
A comparison of absolute performance of different
correlative and mechanistic species distribution models in
an independent area
Farzin Shabani1, Lalit Kumar1 & Mohsen Ahmadi2

1Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
2Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran

Keywords

Bioclimatic model, correlative model,

fundamental niche, mechanistic niche model,

modeling methods, realized niche, species

distribution model.

Correspondence

Farzin Shabani, Ecosystem Management,

School of Environmental and Rural Science,

University of New England, Armidale, NSW

2351, Australia.

Tel: 612 6773 5878;

Fax: 612 6773 2769;

E-mail: fshaban2@une.edu.au

Funding Information

No funding information provided.

Received: 21 January 2016; Revised: 27 June

2016; Accepted: 29 June 2016

Ecology and Evolution 2016; 6(16): 5973–

5986

doi: 10.1002/ece3.2332

Abstract

To investigate the comparative abilities of six different bioclimatic models in

an independent area, utilizing the distribution of eight different species avail-

able at a global scale and in Australia. Global scale and Australia. We tested

a variety of bioclimatic models for eight different plant species employing

five discriminatory correlative species distribution models (SDMs) including

Generalized Linear Model (GLM), MaxEnt, Random Forest (RF), Boosted

Regression Tree (BRT), Bioclim, together with CLIMEX (CL) as a mechanis-

tic niche model. These models were fitted using a training dataset of avail-

able global data, but with the exclusion of Australian locations. The

capabilities of these techniques in projecting suitable climate, based on inde-

pendent records for these species in Australia, were compared. Thus, Aus-

tralia is not used to calibrate the models and therefore it is as an

independent area regarding geographic locations. To assess and compare per-

formance, we utilized the area under the receiver operating characteristic

(ROC) curves (AUC), true skill statistic (TSS), and fractional predicted areas

for all SDMs. In addition, we assessed satisfactory agreements between the

outputs of the six different bioclimatic models, for all eight species in Aus-

tralia. The modeling method impacted on potential distribution predictions

under current climate. However, the utilization of sensitivity and the frac-

tional predicted areas showed that GLM, MaxEnt, Bioclim, and CL had the

highest sensitivity for Australian climate conditions. Bioclim calculated the

highest fractional predicted area of an independent area, while RF and BRT

were poor. For many applications, it is difficult to decide which bioclimatic

model to use. This research shows that variable results are obtained using

different SDMs in an independent area. This research also shows that the

SDMs produce different results for different species; for example, Bioclim

may not be good for one species but works better for other species. Also,

when projecting a “large” number of species into novel environments or in

an independent area, the selection of the “best” model/technique is often less

reliable than an ensemble modeling approach. In addition, it is vital to

understand the accuracy of SDMs’ predictions. Further, while TSS, together

with fractional predicted areas, are appropriate tools for the measurement of

accuracy between model results, particularly when undertaking projections on

an independent area, AUC has been proved not to be. Our study highlights

that each one of these models (CL, Bioclim, GLM, MaxEnt, BRT, and RF)

provides slightly different results on projections and that it may be safer to

use an ensemble of models.
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Introduction

Species distribution models (SDMs) combine empirical

data on the occurrences or abundance of a species with

data on related environmental factors. Such models are

used to predict distributions across landscapes and to

gather new insights into ecological and evolutionary

development, sometimes dependent upon extrapolation in

time and space, and are widely used in terrestrial, marine,

and freshwater applications. Methodological differences in

specific discipline applications reflect differences in the

mobility of species and in practices. The realism and

robustness of the model are dependent on the selection

and relevancy of predictors, method, scale, interaction of

geographic and environmental factors, extent of model

calibration, and levels of projection (i.e., inter- or extrap-

olation). Present links between modeling practices and

ecological sciences are generally poor, which limits devel-

opment in the field. Challenges that remain include refin-

ing presence-only data modeling methods, model

selection and evaluation, the handling of biotic interac-

tions, and the measurement of model uncertainty (Elith

and Leathwick 2009). While an understanding of the

effects on the patterns of a species distribution in novel

climates is vital in the management and planning of con-

servation, there is a high uncertainty in the projection of

future ecological scenarios. Studies on the modeling of

the ranges of species have encountered conceptual, theo-

retical, and methodological difficulties, leading to prob-

lems in interpreting results, problematic in the case of

both current and future modeled environments (Dor-

mann 2007; Webber et al. 2011; Vicente et al. 2014).

