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The large surfaces of gastrointestinal (GI) organs are well adapted to their diverse tasks of
selective nutritional uptake and defense against the external environment. To maintain a
functional balance, a vast number of immune cells is located within the mucosa. A strictly
regulated immune response is required to impede constant inflammation and to maintain
barrier function. An increasing prevalence of GI diseases has been reported in Western
societies over the past decades. This surge in GI disorders has been linked to dietary
changes followed by an imbalance of the gut microbiome, leading to a chronic, low grade
inflammation of the gut epithelium. To counteract the increasing health care costs
associated with diseases, it is paramount to understand the mechanisms driving
immuno-nutrition, the associations between nutritional compounds, the commensal gut
microbiota, and the host immune response. Dietary compounds such as lipids, play a
central role in GI barrier function. Bioactive sphingolipids (SLs), e.g. sphingomyelin (SM),
sphingosine (Sph), ceramide (Cer), sphingosine-1- phosphate (S1P) and ceramide-1-
phosphate (C1P) may derive from dietary SLs ingested through the diet. They are not only
integral components of cell membranes, they additionally modulate cell trafficking and are
precursors for mediators and second messenger molecules. By regulating intracellular
calcium levels, cell motility, cell proliferation and apoptosis, SL metabolites have been
described to influence GI immune homeostasis positively and detrimentally. Furthermore,
dietary SLs are suggested to induce a shift in the gut microbiota. Modes of action range
from competing with the commensal bacteria for intestinal cell attachment to prevention
from pathogen invasion by regulating innate and immediate defense mechanisms. SL
metabolites can also be produced by gut microorganisms, directly impacting host
metabolic pathways. This review aims to summarize recent findings on SL signaling
and functional variations of dietary SLs. We highlight novel insights in SL homeostasis and
SL impact on GI barrier function, which is directly linked to changes of the intestinal
microbiota. Knowledge gaps in current literature will be discussed to address questions
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relevant for understanding the pivotal role of dietary SLs on chronic, low grade
inflammation and to define a balanced and healthy diet for disease prevention
and treatment.
Keywords: sphingolipids, nutrition, immune modulation, gastrointestinal barrier, gastrointestinal
microbiota, immunonutrition
INTRODUCTION

GI diseases are common inWestern societies and associated with
an increase in prevalence (1, 2). Estimations suggest 11% of the
United States population (3) and 5-15% of the European
population (with variations between Western Europe and
Eastern Europe) (4, 5) are suffering from digestive diseases.
This includes cancerogenic diseases affecting esophagus,
stomach, intestines and pancreas, as well as inflammatory
diseases like inflammatory bowel disease (IBD), esophagitis,
coeliac disease, diverticular disease, alcoholic liver disease,
acute and chronic pancreatitis and many more (5). Moreover,
digestive disorders have been associated with psychosomatic
manifestations, such as fatigue/neurasthenia, anxiety, phobia
and panic disorders and pain syndromes (2). Although,
current literature suggests to combine different scientific
disciplines to identify functional relationships between
immune, inflammatory and neurological disorders, analysis
approaches involving data sets of the different scientific
disciplines are limited. The increased prevalence of GI diseases
is a major challenge for our health care systemassociated with
increasing costs.

Recent demographic data suggest Western lifestyle to play a
causative role in disease prevalence. In search for explanations of
this phenomenon, investigators are increasingly focusing on the
gut and its immune system. It is suggested that low grade and
chronic inflammation rather than an acute defense reaction,
might be the cause for disease development by slowly altering the
immune response (6, 7). An inflammation causing a systemic
response in the whole body would have effects on multiple organ
systems. Besides manipulating the environment of affected tissue
types towards tumorigenesis, a long lasting, low grade
inflammation can also result in common chronic conditions,
such as allergic diseases, autoimmunity, arteriosclerosis, obesity,
insulin resistance and depressive disorders. By focusing on the
gut as source of inflammation it is paramount to understand the
role of nutrition on the cross-talk between the microbiome, GI
barrier function and the gut associated lymphoid tissues (GALT).
Western high fat diets have been reported to enhance intestinal
inflammation by promoting gut permeability and altering gut
microbiota (8, 9). In response, dietary modulation reduces
severity of GI symptoms related to cancer, allergy and
autoimmunity and has been suggested as a simple and
commonly available approach to counteract disease onset and
progression (10–12). Nutritional lipids have received much
attention in the field of immuno-nutrition. Lipids are not only
considered as energy storage molecules but have also been
reported to be involved in the regulation of cell migration, the
org 2
production of hormones and to act as second messenger
molecules. These characteristics enable lipids to modulate
immuneresponses (13, 14).

SLs are a highly diverse lipid class found in cellular
membranes, lipoproteins and other lipid-rich structures, such
as the skin. Their metabolites influence apoptosis, cell growth
and cell migration. SLs contribute to pro- and anti-inflammatory
immune responses. These lipid molecules are produced
endogenously and their metabolism is strictly regulated. SLs
are also found in food products, ingested and absorbed in the
GI tract affecting its immune activation status and subsequently
inflammatory and inflammation-related diseases. Previously
reported mechanisms of SL action are inhibition of intestinal
lipid uptake (15, 16), activation of pro- and anti-inflammatory
receptors (17), lymphocyte chemotaxis (18), neutralization of
bacterial endotoxins (19) and alterations of the intestinal
microbiota (20–22). In context with the demographic changes
of the last decades, the increasing prevalence of “civilization
diseases” in Western societies and diet specific differences in SL
content and composition, we suggest that dietary SLs contribute
to the regulation of inflammatory stimuli.

Therefore, elucidating intestinal SL pathways and effector
metabolism is crucial for identifying novel key players in
immuno-nutrition to combat a dysregulated GI immune response.
A BRIEF INTRODUCTION TO SLs

Johann Ludwig Wilhelm Thudichum was the first who described
SLs after identifying them as constituents in brain tissue. Due to
their highly enigmatic nature, he named them after the ancient
sphinx (23). The large and complex metabolism, the enormous
amount of SL species and the lipophilic character of SLs have
been huge obstacles for scientists. With the progress in genetic,
molecular and technical methods during the past decades, a
more lipid and enzyme centered approach was possible for
investigations. Analysis of their detailed molecular structure
and SL content of cells, tissues and food products is now possible.

