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Abstract

The recent COVID-19 outbreak caused by SARS-CoV-2 virus has sparked a new spectrum of investigations, research
and studies in multifarious directions. Efforts are being made around the world for discovery of effective vaccines/drugs
against COVID-19. In this context, Ayurveda, an alternative traditional system of medicine in India may work as an
adjuvant therapy in compromised patients. We selected 40 herbal leads on the basis of their traditional applications. The
phytomolecules from these leads were further screened through in-silico molecular docking against two main targets of
SARS-CoV-2 i.e. the spike protein (S; structural protein) and the main protease (MPRO; non-structural protein). Out of the
selected 40, 12 phytomolecules were able to block or stabilize the major functional sites of the main protease and spike
protein. Among these, Ginsenoside, Glycyrrhizic acid, Hespiridin and Tribulosin exhibited high binding energy with
both main protease and spike protein. Etoposide showed good binding energy only with Spike protein and Teniposide
had high binding energy only with main protease. The above phytocompounds showed promising binding efficiency
with target proteins indicating their possible applications against SARS-CoV-2. However, these findings need to be
validated through in vitro and in vivo experiments with above mentioned potential molecules as candidate drugs for the
management of COVID-19. In addition, there is an opportunity for the development of formulations through different
permutations and combinations of these phytomolecules to harness their synergistic potential.

Keywords: Ayurveda, COVID-19, Main protease, SARS-CoV-2, Spike-RBD protein

1. Introduction

T he human coronavirus (CoV) is an enveloped,
single stranded positive sense RNA virus of

Coronaviridae family and Nidovirales order which is
usually responsible for upper respiratory and diges-
tive tract infections in humans [1]. Earlier, the Severe
Acute Respiratory Syndrome-CoV (SARS-CoV) in
2002 and Middle East Respiratory Syndrome-CoV
(MERS-CoV) in 2013 spread in several countries
causing severe illnesses like pneumonia, bronchioli-
tis, meningitis etc. However, in the present scenario
the fatality ratedue toSARS-CoV-2 is~2e3%[2,3]. It is
believed that initially SARS-CoV-2 virus had spilled

over from animal reservoir to humans via an inter-
mediate host and aggressively infected the humans
with increased severity and then by human to human
transmission leading to pandemic via global travel, as
declared by the WHO on 11th March, 2020. The
symptoms in COVID-19 patients typically resemble
those of the SARS, which include dry cough, high
fever and at later stages difficulty in breathing due to
lower respiratory tract infection. The genome of CoV-
2 (~30 kb) encodes four major structural proteins:
Spike (S), Membrane (M), Envelope (E) and Nucleo-
capsid (N). Spike protein facilitates entry into the
target cell with its short intracellular tail, trans-
membrane anchor, large ectodomain with receptor
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binding (S-1) and membrane-fusing (S-2) subunits.
Sequence of SARS-CoV-2 has 79.5% similarity with
SARS-CoV. Receptor binding domain/motif (RBM) in
Spikeprotein is conservedbetweenCoV-1andCoV-2,
suggesting that Coronaviruses use the same Angio-
tensin-Converting Enzyme-2 (ACE2) receptor for
entry to the host's receptors in alveolar epithelial cells
of lungs [1].
Till date there is no effective remedy available for

this virus and the current line of treatment includes
use of combination of some antiviral agents and
broad-spectrum antibiotics. Several inhibitors of
HIV protease have been claimed to be efficacious
against COVID-19; however, their results remain
unclear in animal models [4]. Remdesivir has been
found effective against SARS-CoV-2 both in vitro
and in vivo [5]. The Indian Council of Medical
Research (ICMR) has also recommended the use of
Hydroxychloroquine (400 mg dose) for the treat-
ment of confirmed or suspected COVID-19 patients
[6]. The use of plasma therapy as an alternative line
of treatment has been permitted in several countries
but its safety and efficacy are under investigation [7].
Currently the management/treatment of COVID-19
has become quintessential and it is urgent to find
out potential molecules either through modern
medicine or from traditional systems of medicine to
control the acuteness and casualities caused by
COVID-19 infection.
As per Ayurveda, infectious diseases can be

controlled by supporting the natural defense
mechanisms and boosting the immune system of
body that will be beneficial for eradication of the
symptoms [8]. The concepts of epidemics and pan-
demics were known even at the time of Ayurveda as
Janapadodhwans, which occur due to variations in
Vayu, Jala, Desh and Kala [9]. One of the noted
Ayurvedacharya of ancient India, Sushurut had
classified eight different modes of communicable
diseases in his book Sushurut Samhita [10]. It has
been suggested that the aupsargika roga (communi-
cable diseases) can be contained by practicing some
physical precautions and taking some protective
measures such as “Dhupana” (fumigation) with
“Rakshoghna Dravyas” (antimicrobial agents).
Thus, an integrative Ayurvedic approach using