The bioclimatic models most frequently used are cor-

relative, in that through the incorporation of statistical or

machine learning techniques they integrate readily avail-

able distribution records of species with spatial environ-

mental data (Elith and Leathwick 2009). A more lengthy

and data-intensive alternative method is to link the spe-

cies ecophysiological responses to environmental variables

in mechanistic bioclimatic models (Kearney and Porter

2009). The framing of the research question is a guide to

which components of a species niche will be represented

in a particular modeling technique (Venette et al. 2010;

Watling et al. 2015), the most applicable method of mod-

eling and what training data should be used (Sober�on

and Nakamura 2009). Such selections, in turn, influence

the actual model projections. Novel climates are para-

mount in the ecology of invasive species under changing

climate and in the formulation of management policy

frameworks from such studies. Climatic factors, biotic

interactions, and species dispersal are the three most basic

determinants of the range of a species (Sober�on and

Nakamura 2009). The outcomes of bioclimatic modeling

exploring habitat suitability under novel climates should

approximate the Grinnellian fundamental niche (Sober�on

2007). The absolute minimum requirement is that they

should represent the realized Hutchinsonian niche

(Sober�on 2007) which underlies the native range of that

species.

The scientific expertise and essential resources required

for the parameterization of mechanistic models are as yet

unavailable for many species, limiting application to

higher-profile species (Shabani et al. 2015). Alternatively,

correlative models can be parameterized quickly and have

minimal essential requirements, using readily available

distribution records and spatial environmental data. This

virtually assures the continuation of their general usage.

Some authors have raised concerns regarding extrapola-

tion problems (Sutherst and Bourne 2009), arguing for a

more cautious critical evaluation of correlative model per-

formance in an independent area in order to identify and

resolve such problems (Rodda et al. 2011).

In modeling work, there is much uncertainty about the

selection of the appropriate model to use. There are a

variety of models available; each one of them functions

slightly differently and needs slightly different background

data. Therefore, for the layman, it is difficult to decide

which one is the best for their particular application.

Thus, it is highly important to compare a number of

models across a large number of different species because

models perform differently based on different species and

distributions. In this study, primary modeling focused on

building General Linear Model (GLM), MaxEnt, Bioclim,

Random Forest (RF), Boosted Regression Tree (BRT),

and CLIMEX (CL) models illustrating the climate suit-

ability for Asparagus asparagoides, Triticum aestivum L.,

Lantana camara L., Opuntia robusta, Triadica sebifera,

Fusarium oxysporum f. spp., Phoenix dactylifera L., and

Gossypium (cotton) by utilizing a global-scale training

dataset, excluding Australian distribution records. There-

after, in order to evaluate the possibilities of SDMs, we

made a comparison of the power of these six modeling

techniques in the projection of suitable climate, using

observed records of distributions of the eight species in

Australia. Finally, we explored the combination of the

correlative and mechanistic modeling in complementary

fashion, as a means to developing a more robust tech-

nique for bioclimatic modeling.

Materials and Methods

Distribution records

Our species distribution data were compiled from a num-

ber of sources. Global distribution data were taken from

the Global Biodiversity Information Facility (2015), Atlas
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of Living Australia (2014), as well as scientific literature.

ENMTools (Warren et al. 2010) was utilized in making

the georeferenced occurrence data of each grid cell equal

1. In other words, the existence of multiple records in a

single grid cell has no bearing on the projections or statis-

tical performance testing of the models. The global, Aus-

tralian, and the modified distribution records of all eight

species are summarized in Table 1. The dataset includes

the total of both native and exotic distribution records

(Shabani and Kumar 2015), as it was beyond the study

scope to differentiate the effect of including only native,

exotic, or both, on the abilities of techniques to project

climate suitability.

Species distribution modeling

Six bioclimatic models were applied to the eight chosen

species: for correlative modeling, the GLM (McCullagh

and Nelder 1989), a simple regression-based method, was

used together with three machine learning algorithms

including Maximum Entropy (MaxEnt) (Phillips et al.

2006), BRT (Elith et al. 2008), and RF (Breiman 2001).

We also considered Bioclim (Busby 1991) as the most

commonly used envelope procedure and CL, a mechanis-

tic niche model. Construction included a training dataset,

which included all available global data, but excluded

Australian distribution records. All models used 10’ reso-

lution historical data (1975H) available at CliMond data-

base (Kriticos et al. 2012), with intermodel statistical

comparison limited to independent distribution records

in Australia.