SL Structures
SLs are a structurally highly diverse lipid class with over 4000
distinct SL subtypes (24). While most common in eukaryotic
organisms, they are rarely found in prokaryotes (e.g.
Bacteroidetes and Proteobacteria), archaea and viruses (25).
Originally, SLs were described as components of cell
membranes forming, together with cholesterol, phospholipids
and proteins, membrane microdomains called lipid rafts, which
are important for cell signaling pathways (26). SL metabolites
May 2021 | Volume 12 | Article 635704
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emerged in studying inflammation, since their bioactivity was
reported to regulate cellular signals involved in apoptosis and cell
viability. SLs consist of a fatty acid linked to the amino group of a
sphingoid base and a headgroup associated with a hydroxyl head
group of the base (Figure 1). The sphingoid base sphingosine
(Sph) is the most common SL backbone in mammals. However,
different organisms display more than one single sphingoid
backbone type. Human SLs, for example, have mostly Sph as
backbone, but also sphinganine, 4- hydroxysphinganine, as well
as small amounts of longer chain length homologs (27). Plant
sphingoid backbones often display more double bonds along the
alkyl chain than mammalian SLs. Cers are formed when a Sph
backbone is linked to a fatty acid, typically with a length of 16 –
26 carbon atoms, without a head group. Usually, the term “Cer”
refers to N-acylsphingosines. However, some studies do not
distinguish Cers by their sphingoid backbones and all N-acyl-
sphingoid bases are called Cers (27). By adding different head
groups, such as phosphocholine, sugars or more complex
carbohydrates, the SL types gain different identities and
functions (28). The linkage to a head group, which consists of
a phosphate group esterified to an alcohol, like phosphocholine
or phosphoethanolamine, to Cers results in synthesis of the
phosphosphingolipid sphingomyelin (SM). Glycosphingolipids
are formed by linking the sphingoid backbone to a carbohydrate
head group. This subfamily consists of the most diverse SL types
and based on their carbohydrate compositions they can be either
neutral or acidic. By associating with a monosaccharide like
glucose or galactose, neutral cerebrosides are formed. Linkage to
more than one saccharide forms neutral globosides. Binding of
oligosaccharides, N-acetylglucosamine, N-acetylgalactosamine
Frontiers in Immunology | www.frontiersin.org 3
and one or more sialic acid residues on the sugar chain
forms gangliosides.

SL Metabolism and Catabolism
Although mammalian SLs consist of various species, their
synthetic and catabolic pathways are shared. De novo synthesis
of Cer starts with the condensation of a serine and palmitoyl-
CoA to 3- ketosphinganine. The reaction is carried out by an
enzyme called serine palmitoyltransferase. 3- ketosphinganine is
then further reduced to sphinganine and acylated to
dihydroceramide by one of six mammalian Cer synthases.
Each of the Cer synthases has its own preferred acetyl-
CoA substrate.

By introduction of a double bond at the sphingoid base a Cer
is formed, which represents the branch point of SL metabolism.
Cer synthesis takes place at the cytosolic leaflet of the
endoplasmic reticulum (ER) (24). For further and more
complex metabolism, Cers have to be transported to the Golgi
apparatus. Here different head groups are added to the Cers. This
results in formation of SM by the enzyme SM synthase, or to
glycosphingolipids, such as cerebrosides and gangliosides, by
respective enzymes. Additionally, Cer can also be produced by
turnover of these more complex SLs i.e. via hydrolysis of SM and
glycosphingolipids. Lastly, Cer is formed by recycling of SL
metabolites, such as S1P or C1P, in the salvage pathway.

The most intensely studied catabolic pathway starts with the
hydrolysis of SM to phosphocholine and Cer by alkaline, neutral
and acid sphingomyelinases (SMases) (29, 30). Alkaline SMase is
most abundant in the plasma membrane and endosomes of the
microvilli enterocytes and works optimally at pH 8.5 – 9.
FIGURE 1 | Simplified structures of prominent human SLs. SLs consist of a sphingoid backbone, which is represented by Sph in this figure. By linking a fatty acid
residue via an amide linkage, Cer (N-acylsphingosine) is formed. Cers differ depending on length and saturation of their alkyl chain on the fatty acid residue. The
further addition of a head group, such as phosphocholine or phosphoethanolamine, to a Cer results in the formation of SM. More complex glycolsphingolipids are
generated by addition of carbohydrate head groups. Neutral cerebrosides are formed by linkage with monosaccharide head groups. Linkage to oligosaccharide
headgroups with one or more sialic acid residues forms gangliosides.
May 2021 | Volume 12 | Article 635704
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Noteworthy, differing from neutral and acid SMases, the alkaline
SMase is restricted to the intestinal mucosa and to the liver in
humans, where its activity is much higher than those of the other
SMases. As an ectoenzyme, alkaline SMase is located on the cell
surface and can be released into the lumen by both bile salt and
pancreatic trypsin. Neutral SMases work preferentially at pH 7.5
and are located at the ER, nucleus, Golgi apparatus, plasma
membranes and mitochondria. Acid SMases function below pH
5.5 and are mainly found in lysosomes. It can also be secreted by
mast cells in response to inflammatory stimuli (31). After the
hydrolysis, Cers can be either converted into ceramide-1-
phosphate (C1P) by Cer kinase or be further degraded by one
of six mammalian ceramidases. As a result, Sph and fatty acids
(FAs) are produced. Endogenous Sph production is restricted by
the breakdown of Cers (24). Furthermore, SM and Cer cannot be
absorbed by enterocytes, in contrast to Sph and its metabolite
S1P. S1P is generated by the phosphorylation of Sph by Sph
kinase (SphK)1 and 2 (18, 32) and has two possible metabolic
fates. It can either be dephosphorylated back to Sph by S1P
phosphatases or degraded irreversibly by S1P lyase to
phosphoethanolamine and hexadecenal, which will be used for
acyl-CoA synthesis.