poly-herbal combinations with medicinal plants
having anti-inflammatory, immunity boosting, anti-
asthmatic and anti-pneumonia activities with furin
like- proprotein convertase enzyme inhibitor might
help to combat COVID-19. The trimeric trans-
membrane spike (S) glycoprotein of coronavirus is
essential for the entry of virus into the cell via
attachment, fusion and penetration. After attach-
ment, the S glycoprotein must be cleaved by host

cell proteases to enable the exposure of fusion se-
quences for entry into the cell. As furin proteases
are abundant in the human respiratory tract, it is
possible that S-glycoproteins of SARS-CoV-2 is
cleaved when it exits from epithelial cells and
consequently infect other cells efficiently. Thus to
inhibit the viral propagation, use of plant-based
furin-like convertase inhibitors will be a key
approach. However, systematic inhibition of furin
like enzymes may result in toxicity due to its use in
other cellular processes of human. So, the delivery
of small molecules of plant origin can provide local
relief against COVID-19. One most promising
example is diterpenes and succinoyl esters of
Andrographis paniculata, which exhibit prohormone/
proprotein convertase (PC) inhibitory properties
[11]. The flavonoids isolated from Oroxylum indicum
were tested for inhibition of PC-enzymes including
furin using in vivo fluorogenic peptide as substrate.
The study interprets that “these flavonoids also
efficiently blocked the PC4-mediated processing of a
fluorogenic peptide derived from the processing site
of its substrate, pro-Insulin Growth Factor-1
(proIGF-1)” and can have anticancer and antiviral
activities [12]. In another study, chloroform soluble
extract of Morus alba fruits, selected by proprotein
convertase subtilisin-kexin type 9 (PCSK9) mRNA
expression monitoring assay in HepG2 cells, led to
the isolation of a new benzofuran isomoracin D and
a naturally occurring N-(N-benzoyl-L-phenyl-
alanyl)-L-phenylalanol along with 13 known com-
pounds. Out of those, moracin C was found to
inhibit PCSK9 mRNA expression with an IC50 of
16.8 mM in HepG2 cells [13]. Besides this, various in-
silico studies have been conducted on some com-
pounds of natural origin like polyphenols, tannins,
and polyacylated anthocyanins, exhibiting prom-
ising efficacy against SARS-CoV-2 [14e17].
The phytomolecules obtained from plants possess

a wide spectrum of antimicrobial activity including
potent antiviral activities against diverse groups of
viruses [18]. This property of the plant extracts is
due to the presence of a large number of phyto-
constituents belonging to diverse groups such as
phenols, flavonoids, alkaloids, saponins, terpenoids,
glycosides, peptides etc. [15,19] with different modes
of action in inhibiting the growth of viruses. The
common mechanisms of actions include inactivation
of viral particles [20], inhibition of viral adsorption
and penetration [21] or entry, transcription [22], and
viral protein synthesis [23]. The phenols or phenolic
acids are important classes of phytomolecules dis-
playing antiviral activity and the degree of activity
depends on its number of hydroxyl groups [15,24].
Flavonoids obtained from ethanolic extract of Ficus
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benjamina leaves were able to inhibit different
strains of Herpes Simplex Virus (HSV) infection
[25]. Berberine, a very potent member of proto-
berberine group of alkaloids inhibits HSV to enter
into the host cells [26] while indole alkaloid har-
melin inhibits HSV-1 and HSV-2 infection in mice
by inhibiting immediate early transcription [27,28].
Apart from this, several plants have immunity

boosting or immunomodulatory effects rendered by
inducing the production of cytokines, interferons
and interleukins [29,30]. Artemisia annua, a well-
known anti-malarial plant is also reported to
possess anti-viral potential against a number of vi-
ruses [31]. Although plants have immense potential
for providing solutions to several emerging chal-
lenges and they can also have an important role as
an adjuvant therapy in management of diseases
until proper treatment is available. In order to select
effective phytocompounds against COVID-19, in the
present study, a number of herbal leads were
selected on the basis of their traditional applica-
tions. The phytomolecules from these leads were
further screened through in-silico molecular dock-
ing, against two major targets- the spike protein (S;
structural protein) and the main protease (MPRO;
non-structural protein) of the SARS-CoV-2.