Correlative models

Generalized Linear Model

In GLM, the iterative weighted linear regression technique

was used to arrive at the estimated maximum likelihood

of the parameters, with observations distributed in terms

of an exponential family and systematic effects made lin-

ear by suitable transformation. For GLM, parametric

functions were employed to link the variable of response

to a combination of linear and quadratic explanatory

variables. The GLMs were fitted with a standard

polynomial approach together with an automatic stepwise

model selection based on the Akaike information crite-

rion.

MAXENT

For MaxEnt model, we utilized MaxEnt desktop version

3.3.3k (Phillips et al. 2006) with modified parameters

(Phillips and Dud�ık 2008). MaxEnt is reliant on a geo-

graphical background (Guillera-Arroita et al. 2014),

defined by the user for the purpose of comparing the cli-

mate of a sampled reference set of grid cells with that of

the grid cells in which the species is found to be present.

The background dataset definition influences the model

results significantly (Elith et al. 2011) and should include

the species full environmental range of those areas that

have been searched (Elith et al. 2010). In MaxEnt algo-

rithm, we compared the complex interactions between

presence locations and variables to similar interactions

with background locations, to establish the maximum

entropy probability distribution closest to uniform, sub-

ject to constraints imposed by the spatial distributions

observed and environmental factors. By minimizing rela-

tive entropy between data of known location and back-

ground point data in such a manner, maximum entropy

probability distribution is optimized (Phillips et al. 2006).

Bioclim

Bioclim (as well as GLM, MaxEnt, BRT, and RF) adopts

the principle that current distribution is the foremost

indicator of the climatic requirements of a species, to cor-

relate the climate variables in observed distributions.

Thus, such a correlative model uses the realized niche to

describe bioclimatic envelopes; in that realistically

observed distributions are limited by nonclimatic factors,

inclusive of biotic interactions. Alternative bioclimatic

models seek a mechanistic relationship between climatic

parameters and species response with a more physiologi-

cal basis (Woodward 1987; Pearson and Dawson 2003).

Such models identify the fundamental niche through the

modeling of the physiological limiting mechanisms of the

climatic requirements of the species. Some of the criticism

of bioclimatic modeling is that the biotic interactions,

Table 1. The known distribution records of eight species at global scale, Australia and the modified numbers of records in Australia through

ENMTools.

Dataset

Asparagus

asparagoides

Phoenix

dactylifera L.

Fusarium

oxysporum

f. spp Gossypium

Lantana

camara L.

Opuntia

robusta

Triadica

sebifera

Triticum

aestivum L.

Global scale 4924 529 230 17,322 17,856 299 1724 50,337

Australia 3836 51 30 2656 8324 57 53 142
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species dispersal, and changes through evolution are not

integrated into the modeling process. It should be noted

that biotic interactions, physical limitations to dispersal,

and the impacts of human intrusions prove that realized

niches, as utilized in methodologies of correlative Biocli-

mate envelopes, may not signify the absolute limits of

ranges and that thus, a future distribution may be based

on a very different realized niche (Pearson and Dawson

2003). Therefore, Bioclim or the environmental envelope

model refers to the “climate profile” of a species based on

a “boxcar” or “parallelepiped classifier” (Busby 1991).

This simple hyperbox classifier defines species potential

range as the multidimensional environmental space

bounded by the minimum and maximum values for all

presences (or 95% of them, or other similar variations).

As we aimed to extrapolate the prediction over an inde-

pendent area, we parameterized Bioclim based on the

outlier-corrected (Skov and Svenning 2004) minimum

and maximum observed values at species presences for

each climatic variable as it provides lesser conservative

results. To compute each species potential distribution,

we employed Bioclim in the “Dismo” package (Hijmans

and Elith 2015).

Random Forest

Random Forest is one of the most precise-in-performance

of classification or regression tree-based models, in which

the use of bootstrap aggregation selects many subsamples

from the data, and through a bagging algorithm generates

a large number of decorrelated regression trees (Breiman

2001). Thus, RF combines tree predictors in a manner

that each tree is dependent on independently sampled

random vector values, with similar distribution for all

trees in the forest (Breiman 2001). Thus, we utilized RF

because it forms a grouping of unpruned classification or

regression trees, constructed using training data bootstrap

samples and random feature selection in the induction of

the tree. An aggregating (majority vote or averaging) of

the predictions of the ensemble facilitates the prediction

(Svetnik et al. 2003). The out-of-bag observations in each

tree are used to predict model errors and variables’

importance. Finally, similar to an ensemble approach, the

predictions from grown decision trees are averaged. In

our study, the “RandomForest” package was used (Liaw

and Wiener 2002) in fitting the RF models.