The Impact of Dietary SLs
In the last decades investigations on the increasing prevalence of
diseases common for developed societies have focused on the
impact of westernized dietary habits. Nutritional patterns
including the frequent intake of high levels of protein, sugar,
fat, salt and cholesterol have been suggested to promote chronic
GI inflammations affecting immune responsiveness and
subsequent diseases in multiple organ systems. With only
minor amounts of a few micromoles per kilograms in fruits to
several millimoles per kilogram found in dairy products, eggs
and soybeans, the SL content varies enormously among
nutritional compounds (25). On average, adults on a Western
diet consume 0.3-0.4 g SLs per day mainly derived from SM (33).
In Asian diet a lower amount of milk SM and much more
cerebrosides are ingested (34). In the Western population, the
intake of plant SLs is estimated to be 50 mg/day, although it can
be much higher for vegetarians. Dietary SLs require a luminal
breakdown to sphingoid backbones before intestinal absorption
(35, 36) and differ in their structure depending on their origin
(plant or animal SLs) (Figure 2). Various food products have
been analyzed regarding their overall SL content [a detailed list is
provided by Vesper et al. (25)]. However, the exact SL
composition of different food products and diet-specific
differences are still not well examined. Enhanced accessibility
to high performance liquid chromatography (HPLC), gas
chromatography-mass spectroscopy (GC-MS) and matrix-
assisted laser desorption/ionization-mass spectrometry
(MALDI-MS) approaches enable analysis of SL structure and
quantity in different food sources (Table 1). First results have
been highly interesting as they provide a more detailed insight
into SL homeostasis. The uptake of plant sphingoid bases has
been recently demonstrated to be less efficient in the small
intestine. A study in rats suggested an efflux mechanism which
allows enterocytes to release plant sphingoid bases back into the
Frontiers in Immunology | www.frontiersin.org 4
lumen (44). Despite possible effects on the host SL metabolism,
higher amounts of plant Sph, together with non-digested SM and
non- degraded Cer, is released into the colon. Possible
downstream effects on the microbial gut community remain to
be elucidated. Most SLs of mammalian food products consist of
various SL types, such as SMs, cerebrosides, gangliosides,
globosides or sulfatides. They are linked to a broad spectrum
of different head group components (45). Plant SLs mainly
consist of cerebrosides and phosphoinositides with glucose,
galactose, mannose and inositol (46). Although, dietary SLs are
not required for survival, they influence the composition of the
gut microbiome and affect subsequent immune responses in the
GI tract. By exploring underlying mechanisms, SL homeostasis
has been suggested as a universal stress response. Considering
the ongoing demographic changes, the healthcare system will be
confronted with a huge burden. In view of the Western diet as an
initial trigger for disease onset, a change in diet is a cheap,
commonly accessible and most powerful tool to combat overall
morbidity and increasing health care costs. Identifying diet-
specific differences in SL composition is of uttermost
importance to elucidate the accompanying role of SL
metabolism in health and disease.
SLs AND INFLAMMATION

SL metabolites are well known to play a pivotal role in
inflammatory signaling pathways. Low grade inflammation
initiated by a Western diet cannot be detected via commonly
available clinical biomarkers. However, constant stress and
activation stimuli are suggested to be powerful promotors of
metabolic changes (24, 47). Besides the detrimental impact of
Western diet on health, a well-balanced nutrition might have a
preventive and therapeutic function.

Sphingomyelin
SM is an important constituent of cell membranes. It is
associated with cell signaling by the production of lipid-soluble
second messenger molecules and by the formation of lipid rafts.
It influences apoptosis through the degradation to Cers. SM has
been discussed as a dietary modulator of cholesterol synthesis. By
establishing a complex network of H-bonds, it interferes with
cholesterol absorption slowing down its transfer to enterocytes.
Via the same mechanism, it is suggested to interfere with
triglycerides and FAs reducing serum and hepatic lipid
concentrations in a dose dependent manner (48, 49).
Investigations reported different inhibition patterns of
intestinal cholesterol absorption when administering egg or
milk SM. A stronger inhibitory effect of milk SM was
suggested to cause a higher degree of saturation of fatty acyl
groups (15, 16). An investigation on milk SM deriving from milk
fat of Holstein cows and Jersey cows identified differences in SM
content, which may be induced by breed, diet and stage of
lactation (37). Similar results were found for analyses of
soybean SLs. Significant differences in overall glucosylceramide
(83.4−397.6 nmol/g) and major Cer (8.4−20.7 nmol/g) contents
have been detected by comparison of 15 soy bean lines (50).
May 2021 | Volume 12 | Article 635704
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Variations between SMs from different food products, as well as
batch-to-batch variations, are important to consider when
interpreting study results (37).