2. Material and methods

2.1. Screening and identification of phytomolecules

It is crucial to recognize the most effective thera-
peutic and functional herbal leads for the cure and
prevention of SARS-CoV-2. Therefore, literature
mining was performed and a number of plants and
their phytomolecules (ligands) were selected from
ancient Ayurvedic scriptures and Samhitas as well as
recent scientific publications on the basis of their
therapeutic applications. The protein structures of
phytomolecules were retrieved from PubChem
database (https://pubchem.ncbi.nlm.nih.gov/) and
DrugBank (https://drugbank.ca/) for further anal-
ysis. Moreover, Remdesivir and Hydroxy-
chloroquine were considered as standard ligands.

2.2. Characterization of selected phytomolecules

The selected phytomolecules (ligands) were
further characterized on the basis of their applica-
tions, record of uses against respiratory disorders
including SARS like symptoms, antiviral potential,
their absorbance in the human body, half-life,
toxicity, sustainability in humans with recom-
mended dose and nature of solubility. Moreover,
the most promising pharmacologically active

phytomolecules were further evaluated against
human by using admetSAR prediction tool (http://
lmmd.ecust.edu.cn/admetsar2/). To predict the
essential pharmacokinetic nature of phytomole-
cules, properties such as absorption, permeability,
distribution, metabolism, mechanism, excretion and
toxicity were conducted to access their impact on
the targets of human body along with safety as-
sessments (Table S1).

2.3. Screening of SARS-CoV-2 targets

As per the previous studies, several targets
including spike glycoprotein, papain like protease
(PLpro), and main protease (Mpro) like 3-chymo-
trypsin-like protease (3CLpro), Spike, RNA-depen-
dent RNA polymerase (RdRp) were screened by
computational approach to design the effective
drugs against SARS-CoV-2 [32]. Out of different
targets, main protease (Mpro) was selected for mo-
lecular docking as it performs a decisive role in the
processing of polyproteins that are translated from
the viral mRNA [16,33]. Apart from that, Spike (S)
protein was also selected to further validate the
binding affinity of screened phytomolecules with
other targets.

2.4. Molecular docking of phytocompounds with
selected SARS-CoV-2 targets

To unravel the infallible curation efficacy against
SARS-CoV-2, the screening of potential ligands
have become a prime priority in current scenario.
After the selection it remains important to recognize
the binding effinity of potent phytomolecules at
SARS-CoV-2 targets.
To find out this, the selected ligands were

employed against the spike protein (structural pro-
tein) and main protease (non-structural protein) of
SARS-CoV-2, with their corresponding structure in
RCSB-PDB. These ligands were evaluated on the
basis of two methods. Firstly, the structures were
examined by using induced-fit docking to evaluate/
analyze their active site blocking potential at struc-
tural level. The protein structures of SARS-CoV-2
main protease and spike-RBD with main protease
were downloaded from RCSB-PDB database
(https://www.rcsb.org/) using the ID, 6LU7, and
6LZG, respectively. These structures were further
optimized in SPDBv tool (https://spdbv.vital-it.ch/)
for gap and charge filling. A number of ligands were
downloaded from PubChem and DrugBank data-
bases to check against selected receptors proteins.
The downloaded ligand structures were converted
from SDF (structure data file) to PDB (protein data
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bank) format using openbabel tool (http://www.
cheminfo.org/Chemistry/Cheminformatics/
FormatConverter/index.html).
The molecular interaction between protein and

ligand were checked using two molecular docking
methods. In the first step, the ligands were screened
against receptor using autodock vina program
(http://vina.scripps.edu/), ligands with higher dG
were further selected for the induced-fit docking
method based on the structural fit using Hex
docking tool (http://hex.loria.fr/).

2.5. Ligand activity analysis

To refine the docking results and explore the
interaction of ligand receptors with targeted site of
SARS-CoV-2, the interactions of hydrogen bonds and
hydrophobic contacts with residues of ligands were
analyzed through schematic diagrams of protein-
ligand interactions by using LIGPLOT v.4.5.3 [34].
Hydrogen bonds are indicated by dashed lines be-
tween the atoms involved, while hydrophobic con-
tacts are represented by an arc with spokes radiating
towards the ligand atoms they contact. The contacted
atoms are shown with spokes radiating back.

3. Results

3.1. Screening of phytomolecules

Forty phytomolecules (ligands) were selected for
the identification of potential candidates for higher
binding/blocking affinity to suppress SARS-CoV-2.
Out of these, 12 phytomolecules were screened on
the basis of their bio-availability and therapeutic
applications. The selected phytomolecules (Table 1)
were reported as the major ingredients of different
medicinal plants native to India and are easily
available in the local markets in the respective
phyto-geographical regions.

