biochar/γ-Fe2O3@chitosan.

Samples Average Pore Size (nm) BET Surface Area
(m2 g−1)

Total Pore Volume
(cm3 g−1)

Biochar 2.6 1595.7 0.923
Biochar/γ-Fe2O3 3.6 421.3 0.119

Biochar/γ-Fe2O3@chitosan 3.8 271.6 0.208

The chemical functional group of the biochar (black curve), biochar/γ-Fe2O3 (red curve),
biochar/γ-Fe2O3@chitosan (green curve), immobilized cellulase (pink curve), and free cellulase
(blue curve) samples was determined by FT-IR. As shown in Figure 5, the C–O stretching vibration of
the porous biochar was found at 1100 cm−1 [44]. For the biochar/γ-Fe2O3@chitosan, the methylene
stretching vibrations at 2924 and 2856 cm−1 were attributed to the chitosan layer [45]. Moreover,
amide II stretching vibrations of the cellulase at 1648 and 1560 cm−1 were found in the immobilized
enzyme, which suggests that the cellulase was successfully immobilized onto the support.

Polymers 2020, 12, x FOR PEER REVIEW 7 of 13 

 

Table 1. The average pore size, Brunauer–Emmett–Teller (BET) surface area, and total pore volume 
of the biochar, biochar/γ-Fe2O3, and biochar/γ-Fe2O3@chitosan. 

Samples Average Pore Size 
(nm) 

BET Surface Area 
(m2 g−1) 

Total Pore Volume 
(cm3 g−1) 

Biochar 2.6 1595.7 0.923 
Biochar/γ-Fe2O3 3.6 421.3 0.119 

Biochar/γ-
Fe2O3@chitosan 3.8 271.6 0.208 

The chemical functional group of the biochar (black curve), biochar/γ-Fe2O3 (red curve), 
biochar/γ-Fe2O3@chitosan (green curve), immobilized cellulase (pink curve), and free cellulase (blue 
curve) samples was determined by FT-IR. As shown in Figure 5, the C–O stretching vibration of the 
porous biochar was found at 1100 cm–1 [44]. For the biochar/γ-Fe2O3@chitosan, the methylene 
stretching vibrations at 2924 and 2856 cm–1 were attributed to the chitosan layer [45]. Moreover, amide 
II stretching vibrations of the cellulase at 1648 and 1560 cm–1 were found in the immobilized enzyme, 
which suggests that the cellulase was successfully immobilized onto the support. 

 
Figure 5. Fourier transform infrared spectroscopy (FT-IR) spectra of the biochar (black curve), 
biochar/γ-Fe2O3 (red curve), biochar/γ-Fe2O3@chitosan (green curve), immobilized cellulase (pink 
curve), and free cellulase (blue curve). 

3.2. Effect of pH and Temperature on Cellulase Activity 

According to the Bradford protein assay method and equation calculations, the amount and rate 
of cellulase immobilization was 80.5 mg cellulase/g support and 40.25%, respectively. In this method, 
multi-point or multi-subunit immobilization is such a slow process that the cellulase could be 
adsorbed onto the glutaraldehyde-activated support before the end. After three washings with 
buffer, the adsorbed cellulase was desorbed from the support. Moreover, the acidic condition was 
not ideal for multi-point immobilization [34]; however, the cellulase was stable under this condition. 

After immobilization, the structure of cellulase may be altered, which would change the 
accessibility of the active site, stability, and specificity [46]. Therefore, it is necessary to investigate 
the influence of pH and temperature on the activity between free and immobilized enzymes. Figure 
6a shows that the relative activity of the free and immobilized cellulase had similar trends and that 
the optimal pH was 4. This could suggest that there are few alterations of the cellulase after 
immobilization. In addition, the immobilized cellulase showed higher relative activity than the free 
cellulase at pH 3. Under acidic conditions, the protonation of chitosan was easy and it was possible 
to interact with more CMC [45]. This means that during the hydrolysis process, the CMC 
concentration around the immobilized enzyme could have been higher than that of the free one at a 

Figure 5. Fourier transform infrared spectroscopy (FT-IR) spectra of the biochar (black curve),
biochar/γ-Fe2O3 (red curve), biochar/γ-Fe2O3@chitosan (green curve), immobilized cellulase
(pink curve), and free cellulase (blue curve).



Polymers 2020, 12, 2672 8 of 14

3.2. Effect of pH and Temperature on Cellulase Activity

According to the Bradford protein assay method and equation calculations, the amount and
rate of cellulase immobilization was 80.5 mg cellulase/g support and 40.25%, respectively. In this
method, multi-point or multi-subunit immobilization is such a slow process that the cellulase could be
adsorbed onto the glutaraldehyde-activated support before the end. After three washings with buffer,
the adsorbed cellulase was desorbed from the support. Moreover, the acidic condition was not ideal
for multi-point immobilization [34]; however, the cellulase was stable under this condition.