Cer and C1P
Cer is a pro-apoptotic molecule. It has been reported to work
via caspase-dependent and independent mechanisms (24).
Additionally, cellular Cer content has been linked to
inflammation and metabolic diseases. Cers are synthesized via
three endogenous pathways (SM/Cerebroside hydrolysis, de novo
synthesis, salvage pathway). Due to several degradation
mechanisms, the level of Cer metabolites is stable. By an
increased generation of Cers or by prevention of degradation, an
accumulation of Cers may occur provoking excessive apoptosis.
Tumor necrosis factor (TNF)-a activates SMases leading to an
accumulation of Cers. Elevated TNF-a levels are associated with
lipotoxicity by activation of caspases, protein kinase C, serine/
threonine protein phosphatase and cathepsin D activity (51).
Moreover, promotion of insulin resistance is observed by
antagonizing insulin signaling (52). HPLC, GC-MS and MALDI-
MS approaches recently revealed insights into the complexity of
dietary Cer structures, suggesting a much more complex function
of the SL metabolite (53, 54). In accordance with this theory, recent
studies reported not only pro- inflammatory effects of Cers. There
is increasing evidence that higher Cer content of cells can prevent
Lipopolysaccharide- (LPS-) stimulated inflammatory responses
(24). Moreover, Cers produced in genetically modified yeast was
reported to inhibit TNF-a signaling resulting in stable cell viability
(55). Also, orally administered plant derived Cer-precursor SLs
have been used as dietary supplements to restore skin barrier
function in humans (56).
Frontiers in Immunology | www.frontiersin.org 5
The Cer metabolite C1P has emerged as a bioactive SL
metabolite involved in cell proliferation, macrophage
migration, and inflammatory response. It prevents cell death in
bone marrow derived macrophages and inhibits activation of
caspases. It was further demonstrated to block alkaline SMase
and subsequently the formation of Cers, suggesting C1P to
antagonize Cer function (57). Mechanisms involving C1P have
been described to be mainly located in intracellular
compartments. Cer kinase is activated by different agonists,
such as IL-1b, macrophage colony stimulating factor or
calcium ions. Knock-down of the C1P transfer protein in mice
resulted in increased levels of IL-1b and IL-8 levels and enhanced
inflammasome assembly (58). A recent investigation has
demonstrated a G (i) protein coupled plasma membrane
receptor, suggesting C1P as an extracellular ligand to mediate
chemotaxis (59). By stimulating phagocytosis in neutrophils and
activating degranulation in mast cells, C1P is thought to respond
to inflammation (60, 61). C1P reduces TNF-a production by
inhibiting its post-translational modification (19, 62). In
summary, these data suggest C1P involvement in inflammation
as a feedback regulation to Cer stimuli. However, its precise role
in inflammation remains to be elucidated.

Sph and S1P
Sph are the most common sphingoid backbones of mammalian
SLs. Their presence increases the permeability of phospholipid
membranes. Moreover, Sph has been described to act like the
structural counterpart of glycerol (63). Of interest, dietary D-
erythro-Sph has been suggested to protect the human skin by
altering skin microbiota (64). Topical Sph was suggested as
effective treatment option for microbial skin diseases (65). It is
FIGURE 2 | SL metabolism of dietary and intracellular SLs. A luminal breakdown to sphingoid backbones is required for intestinal absorption of exogenous SLs.
Additionally, dietary palmitic acid consumption is suggested to modulate endogenous SL production (35, 36). The endogenous SL metabolism is highly complex.
Cers are the branch point of SL homeostasis. They are synthesized via SM/cerebroside hydrolysis, de novo synthesis (palmitoyl-CoA + serine) and via the salvage
pathway (e.g. Cer to S1P/C1P and vice versa). Subsequently, many SL metabolites can be generated from the Cer building blocks.
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still matter of discussion whether the skin barrier-improving
effects only depend on the microbiota alteration or Cer synthesis
activation in the skin. Current research further aims to evaluate
Sph as topical and protective antibiotic (64, 65) and as anti-
proliferative agent (63).

S1P derives from ingested SM or cellular membrane SM,
which is converted into Sph and phosphorylated to S1P by
Sphingosine Kinases (SphKs). SphKs 1 and 2 are highly
expressed in lung, small intestine, spleen and stomach (66).
Although, most cells are producers of endogenous S1P, the SL
is subsequently degraded by S1P lyase, which is found in high
levels in tissues such as the small intestine (67). In most tissues
S1P levels remain at a baseline. In lymph and blood, S1P levels
range from low micromolar to several hundred nanomolar due
to the lack of S1P lyase or an enhanced SphK activity (68, 69).
Platelet derived growth factor 6 induces Cer production by SM
hydrolysis, which is then further metabolized to Sph and S1P.
Frontiers in Immunology | www.frontiersin.org 6
Previously, S1P has been reported to work intrinsically as well as
extrinsically. It serves as a second messenger regulating calcium
homeostasis in the cell. Its extracellular functions depend on five
membrane-bound G-protein coupled receptors (S1P1-5). S1P1
has been reported to contribute to elevated vascular integrity by
effecting endothelial adherence junctions. S1P2 and S1P3 are
considered to improve vascular contraction. A lack of S1P2 is
associated with vascular barrier leakage (70). Recent findings
reported a protective effect of enhanced blood S1P levels in
allergic mice, suffering from anaphylaxis, as well as a faster
recovery after anaphylaxis by enhanced clearance of mast cell
mediators (32). In contrast, enhanced tissue S1P levels have been
reported to promote inflammation. S1P1-5 are expressed on the
surface of several lymphocyte cell types including mast cells and
eosinophils (71, 72) suggesting S1P to be crucial for immune cell
migration and activation. Especially, S1P1 and S1P2 are
important regulators of mast cell and eosinophil responses.
Mast cells have been reported to be potent producers of
endogenous S1P due to enhanced SphK activation (18).
Alterations in S1P homeostasis by deletion of SphK1 or SphK2
were demonstrated to affect sensitization and effector phase in
food allergy. Splenocyte analysis by flow cytometry found
reduced populations of CD4+ effector T-cells in both SphK
knock out strains, as well as a reduced allergy effector cell
influx in the gastric mucosa. Enhanced barrier permeability
was detected in CaCo2 monolayer stimulated apically with S1P
(73). This provides evidence that presence of SphK influences
allergen uptake by regulation of the GI barrier integrity.
Therefore, S1P effects might depend on a concentration
gradient. While enhanced blood S1P levels might be beneficial
for barrier integrity, an increase in tissue S1P levels promotes
barrier disruption and inflammation. Considering the dietary
uptake of SLs, an enhanced need for S1P lyase activity in the
small intestine seems logical. However, higher serum S1P levels
together with Cer metabolites such as N,N-dimethylsphingosine
have been reported to be associated with enhanced anxiety-like
behavior in studies investigating associations between SL
homeostasis and psychologic disorders and pain syndromes
(74, 75). Without any doubt, additional investigations on the
metabolite gradient need to be performed.
SLs AND THE GUT WITH FOCUS ON GI
BARRIER INTEGRITY

As essential structural components of GI cell membranes, SLs
influence barrier integrity and function (Figure 3). The GI tract is
lined by a single cell layer of different, constantly self-renewing
epithelial cell types, termed intestinal epithelial cells (IECs). The
luminal side of this single-cell barrier is covered with an alkaline,
antimicrobial mucus layer, protecting the barrier from direct
contact with the commensal gut microbiota and digested
nutritional compounds. On the basolateral side, the GALT is
located, which consists of lymphocytes being nourished by blood
and lymph vessels and surrounded muscles embedded in loose
connective tissue (8).
TABLE 1 | Summary of SL content in important food sources.