3.2. Characterization of selected ligands

The selected ligands were further characterized
on the basis of their applications/record of uses
against respiratory disorders including SARS-like
symptoms, antiviral potential, absorbance in the
human body, half-life, toxicity, sustainability in
humans with recommended dose and nature of
solubility (Table 1). The phytomolecules were re-
ported earlier as non-toxic and recommended for
human consumption. The biological half-life of the
selected phytomolecules ranged from 16 min to 7
days which further explains the efficacy and diges-
tion of the formulated drug after consumption in

dose dependent manner. Besides, the selected li-
gands also possessed antimicrobial activity against
several human pathogens along with adjuvant
beneficiary effects (Table 1).

3.3. Screening of SARS-CoV-2 targets

The main protease (Mpro) of SARS-CoV-2 was
selected as target for molecular docking against this
lethal virus responsible for COVID-19 respiratory
illness. Out of its four structural proteins viz., spike
(S), envelope (E), membrane (M) and nucleocapsid
(N), the S, E and M proteins jointly participate in
creating and maintaining the viral envelope. Apart
from these, many other non-structural proteins
(nsps) have also been identified in this virus [35],
main protease being the most functionally impor-
tant non-structural protein. The main protease
processes the long polyprotein chain and proteo-
lytically cleaves them, resulting in release of many
other nsps, which also contribute to viral replication
and other important functional processes [36]. This
makes main protease an attractive target against
SARS-CoV-2. The binding affinity of screened
phytomolecules with spike protein of SARS-CoV-2
was also evaluated to analyze the binding affinity of
selected ligands against structural protein.

3.4. Molecular docking of phytocompounds with
selected SARS-CoV-2 targets

Remdesivir and Hydroxychloroquine were taken
as standard ligand for comparison of both electro-
static potential as well as structural fit. The selected
phytomolecules were evaluated against the binding
affinity of standards. Out of 40 phytomolecules, 12
ligands viz., ginenoside, glycyrrhizic acid, etoposide,
rutin, podophyllotoxin, colchicine, hesperidin,
ampelopsin, meliacarpin, berberine, teniposide and
tribulosin were found promising against main pro-
tease and spike protein of SARS-CoV-2 (Table 2 and
Table 3). Among these 12 promising ligands, nine
showed higher blocking potential against main
protease (Fig. 1) and spike protein (Fig. S1).
Hydroxychloroquine showed binding energy

value (dG) of �537.1 and �225.9 in induced-fit
method while electrostatic docking yielded �5.6 and
�5.8 with main protease protein and spike protein
respectively. The corresponding values in respect of
Remdesivir following induced-fit method were
�731.38 and �621.6 with main protease and spike
protein, respectively. The values obtained following
electrostatic docking were �9.4 and �7.4, with main
protease and spike protein, respectively. The ligands
were selected for further analysis on the basis of
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greater dG values. In case of main protease, the
binding affinity of selected ligands varied between
�366.74 and �1312.5 (induced-fit method), and �6.1
and �9.4 (electrostatic docking). For spike protein, it
ranged from 195.9 to �686.6 when ligands were
analyzed following induced-fit method and �6.3 to
�9.3 in electrostatic docking analysis. The findings of
present investigation suggest that the selected li-
gands are not only binding effectively with the non-
structural protein (i.e. main protease) but also
attaching with the structural protein i.e. spike pro-
tein of SARS-CoV-2 (Table 2; Table 3).

3.4.1. Docking with main protease
The docking with main protease revealed that

Ginsenoside, Glycyrrhizic acid, Hespiridin, Tribu-
losin and Teniposide showed high binding energy
indicating their highly efficacy (Table 2). Ginseno-
side (dG �1312.5), Glycyrrhizic acid (�1250.6) and
Teniposide (�931.7) exhibited very high dG values
when analyzed using induced-fit method. Glycyr-
rhizic acid (�9.4), Hespiridin (�9.1) and Tribulosin
(�9.0) had high binding energy when assessed
through electrostatic interaction method. The
selected ligands showed h-bonding with Gln189,
His41, Ser144, Leu141, His164, His246, Leu242,
Gln110, Asp153, Ser158, Pro108 and Thr196 amino
acid residues, which directly or indirectly partici-
pate in active site and secondary hotspot formation,
important for proteolytic cleavage activity of prote-
ase domain (Fig. 2).