After immobilization, the structure of cellulase may be altered, which would change the accessibility
of the active site, stability, and specificity [46]. Therefore, it is necessary to investigate the influence of
pH and temperature on the activity between free and immobilized enzymes. Figure 6a shows that
the relative activity of the free and immobilized cellulase had similar trends and that the optimal
pH was 4. This could suggest that there are few alterations of the cellulase after immobilization.
In addition, the immobilized cellulase showed higher relative activity than the free cellulase at pH 3.
Under acidic conditions, the protonation of chitosan was easy and it was possible to interact with
more CMC [45]. This means that during the hydrolysis process, the CMC concentration around the
immobilized enzyme could have been higher than that of the free one at a lower pH, which could have
promoted the hydrolysis process. The influence of the relative activity on the thermal characteristics
of both enzymes was determined to be in the range of 30–70 ◦C at pH 4. The results are shown in
Figure 6b and the highest activity appeared at 60 ◦C. At 30 and 40 ◦C, the relative activity of the
immobilized cellulase was slightly lower than that of the free enzyme. The enzyme, after being
covalently immobilized (compared to the free enzyme), was fixed and could not freely contact/react
with the substrate in the medium. Therefore, the substrate should diffuse into the support to reach
the active site of the immobilized enzyme. Moreover, the product should diffuse away from the
active site to facilitate further binding of the substrate [47,48]. The diffusion coefficient is a function
of temperature, increases as temperature increases. When the temperature was low, the diffusion
coefficient of CMC was weak; therefore, the immobilized cellulase showed lower relative activity.
However, at a high temperature, the immobilized cellulase showed higher stability. This could be
because a covalent bond between the support and the enzyme protects the conformation of cellulase
during heating.
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In order to further investigate the factors affecting the cellulase activity, the immobilized and
free enzymes were used to hydrolyze a 1% CMC solution for 50 min at 50 ◦C with different pH levels
(3, 4, and 5), as well as at pH4 with different temperatures (50, 60, and 70 ◦C). The concentration of
glucose in the supernatant was measured every 10 min. As shown in Figure 7, both the immobilized
and free cellulase had the highest concentrations of glucose at pH 4. The glucose produced by the free
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enzyme hydrolysis of CMC was higher than that of the immobilized enzyme. However, the change in
pH had a greater impact on the free enzyme’s hydrolysis process of CMC. Moreover, the inhibitory
effect on enzyme activity was more obvious at pH 3. The immobilized enzyme showed a relatively
stable state under these conditions, which could be attributed to the covalent bonds and the CS layer,
confirming the above analysis. Figure 8 shows the effect of temperature on the hydrolysis process.
As the temperature increased (from 50 to 70 ◦C), the diffusion coefficient of CMC became stronger and
it was easier for the CMC to diffuse into the active sites of the enzyme. For the free enzyme (Figure 8b),
the concentration of glucose showed a higher level at 60 and 70 ◦C during the initial hydrolysis.
However, this enzyme may denature and its original structure could be destroyed at an excessively
high temperature, which would inhibit the enzyme activity. This is why the growth rate of the glucose
concentration quickly returned to being flat at 70 ◦C. In Figure 8a, compared to the free enzyme,
the glucose amount of the immobilized cellulase increased steadily during the 50-min continuous
reaction. This is because this enzyme is less susceptible to temperature-induced conformational
changes after covalent immobilization [49], meaning that cellulase can maintain its structure during
the hydrolysis process.Polymers 2020, 12, x FOR PEER REVIEW 9 of 13 
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3.3. Effect of CMC Concentrations on Cellulase Activity

The Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax) of enzymes are
important kinetic parameters for determining the tightness of a substrate and enzyme binding and the
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speed of the enzymatic reaction. The Km and Vmax were determined by Lineweaver–Burk plots shown
in Figure 9 and Table 2. The Km value of the free and immobilized cellulase was 8.298 and 12.134 g L−1,
while their Vmax values were 0.102 and 0.059 g L−1 min−1, respectively. The increase in Km and the
decrease in Vmax indicates that the binding tightness between the immobilized enzyme and substrate
decreased compared to that of the free enzyme. This is because of the steric hindrance generated by
the support [45].
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Table 2. Kinetic parameters of the free and immobilized cellulase.

Km (g L−1) Vmax (g L−1 min−1)

Free cellulase 8.298 0.102
Immobilized cellulase 12.134 0.059

3.4. Reusability of the the Immobilized Cellulase

The reusability of immobilized enzymes is one of the key factors for lowering the cost in practical
applications, which was evaluated herein by measuring the glucose yield in each hydrolysis cycle
(Figure 10). As the number of uses increased, the glucose yield showed a slow decline and then became
stable, whereas the initial glucose yield was 330.9 mg glucose/g CMC and remained at 86.0% after
10 repeated uses. The loss of glucose yield may have been caused by the protein denaturation or
cellulase leakage during the hydrolysis process [5]. Moreover, it is possible that a large number of
reaction products were deposited on the surface of the substrate, thereby restricting the activity of the
proteins. Here, the results suggest that immobilized enzymes can be used several times with a high
glucose yield, indicating their potential in practical applications.
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In addition, the immobilized cellulase was stored in a refrigerator at 4 ◦C for one month. Then,
the activity was tested. The results showed that the relative activity of the immobilized cellulase was
90.36% of the initial value, indicating its good storage stability.

4. Conclusions

A chitosan/magnetic porous biochar support was successfully prepared by simple methods.
Cellulase was immobilized onto the support by covalent bonding using the GA agent. Under the
influence of pH and temperature, the relative activity trend of the immobilized enzyme was similar to
that of the free enzyme. It seems that there were few alterations of the cellulase, and the optimum
temperature and pH of both the immobilized and free enzymes were 60 ◦C and pH 4. However,
the immobilized cellulase showed high reusability: 86.0% of initial glucose productivity remained
after 10 cycles. Therefore, the chitosan/magnetic porous biochar support has potential in practical
applications based on the enzymatic performance of its immobilized cellulase, but it still needs
further discussion.
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