SL metabolite Dietary Source mg/100g References

Sphingomyelin Bovine milk (whole) 9 (38, 39)
Cottage cheese 139
Buttermilk quark 74
Egg yolk 82
Beef 44-69
Mackerel 224
Human breast milk 3-14

Cerebrosides (total) Wheat flour 226 (40)
Soybean 310
Barley 275
Rice 11.5
Corn 11.5
Pumpkin 145
Cabbage 36.5
Spinach 192.9
Broccoli 112
Sweet potato 67
Potato 15.6

Glucosylceramides Sugar beet* 12-45 (39, 41)
Potato* 1-20
Apple* 49- 94
Wheat* 20
Soybean* 20-39
Bovine milk 0.7-1.9

Lactosylceramides Bovine milk 0.8-1.2
Gangliosides Bovine milk 0.5-11 (39, 42, 43)

Anchovies 9.9
Egg yolk 16
Chicken (liver) 29
Chicken (meat) 0.4–1.5
Beef 0.3-0.9
Pork 0.5
Crab 0.5
Squid 0.7
Human breast milk 19 - 26 (mg/l)
*Information was obtained from a study examining dry by-products of the food industry.
Information on quantitative content of different SLs is limited and biased by the central
research question of the studies. Quantification of the most abundant SLs in dietary
sources is pivotal to define nutritional recommendations suitable for balancing SL
homeostasis. When evaluating differences in Western versus vegetarian or vegan diets,
there is a urgent need of quantitative examining cerebroside composition in food. Content
of SM has been reported to vary depending on diet and maintenance of the animals (37).
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SLs Influence Cell Differentiation Along the
Crypt-Villus Axis
SLs are found throughout the whole GI tract, but preferably
located in the apical membrane of IECs (67). Differences in SL
distribution have been reported with a higher concentrations of
Sph and glucosylceramide in the villi and trihexosylceramide in
the crypts (76). This suggests that specific SL metabolite
distributions along a crypt-villus axis may stimulate cell
differentiation. In support, five of the six Cer synthases have
been found in intestinal mucosal cells (33). Recent investigations
suggest an imbalance in intestinal SL metabolite distribution to
enhance inflammation. Enhanced levels of SM, Cer, S1P and C1P
and decreased levels of cerebrosides and gangliosides were found
in rodent studies of dextran sulfate sodium colitis (77).
Moreover, high levels of SM and Cer have been detected in ilea
of Crohn’s disease patients (78). TNF-a was demonstrated to
upregulate the de novo synthesis of Cers in colon cancer. In
contrast, inflamed intestinal tissue showed decreased levels of
gangliosides, which was reversable by dietary ganglioside
supplementation (79). Thus, dietary supplementation of
specific SLs might act beneficially in gut inflammation by
preserving morphological features important for intestinal
function and immune homeostasis (33, 76, 80).

Leaky or Tight? – Interaction of SLs With
Cell Junction Related Proteins
It is well known that a disruption of the intestinal cell junctions
enhances GI barrier permeability. As a consequence, luminal food
and microbial antigens increasingly pass the GI barrier and might
interact with GALT resulting in an altered immune response. This
Frontiers in Immunology | www.frontiersin.org 7
“leaky gut” is common in patients with digestive disorders.
Absorption of LPS is increased, leading to chronic inflammation,
which initiates the onset of metabolic diseases typical for Western
societies, such as diabetes and non-alcoholic fatty liver disease (81,
82). Exogenous SMase was previously demonstrated to increase
transepithelial permeability. At concentrations as low as 0.01
enzyme units/ml, transepithelial resistance was decreased. The
barrier disruption was associated with accumulations of Cers and
simultaneously decreased SM and cholesterol levels in membrane
fractions containing tight junction proteins occludin and claudin-4
(83). Also, decreased amounts of cholesterol at the plasma
membrane resulted in failure of occludin and claudins to localize
at the tight junctions (84). A better understanding of the underlying
mechanisms of tight junction formation is important to clarify the
role of dietary SLs on intestinal barrier integrity.

Combating Inflammation by Changes in
Lipid Raft Composition
Lipid rafts are microdomains in plasma membranes rich in SLs
and cholesterol, which harbor a variety of signaling and transport
proteins. They are specialized in signaling allowing a closer
interaction of protein receptors for signal transduction due to
kinetically favorable conditions (85). In enterocytes, the brush
border is a highly specialized membrane designed to absorb
dietary nutrients and to simultaneously form a barrier towards
luminal pathogens. Cholesterol or caveolin depletion in
membranes was shown to inhibit inflammatory signaling by
disrupting microdomain structure. Dietary ganglioside-induced
reduction in cholesterol content reduced pro-inflammatory
mediators in the intestinal mucosa after acute exposure to
FIGURE 3 | Influences of SLs in intestinal homeostasis. Recent findings suggested an imbalance of SLs and metabolites in favor of S1P, C1P, Cers (CER), Sph,
SM, instead of more complex cerebrosides (CEREB) and gangliosides (GANG) to promote intestinal inflammation. SLs are able to interact with IECs and immune
cells at different sites. Thus, SLs are promising candidates for treatment of immune-mediated diseases and as predictive biomarkers.
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bacterial endotoxin (79). Moreover, a dysregulation in lipid rafts
initiated by an accumulation of Cers was found in primary
bronchial epithelial cells of cystic fibrosis patients (86).
Cholesterol rich lipid rafts were reported to enhance
inflammatory activity of TLR4 and 3 agonists. A depletion of
cholesterol downregulated inflammatory signaling by TLR4 (87).
Thus, effects of dietary SLs on lipid raft formations are promising
targets for further studies in inflammatory diseases.