3.4.2. Docking with spike protein
The docking of selected ligands with spike pro-

teins revealed that Glycyrrhizic acid, Ginsenoside,
Tribulosin, Etoposide and Hespiridin showed high
binding energy (Table 3). Glycyrrhizic acid (�686.6),
Ginsenoside (�686.3) and Tribulosisn (�612.7)
exhibited high dG values when analyzed using
induced-fit method. When analyzed using electro-
static interaction method Glycyrrhizic acid (�9.3),
Etoposide (�8.7), Tribulosin (�8.4) and Hespiridin
(�8.3) exhibited high binding energy with spike
protein. The binding energy of these ligands also
indicated that they are not only able to bind with
non-structural targeted proteins but also are able to
bind with structural proteins of SARS-CoV-2
(Fig. S1).

3.5. Positional binding affinity of selective ligands
with main protease

The positional binding activity of ligands showed
the selective preference of ‘O’ moiety (oxygen
moiety) for binding against the various active siteTa
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residues of main protease active site (Fig. 2). In case
of ginsenoside, glycyrrhizic acid and hesperidin, it is
evident that main chain ‘O’ tends towards the
nucleophilic addition with the amino acid atoms
(OC1, OE1, OE2). The preference of atom self-indi-
cate towards more electronegative interaction,
which makes the h-bonding stronger in case of
these 3 ligands (Fig. 2C,D,J). While in the case of
etoposide again the reactive ‘O’ moiety shows
higher interaction affinity for the NE2 of His41, SG
of Cys145, ‘O’ of Phe140 (Fig. 2E). This electroneg-
ative reaction pattern is also followed by podo-
phyllotoxin (Fig. 2G). Teniposide, due to its flexible
torsion flexibility involves a number of atoms of
interacting amino acids and forms more strong
bonds. Involvement of ‘N’ and ‘O’ moiety in teni-
poside makes it stronger nucleophile adductor to
fuse the amino acids of main protease (Fig. 2F).
The preference for different amino acids of main

protease active site also shows the ability of ligands
to recognize suitable amino acid for binding (Fig. 2).

Again, the functional activities of these ligands are
already known for their anti-inflammatory and anti-
viral activity. Considering the mode of action of
SARS-CoV-2, which may develop cytokine storm in
patients, eventually increases the higher inflamma-
tory condition in human body, thus making the
immune system more susceptible and weak to
combat the infection and effects of the virus. Our
selected ligands will be highly useful not only due to
their blocking and binding activity against main
protease and spike protein, but also because of their
anti-inflammatory potential and supporting ability
of the human body by reducing the cytokine burst.
Another interesting observation was the binding

of rutin, where it binds in a major cavity apart from
the other ligands that showed more affinity towards
a terminal site (Fig. 2H). As rutin is already known
for its antiviral property, it could be a potent lead
against this virus and as an ingredient in designing
the effective formulation. The binding of these
phytochemical leads were demonstrated by H-

Table 2. Binding energy of ligands against Main protease.

Mpro Human Ligand Binding energy dG
(HEX) kcal mole�1

Binding energy dG
(VINA) kcal mole�1

6lu7 Remdesivir (Control) �731.38 �9.4
6lu7 Hydroxychloroquine (Control) �537.1 �5.6
6lu7 Tribulosin �841.8 �9
6lu7 Berberine �366.74 �6.1
6lu7 Colchicine �701.4 �7.1
6lu7 Etoposide �837.9 �8.3
6lu7 Ginsenoside �1312.5 �8.4
6lu7 Glycyrrhizic acid �1250.6 �9.4
6lu7 Hespiridin �691.9 �9.1
6lu7 Ampelopsin �476.2 �7.3
6lu7 Meliacarpin �447.88 �7.7
6lu7 Podophyllotoxin �720.1 �8.3
6lu7 Rutin �744.2 �8.9
6lu7 Teniposide �931.7 �8.7

Table 3. Binding energy of ligands against spike protein.

Spike protein Ligand Binding energy dG
(HEX) kcal mole�1

Binding energy dG
(VINA) kcal mole�1

6lzg Remdesivir (Control) �621.6 �7.4
6lzg Hydroxychloroquine (Control) �225.9 �5.8
6lzg Tribulosin �612.7 �8.4
6lzg Berberine �195.9 �6.8
6lzg Colchicine �328.7 �6.3
6lzg Etoposide �327.3 �8.7
6lzg Ginsenoside �686.3 �7.1
6lzg Glycyrrhizic acid �686.6 �9.3
6lzg Hespiridin �416.2 �8.3
6lzg Ampelopsin �291 �6.9
6lzg Meliacarpin �226.7 �6.9
6lzg Podophyllotoxin �279.4 �7.2
6lzg Rutin �468.4 �7.8
6lzg Teniposide �482.2 �7.6
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bonding with major active site residues which sug-
gest that the ligands with more than 1 torsion center
are effectively targeting and binding with the func-
tional cavities of both the proteins (Fig. 2).

4. Discussion

The infection of SARS-CoV-2 and its devastatingly
spread all over the world through Wuhan city,
Hubei province of China since its first report
(December, 2019) has recorded a total of 15,18,03,822

confirmed cases of infection and 3,186,538 deaths in
213 countries including India which accounts for
1,95,57,457 infections and 2,15,542 fatalities till May
2nd, 2021 (https://covid19.who.int/). Its genome as-
sembly is 29,881 bp in length (GenBank no.
MN908947) encoding 9860 amino acids [37,38],
shows 79% similarity with SARS coronavirus that
belongs to the genus b-coronavirus [39]. The virus
was therefore, named as severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) by the In-
ternational Committee on the Taxonomy of Viruses.

Fig. 1. Representation of molecular interaction between main protease of SARS-CoV-2 and phytomolecules based on molecular docking. (A) h-
bonding and (B)cavity blocking by ligand in surface representation. In figure, 1 ¼ Remdesivir; 2 ¼ Hydroxychloroquine; 3 ¼ Ginsenoside;
4 ¼ Glycyrrhizic acid; 5 ¼ Etoposide; 6 ¼ Teniposide; 7 ¼ Podophyllotoxin; 8 ¼ Rutin; 9 ¼ Colchicine; 10 ¼ Hespiridin and 11 ¼ Tribulosin.
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There are so many studies executed for in-depth
knowledge about SARS-CoV-2 to develop effective
drugs. But unfortunately, till date neither any
authentic information nor any specific drug is
available in the market for cure and prevention of
COVID-19 caused by SARS-CoV-2. However, some
previously used anti-viral drugs (against SARS and
MERS) were screened by investigators, but only
plant based Hydroxychloroquine and synthetic
Remidesvir were reported to suppress the prolifer-
ation of SARS-CoV-2 in cell based in-vitro assay [40].
Now, it has been approved by the WHO for global

consumption against SARS-CoV-2 infections as
preventive measures [7]. However, the mode of ac-
tion of these antiviral drugs against SARS-CoV-2 in
human system has not been reported yet. Further
research is being carried out on various synthetic
molecules e.g. favipiravir, ivermectin, ribavirin etc.
Apart from the synthetic molecules, several herbal

molecules are also being tried for their anti-viral
efficacy. A few such herbal claims with ability to
cure fever, cough, fatigue and related illness hold
promise for effective herbal formulations against
SARS-CoV-2 [41]. However, development of an

Fig. 2. Ligand activity plot of phytomolecules against the main protease active site residue. In figure, A ¼ Remdesivir; B¼ Hydroxychloroquine;
C ¼ Ginsenoside; D ¼ Glycyrrhizic acid; E ¼ Etoposide; F¼ Teniposide; G ¼ Podophyllotoxin; H ¼ Rutin; I ¼ Colchicine; J ¼ Hespiridin and
K ¼ Tribulosin.
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effective herbal drug against SARS-CoV-2 based on
quality screening and scientific validation is yet to
be a reality. Therefore, the present investigation was
carried out to assess the efficacy and binding affin-
ities of the selected ligands/molecules with func-
tional active sites in main protease (non-structural
protein) and spike protein (structural protein) of
SARS-CoV-2.
Traditional medicines and herbal products from

different medicinal plants have immense potential
to provide leads for therapeutically important
compounds. Due to genetic and environmental di-
versity, a given medicinal plant species also varies
in their chemical constituents [42,43]. Utilization of
different herbal compounds/molecules as potent
therapeutic agents against several ailments has
gained momentum in recent years globally. There-
fore, 40 herbal compounds were selected based on
their previous applications/therapeutic uses for
screening their ability to prevent COVID-19 on the
basis of receptor-ligand docking on main active sites
of SARS-CoV-2. Similar in silico screening of herbal
compounds against SARS-CoV-2 has been under-
taken recently by several workers [44e47].
SARS-CoV-2 contains several structural proteins

including S, E, M, and N protein [48] along with
non-structural proteins including papain-like pro-
tease, main protease as 3-chymotrypsin-like prote-
ase, and RNA-dependent RNA polymerase. Out of
all the structural proteins, spike proteins initiate the
host attachment and fusion of viral membrane
during pathogenicity [32]. The main protease (Mpro)
of previous SARS coronaviruses is the most studied
protein, and also in SARS-CoV-2, it is responsible
for the proteolytic cleavage of pp1a and pp1ab
proteins for the initiation of viral replication and
pathogenicity in the host [49]. Therefore, based on
the structural description and inhibition mecha-
nisms of the previously reported SARS-CoV, Mpro