SLs and Their Impact on Mast Cell
Activation
Interactions between mast cells and modulating lipids are recently
emerging and provide novel insights in underlying mechanism of
the gut-brain axis. Mast cells are tissue resident immune cells, often
located in skin and mucosa. They are well known for their secretory
granules, which degranulate upon mast cell activation and release
mediators such as histamine, proteases and cytokines. Mast cells are
of high relevance in allergy research, since they respond to allergen
exposure with IgE-mediated degranulation leading to tissue
damage. Recently, their extensive, uncontrolled degranulation has
been associated with an irritable bowel syndrome (IBS) and myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS), both
strongly associated with infections or stress situations (88, 89).
Mast cell interactions with cells of the central nervous system are
considered to link stress with GI symptoms. Furthermore,
degranulation of mast cells is calcium-dependent. The entry of
calcium is modified by Cers, which can be produced from SM by
acid SMase. A rodent study demonstrated exogenously stimulated
Cer production to trigger apoptosis of mast cells in acid SMase
knock-out mice (31). Thus, exogenously stimulated Cer production
might be a powerful tool for dietary supplementation in situations
of mast cell activation. Dietary recommendations focusing on mast
cell activation have been suggested to combat symptom severity in
allergy, IBD, IBS and ME/CFS (89). However, the exact role of
dietary SLs in excessive mast cell activation and effects on the gut-
brain axis has to be elucidated in further studies.

SLs and the Mucus Barrier
Mucins are a family of heavily glycosylated proteins produced by
specialized epithelial cells. They contribute to epithelial barrier
function and prevent microbial invasion. In turn, certain
members of the gut microbiota (commensals and pathogens)
are also able to efficiently break down mucins (90). In line,
bacteria competing with pathogens for the degradation of
mucins are considered as gatekeepers for a healthy gut and
have shown great potential as probiotics (91). Host membranes
are protected from bacteria through the secretion of alkaline
mucus. However, the effect of charge selectivity changes
depending on mucus composition. Interactions with the
headgroups of SM or phosphatidylcholine are suggested to
alter intestinal mucus function. In accordance, intestinal mucus
samples of ulcerative colitis patients demonstrated reduced
phosphatidylcholine levels compared with healthy controls
(92). Alkaline SMase was shown to inactivate a pro-
inflammatory platelet activating factor, thus, being able to
counteract intestinal inflammation (93). Therefore, the impact
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of bacterial, neutral and acid SMases have to be considered when
studying SL metabolism in the gut. Data on bronchial mucosal
barrier functions are available, due to intensive research on SLs
in respiratory diseases. These results might assist investigations
on GI mucosal barrier function. Bacterial SMases were found to
strongly inhibit transmembrane conductance regulator function
in cystic fibrosis reducing mucosal fluidity (94). Analyses of
sputum revealed enhanced levels of SM and glycosphingolipids
in samples of cystic fibrosis patients (95). A study examining the
association of plasma S1P levels with CFTR function and clinical
symptom presentation found reduced levels of unbound plasma
S1P accompanied by GI symptoms in cystic fibrosis patients (96).
Furthermore, enhanced Cer accumulation through neutral
SMase activity was monitored in a study investigating the
sputum of smokers. The enzyme is activated by TNF-a and
interferon-gamma (IFN-gamma) stimuli (97). However,
differences in signaling pathways activated by alkaline, neutral,
acid or bacterial SMases still remain elusive.
SLs AND MICROBIOTA

Microbial SL Metabolism
While the importance of mammalian SL turnover for mediating
various cellular processes is well recognized, mechanisms of
microbial SL metabolism are not adequately understood.
Prokaryotic SL production has first been described in members
of the phylum Bacteroidetes (e.g. Bacteroides, Prevotella,
Porphyromonas, Sphingobacterium) (98) and more recently
also in some Proteobacteria (e.g. Sphingomonas, Bdellovibrio,
Acetobacter) (99, 100). Of interest, many of the known bacterial
SL producers are also associated with eukaryotic hosts, indicating
a close symbiotic relationship. In fact, SL-mediated bacteria-host
interactions have been unveiled in a number of plants,
animals, as well as unicellular eukaryotes, suggesting an
evolutionary early development of this trait (101). The
potential influence of bacterial SL production on the host is
further underpinned by the abundance of the Bacteroidetes
phylum, constituting up to 30-40% of the human gut
microbiome (101). The gut microbiome represents a highly
complex ecosystem with a large potential to influence host
health, which has been extensively studied in the last decade.
However, the extent of impact of bacterial SLs on eukaryotic
physiology, metabolic processes and immune homeostasis is not
fully understood yet.

The majority of bacterial SLs are still not characterized and
recent studies just begun to uncover the diversity of bacterial SL
structures. For example, Alistipes and Odoribacter species have
been found to be responsible for sulfonolipid production in mouse
cecum, which correlated with a high-fat diet (102). Additionally,
Bacteroides fragilis has been shown to produce three different
types of SLs, namely, the Cer phosphorylethanolamine, its
corresponding dihydroceramide base, and the glycosphingolipid
a- galactosylceramide (103). These and other bacterial-derived
SLs can pass the epithelial barrier in the gut and enter host
metabolic pathways, [as shown by Johnson et al., 2020 (104)]
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They administered a SL-producing Bacteroides thetaiotamicron to
mice and observed increased levels of Cers in liver and reduced de
novo SL production, which was not achieved when the B.
thetaiotamicron capability to produce SLs was knocked out
(104). In another study mono-colonization of germ-free mice
with a SL-deficient B. thetaiotaomicron strain led to intestinal
inflammation and shifts in SL levels in the intestine (105).
Moreover, IBD patients have decreased Bacteroides-derived SLs
but increased host SLs, further highlighting the role of bacteria-
derived SLs in intestinal immune homeostasis (106). Likewise,
Duan et al. showed that germ-free mice have a reduced SM
hydrolysis capability, suggesting that the intestinal microbiota
contributes to SL turnover (107). Thus, microbial SLs have the
potential to mediate signaling pathways and influence their hosts
lipid metabolism (108). However, the exact mechanisms
underlying SL- mediated host-microbial interactions and their
implication in diseases warrant further research.