was made as the target for the suppression of SARS-
CoV-2 infection [50]. This was the main reason for
the selection of spike like proteins (structural pro-
tein) and main protease (non-structural protein) for
the in silico screening of most potent herbal leads
against SARS-CoV-2 [50e52].
The computational docking through Induced fit

method and electrostatic binding, suggests that the
screened herbal molecules/compounds including
Glycyrrhizic acid, Ginsenoside, Tribulosin, Etopo-
side, Hesperidin and Rutin showed very promising
binding affinity with spike protein. Similarly, a few
compounds such as Ginsenoside, Glycyrrhizic acid,
Teniposide, Tribulosin, Etoposide, Podophyllotoxin,
Rutin, Cochicine and Hesperidin also showed
higher value with main protease in induced fit and

secondary electrostatic screening, which indicates
that selected ligands are not only targeting specific
amino acids but also are able to block the reported
main active site of the main protease. Many earlier
workers have also shown that phytocompounds
possess significant anti-viral activities [17,53]. For
instance, Glycyrrhizic acid derivatives used for
treating chronic hepatitis, not only suppress the
replication of SARS-CoV [54] but also possess anti-
oxidant, anti-inflammatory and anti-diabetic prop-
erties [55,56]. Ginsenoside derived from Panax
ginseng, inhibits the glycoprotein activity of SARS-
CoV [57,58]. Since lungs infection and elevated
blood sugar level are directly associated with
COVID-19 infection, Ginsenoside can reduce the
plasma glucose level in blood and could be benefi-
cial in controlling lung infection and cardiotoxicity
[59e61].
Etoposide is a well-known antitumoral com-

pound, also screened as protease (3CLpro) inhibitor
of SARS-CoV-2 [38]. Because of its beneficiary role
in reducing infections and enhancing immunity,
WHO has included etoposide in its list of essential
medicines [62]. Similarly, rutin (flavonoid), a well-
known anti-oxidant and antimicrobial agent [63]
was useful for the suppression of Murine CoV [64].
Rutin possibly initiates the suppression of func-
tional protein assembly and host inflammation
during the infection of SARS-CoV-2 [65]. It has been
reported that colchicine, an anti-rheumatic drug
efficiently suppresses the activation of nucleotide
binding protein and leucine rich repeat protein 3
assemblies, and diminishes the level of cytokine
storm during SARS-CoV-2 infection [66]. It is also
very useful in cardiac disease and significantly
possesses antioxidant along with several health
beneficial properties [67,68]. Similarly, Hesperidin
can prevent the host cell entry of the viron through
interaction with ACE2 receptors and thereby sup-
pressing the infection. Additionally, the anti-in-
flammatory and immunity boosting ability of
Hesperidin might provide a better option for con-
trolling cytokine storm in SARS-CoV-2 infection
[69]. This is indicated in the present study with
higher binding affinity of selected herbal com-
pounds with spike protein as well as main protease.
A few compounds viz., Tribulosin, Teniposide (FDA
approved thiol-reacting drug) and Podophyllotoxin
also showed promising binding efficiency with main
protease and spike protein which is not yet explored
for their anti-SARS-CoV-2 activities. However, these
phytocompounds have such significant broad
spectrum therapeutic applications as anti-oxidants,
immune-stimulants, hormone balancers, and are
used for treating cancer, liver, kidney and
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cardiovascular disorders [70e73]. Although, fever,
dry cough, dyspnea, fatigue and myalgia are the
most commonly reported symptoms of COVID-19,
insufficient immune response also leads to severe
damage of cardiovascular system, gut, kidneys and
brain. It enhances blood glucose level manifold in
infected people and also leads to blood clot, vessel
destruction, pulmonary embolism, loss of memory,
and diarrhea. Besides controlling viral infection in
COVID-19 patients, the selected herbal compounds
also possess several other beneficiary properties
which reduce the adverse effects of COVID-19.
Although, a comprehensive wet lab validation and
critical clinical trials are required to confirm the
pharmacological activities of these compounds, yet
the in silico study has provided important leads for
the development of most potent herbal drug against
SARS-CoV-2 in near future.