Diet is a key factor shaping the gut microbiome (109). In turn,
the gut microbiome also determines glycemic responses to
certain foods, which show a high interpersonal variability
based on individual microbiome features (110). Thus, it is
imperative to unravel the basic metabolic processes and
dynamic interactions of microorganisms that are linked to
nutrition and diet. Since dietary SLs are essential components
of eukaryotic cellular membranes, they can be found in virtually
any type of food. Yet, our knowledge about the capability of
microorganisms to degrade dietary SLs is limited. Just recently,
first evidence on the microbial assimilation of dietary
sphinganine in the mouse gut has been established by using a
click-chemistry based approach (termed ClickSSS) to track the
incorporation of bio-orthogonal dietary omega-alkynyl
sphinganine into the gut microbial community (111). Bacteria
from the Bacteroides genus were almost exclusively involved in
the assimilation of sphinganine, although other non-SL-
producing bacteria (e.g. Bifidobacterium, Lactobacillus, and
Turicibacter) have been discerned to have a role in SL
metabolism as well. In the future this and similar approaches
should be used to identify yet uncharacterized microbial
processes implicated in SL metabolism. Investigating the
influence of dietary SLs on the gut microbiota is key to
understand the tight connections between SL metabolism,the
gut microbiota, and host immune homeostasis.

SL-Mediated Host-Pathogen Interactions
IECs and other intestinal cells are in permanent cross-talk with
the microbiome and with bioactive compounds. It is supposed
that SLs, e.g. SM, have protective effects at the mucosal site, thus
being able to prevent the invasion of pathogenic microorganisms
(20). SM is also taken up by enterocytes, which subsequently
degrade the lipid backbone for reutilization (112). Degradation
products of SLs and glycosphingolipids also interact with the
immune system of the host (Figure 4). Sph and lyso-SLs, both
derivatives from SL degradation, have antimicrobial properties
against gram-positive and gram-negative pathogenic bacteria
(e.g. Pseudomonas aeruginosa, Staphylococcus aureus,
Acinetobacter baumannii, Campylobacter jejuni, Listeria
monocytogenes and Clostridium perfringens), as shown in in
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vitro and in vivo experiments (20, 113, 114). Multiple epithelial
tissues benefit from the preventive effect of Sph on severe
pathogen infections involving innate and immediate defense
mechanisms (113). The high expression of Sph in human nasal
epithelial cells is associated with protective barrier effects, and
decreasing Sph levels promote bacterial infections (115).
Bacterial survival fluctuations during mouse lung infection
were experimentally modified by deletion of a microbial
sphingosine-responsive transcription factor (sphR), suggesting
that sphR of pathogens plays an important role in the initial
response to host infection (116). Also S1P has effects on infection
dynamics via immune cell trafficking and differentiation as well
as preserved barrier integrity (117, 118).

Glycosphingolipids act as antigens, as receptors for microbial
products and toxins, and as mediators for cell adhesion in
eukaryotic cells (119–121). They are suggested to have a
functional role in host immune responses and for pathogen’s
escaping strategies (122). Lactosylceramide (LacCer), a
glycosphingolipid including Cer and lactose, has a special role in
recognizing pathogen‐associated molecular patterns. It activates
phagocyte function (123, 124) and there is evidence for direct
binding to bacterial pathogens (shown for Escherichia coli,
Bordetella pertussis, Bacillus dysenteriae, Propionibacterium
freudenreichii) and fungi (shown for Candida albicans) (125–130).
Increasing cellular Cer accumulation was found to parallel
production of antimicrobial peptides (AMPs), which are key
components of antimicrobial barrier functionality and innate
immunity (131). C1P has been reported to directly activate
cytosolic phospholipase A2 which subsequently leads to
production of the AMPs human beta-defensin 2 and human
beta-defensin 3 (132) Increased S1P levels were reported to
strongly stimulate the expression of cathelicidin antimicrobial
peptide when the epidermis is under stress, i.e. in response to
attack of microbial pathogens (133). At the host neutrophils plasma
membrane, LacCer accounts for 70% of glycosphingolipids,
indicating its importance in pathogen binding (122, 134), and
endogenous LacCer supplementation to neutrophil cell lines with
low levels of LacCer can rescue their phagocytic activity (123).
SL HOMEOSTASIS

The intense investigations on SLs in the last years revealed SL
metabolism as a universal response to stress. Depending on the
source and type of stress, different signaling pathways are
activated, which provides explanations for the complex and
often enigmatic nature of SLs. Recent innovations in systems
biology, big data analysis, genomics and epigenetics enabled
detailed analyses of SL structures resulting in highly interesting
novel findings on the role of SLs in inflammation, disease
progress and nutrition.

SLs and the Drug Industry
The most intense studied bioactive SLs include Cer, Sph and S1P
(135). The Sph analogue ISP1 (Myriocin) showed beneficial
effects in treating insulin resistance and the metabolic
syndrome (136, 137). Short-chain analogues of Cers are of
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special interest in the treatment of leukemia (138). Especially,
S1P has been in the focus of many recent studies, as its two
kinases (SphK 1 and 2) and its five G- protein coupled receptors
(S1P1-5) received increased attention in research as therapeutic
targets. Effects were shown in treatment approaches of diseases
common for Western societies, for instance, ulcerative colitis
(139), allergy (32), multiple sclerosis (140) and cancer (141).
Furthermore, the SL metabolite is suspected to be involved in the
onset and progression of psychiatric disorders and pain
syndrome (75) which might provide evidence to find a missing
l ink between GI inflammation and psychosomat ic
manifestations. The S1P analogue FTY720 (Fingolimod) was
originally used in treatment of multiple sclerosis by modulating
immune cell chemotaxis, but has been also suggested for cancer
treatment (142) and for restoring endothelial barrier
dysfunction (143).

Recent analyses focusing on the SL metabolism suggest C1P,
cerebrosides (especially glucosylceramide and lactosylceramide)
and gangliosides as novel emerging candidates for
therapeutically targeting cancerogenic, immune-related and
inflammatory disorders. Enzymes, especially SMases and
ceramidases are in the center of recent investigations. Neutral
SMase inhibitors show an enormous potential for treatment of
inflammation in cardiovascular, pulmonary and neurological
systems (144). Alkaline SMase is a promising target in GI
disorders, due to its high activity in the digestive system. It has
been suggested to regulate mucosal growth in an alkaline SMase
knock-out mice model (145) and to reduce gut inflammation
(93) in a rodent study. Acid SMase has been reported to reduce
severity of cystic fibrosis (115), acute lung injury (146) and
Wilson disease (147). When evaluating acid SMase as drug
target, it is essential to mention, that the enzyme seems to
work in a compartment specific manner. Thus, specific roles of
acid SMases have to be further elucidated (148). Ceramidases
have been suggested as promising treatment targets in many
diseases. Inhibitors of acid ceramidase and neutral ceramidase
overcome cell death resistance after prolonged anti-cancer
treatments. Essential work is yet to be done to define inhibitors
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suitable for combining specificity and ability to reach specific
cellular compartments (144). Although, promising candidates
have been identified, their exact indication needs to be
further investigated.

To date it remains unclear how to restore the SL balance in
situations of altered SL homeostasis. However, there is strong
evidence suggesting dietary SLs to be suitable candidates. Cers
are well known targets when talking about skin barrier function.
Reduced levels have been reported in situations of barrier
dysfunction, as seen in psoriasis (149) and atopic dermatitis
(150). Previously, the effect of supplementation of synthetic and
animal-based Cer-precursor-SLs have been investigated.
However, with the discovery of an SL efflux mechanism of
rodent enterocytes (44) and the possibility to isolate the SLs
from conventional plant-based food products, which diminished
concerns about infectious diseases disseminating via animal SLs
(151), plant SLs arespeculated to be safer. Beneficial effects of oral
supplements have been indicated in studies on skin hydration
and skin barrier reinforcement (56). A high abundance of
gangliosides in human breast milk indicates them as beneficial
dietary supplements in infant formula, due to their effects on GI
inflammatory disorders and neurodevelopment of children
(152–154). Altogether, there is increasing evidence supporting
safety of dietary SL supplementation to counteract a dysregulated
immune homeostasis. Nonetheless, information on differences
regarding the source of the Cers (animal, plant, synthetic),
structural differences of Cers and subsequent effects are not
well studied to date.

SL Metabolites - Novel Biomarkers for
Stress Responses?
A dysfunction in SL homeostasis due to reoccurring stress
stimuli might provide an explanation for many inflammatory
and immune-related diseases of yet unknown origin. To support
this theory SL metabolites have been suggested as novel
biomarkers for diseases such as Alzheimer’s disease and
metabolic diseases related to insulin resistance (155, 156). Cers
have been identified as cholesterol-independent biomarkers for
FIGURE 4 | Sphingolipids in host-microbial interactions. Epithelial cells that produce various antimicrobial peptides and secrete mucin (glycocalyx) prevent microbial
invasion. SLs alter intestinal mucus function, compete with commensals for epithelial binding sites and induce defense mechanisms against pathogenic bacteria.
Intestinal SL levels are not only influenced by diet and endogenous SL-production, but also by SL-producing and SL-degrading bacteria. Bacterial and host SLs are
structurally similar. They mediate specific host immune responses and interact with signaling pathways.
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familial coronary artery disease by an unbiased machine learning
approach, revealing 30 out of 32 Cer types being significantly
elevated in sera of patients compared to healthy controls (157).

Establishing a biomarker system suitable for clinics depends on
reliable measurements to distinguish health from disease. Several
rodent and human studies found enhanced levels of SM, Cers, S1P
and C1P associated with IBD and simultaneously reduced levels of
glucosylceramides and monosialodihexosylgangliosides (77, 78,
158). A reduction of alkaline SMase activity was suggested to be a
potential trigger for the dysregulation in SL metabolism as seen in
a study of human chronic colitis (159). In a human clinical study, a
high throughput whole exome sequencing approach was used to
identify mutations in a chronic kidney disease and sensorineural
hearing loss patient including also family members (160). This
enabled the identification of a gene defect in RMND1, which leads
to an accumulation of Cer and subsequently promote dysregulated
apoptosis and tissue necrosis in kidneys. A broader accessibility to
more advanced chemical analysis techniques such as UHPLC-
High resolution mass spectrometry allows identification of SL
species as biomarkers of clinical significance (161).Thus, not only
methodological innovations will support sphingolipidomics, but
also the dissemination of knowledge on accurate mass, isotopic
patterns, and collision-induced fragmentation together with
enlarged compound libraries suitable for identifying a broader
spectrum of SL species is essential.
CONCLUSION

SLs are important constituents of cell membranes and enable a
fast and efficient transduction of cellular signals. Their highly
complex metabolism is strictly regulated. Our diet has been
demonstrated to influence SL homeostasis and to shape the gut
microbial community. With regards to a balanced SL
metabolisms, it is paramount to clarify the role of microbial SL
producers and microbial SL metabolites. Western diets are
hypothesized to dysregulate SL homeostasis and thereby cause
an increase in prevalence of cancerogenic, immune-related and
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inflammatory diseases. In this context, immuno-nutrition can be
a powerful tool to counteract chronic inflammation, overall
morbidity, and increasing health care costs. Thus, it is
imperative to further elucidate the SL metabolism and to
define dietary recommendations in order to restore a
dysregulated SL homeostasis. Furthermore, the impact of
bacterial SLs on eukaryotic physiology, metabolic processes
and immune homeostasis need to be in focus of future studies
evaluating the role of SLs in immuno-nutrition. Recent technical
innovations in system biology, genomics and epigenetics pave
the way for such complex, holistic analysis of SLs. Additionally,
unbiased machine learning approaches might constitute a key
tool in upstream analysis of multidisciplinary data sets deriving
from metabolomics, microbiome analysis and clinical studies.
Although, many questions remain to be answered, it is clear that
a detailed insight in the highly complex nature of SL homeostasis
is pivotal to combat chronic, low-grade intestinal inflammation
and subsequent metabolic diseases within the human body.
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