5. Conclusion

In the present investigation, 40 phytomolecules
were analyzed, of which 12 phytomolecules were
found potential, and can block or stabilize the major
functional sites of main protease and spike-RBD
protein. Ginsenoside, Glycyrrhizic acid, Hespiridin
and Tribulosin exhibited high binding energy with
both main protease and spike protein. Etoposide
showed good binding energy only with Spike pro-
tein and Teniposide had high binding energy only
with main protease. Our findings suggest that the
identified phytomolecules could be promising leads
against the infection of SARS-CoV-2 as the spike
protein is the one that recognizes human ACE-2
receptors and is the known entry point for the virus
into the host cell. The blocking response will reduce
the initial recognition and infection of the virus in
human body, while docking with the main protease
indicates that our leads can play crucial role to

stopping the proteolytic cleavage done by the main
protease, and could be a deciding step in decreasing
the growth rate in later stage of viral life cycle.
Molecular docking shows that phytomolecules

such as ginsenoside, glycyrrhizic acid and tenipo-
side showed greater binding potential than the
established drugs like Remdesvir and Hydroxy-
chloroquine. Two ligands colchicine and rutin tar-
geted the other hotspots of protein than the
reported active site which makes them as promising
targeted medicine. Phytomolecules such as tribu-
losin, ginsenoside and podophyllotoxin showed
structural similarity with Remdesivir, which in-
dicates that such structures has higher recognition
for amino acids at the binding site. Apart from
blocking the target proteins of SARS-CoV-2, these
ligands have anti-inflammatory and immunomo-
dulating activities thereby lowering the acute
symptoms and fastening the recovery.
The findings of this study are useful to initiate in

vitro and in vivo experimentation for finding poten-
tial drug molecules for the treatment of SARS-CoV-
2 infections. In addition, different permutations and
combinations of these phytomolecules may also be
tried to achieve positive synergistic effects with
enhanced bioavailability.
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Appendix A.

Fig. S1. Molecular interaction between spike protein of SARS-CoV-2 and potent phyto-molecules. Representation of molecular interaction
between spike protein of SARS-CoV-2 and phytomolecules based on molecular docking. Figure (A) representing h-bonding and Figure (B) showing the
cavity blocking by ligand in surface representation. In figure, 1¼Remdesivir; 2¼ Hydroxycloroquine; 3¼ Ginsenoside; 4¼ Glycyrrhizic acid; 5¼
Etoposide; 6¼ Taniposide; 7¼ Podophyllotoxin; 8¼ Rutin; 9¼ Colchicine; 10¼ Hespiridin and 11¼ Tribulosin.
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Fig. S2. Ligand leads with highlighted moieties.
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Table S1. ADMET properties of most potential leads

Parameters Ampelopsin Berberine Colchicine Etoposide Ginsenoside Glycyrrhizic
acid

Ames mutagenesis e e e e e e

Acute Oral Toxicity (c) II III III III II IV
Androgen receptor binding þ þ þ þ þ þ
Avian toxicity e e e e e e

Blood Brain Barrier e þ þ e e e

BRCP inhibitior e e e e e e

Biodegradation e e e e e e
Caco-2 e þ þ e e e

Carcinogenicity (binary) e e e e e e

Crustacea aquatic toxicity e þ e e e e
CYP1A2 inhibition þ þ e e e e

CYP2C19 inhibition e e e e e e

CYP2C9 inhibition e e e e e e

CYP2C9 substrate e e e e e e
CYP2D6 inhibition e þ e e e e

CYP2D6 substrate e e e e e e

CYP3A4 inhibition þ e e e e e

CYP3A4 substrate e þ þ þ þ þ
Eye corrosion e e e e e e

Eye irritation þ e e e e e

Hepatotoxicity þ þ þ e e e

Human Intestinal Absorption þ þ þ þ e þ
Human oral bioavailability e e þ þ e e

Acute Oral Toxicity 3.246833086 1.5449361 2.2246482 2.6902423 3.159646034 2.132831097
P-glycoprotein inhibitior e þ e e þ þ
P-glycoprotein substrate e e þ þ e e

OATP1B1 inhibitior þ þ þ þ þ e

OATP1B3 inhibitior þ þ þ þ þ e

OATP2B1 inhibitior e e e e e e
OCT1 inhibitior e þ e e e e

OCT2 inhibitior e e e e e þ
P-glycoprotein inhibitior e þ e e þ þ
P-glycoprotein substrate e e þ þ e e
Plasma protein binding 1.067124009 0.8344979 0.4847819 0.8784482 0.985907972 0.931964338
Subcellular localization Mitochondria Mitochondria Nucleus Mitochondria Mitochondria Mitochondria
Thyroid receptor binding þ þ þ þ e e
Water solubility �2.99937319 �2.97369 �2.560883 �3.507494 �4.333252 �4.512803577
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