Boosted Regression Tree

Using an identical background area to the MaxEnt mod-

eling and all eight species, in BRT model, we fitted a large

number of combinations (i.e., decision trees) iteratively

and combined them to an optimal model to improve the

performance of prediction. BRT uses two multiple regres-

sion tree algorithms (by a binary division of predictor

space into rectangles, it relates predictor responses to

establish expanses with the most homogeneous responses

to predictors) and boosting (an added procedure, merg-

ing fitted trees for greater modeling accuracy). BRT was

fitted using the “GBM” package (Ridgeway 2006) in R

environment v 3.1.2 (R Development Core Team, 2014)

with additional setting code recommended by Elith et al.

(2008).

Bioclim variables, background data, and the
methods for providing weights for species
records

Through the jackknife analysis method and the correla-

tion of coefficient results by Pearson correlation technique

for each species, the most important variables with low

correlation (R2 < 0.5) were selected and used in all correl-

ative modeling approaches. For example, bio1 (Annual

mean temperature (°C)), bio3 (Isothermality), bio8

(Mean temperature of wettest quarter (°C)), bio12

(Annual precipitation (mm)), bio15 (Precipitation season-

ality (C of V)), bio17 (Precipitation of driest quarter

(mm)), bio20 (Annual mean radiation (W�m�2)), bio21

(Highest weekly radiation (W�m�2), bio24 (Radiation of

wettest quarter (W�m�2)), bio31 (Moisture index season-

ality (C of V)), bio34 (Mean moisture index of warmest

quarter), and bio35 (Mean moisture index of coldest

quarter) were selected for Asparagus asparagoides. In order

to create background data in terms of the possibility that

there would be fewer records returned from areas of more

recent invasions and areas that were poorly sampled, we

gave prominence to those having less geographical prox-

imity to others. However, we note that without records

on survey effort in terms of time, one cannot differentiate

between environmentally unsuitable and undersampled

areas and that these adjustments will unavoidably confuse

the two categories. To calculate weighting surface, the

number of weighted records (Gaussian kernel method

with a standard deviation of the default values in ArcGIS)

in a selected geographical environment for each cell for

the whole world, with the exclusion Australia, was divided

by the weighted number of terrestrial cells in the specific

geographical environment (to avoid edge effects along

coasts). The resulting grid was then scaled to give a maxi-

mum of 20 and a minimum of 1, to exclude extreme val-

ues (see Fig. S1). This method of weighting is advocated

by Elith et al. (2010) to minimize bias favoring records

from densely sampled areas over those from sparsely sam-

pled areas. The kernel density layer of every species and

the Hawth’s Analysis Tools were used for generating

background points for the whole world, with the
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exclusion of Australia, to be used for training purposes.

Background points for Australia were generated, using the

same method, for comparison of the model performances;

see Figure S2. Thus, the performance of all SDMs was

evaluated using the same background data for each spe-

cies. Figure S2 displays the multivariate environmental

similarity surface (MESS) maps representing the similarity

of each point in the region of projection, in relation to a

set of specified reference points.

Mechanistic model

CLIMEX

The semimechanistic modeling method CL (Sutherst et al.

2007) studies the relationships between distributions of a

species, its growth patterns, and climate (Macfadyen and

Kriticos 2012). Empirically measured parameters, together

with point distribution records, are used to fit models. As

CL integrates generalized ecophysiological parameters,

simple trait evolution may also be studied by changes in

the parameters of the model, to match observations. CL

may be described as a dynamic model, in that it inte-

grates the population’s weekly responses to climate into

an annual indices series. The model makes the assump-

tion that an organism’s population increases during a

favorable season and decreases during an unfavorable sea-

son. The CL Growth Index (GIW) combines data relating

to temperature, moisture, and day length into a weekly

index for target species. Response to general temperature

and moisture conditions are expressed by the annual tem-

perature (TI) and moisture (MI) indices. A series of stress

indices (SI) incorporates responses to extreme conditions,

estimating threats posed by extreme or prolonged hot,

cold, wet, or dry conditions. Additionally, impositions on

life cycle completion due to prolonged periods of inap-

propriate temperature or day length system may be ana-

lyzed, if the appropriate data are available. Lastly, an

Ecoclimatic Index (EI), scaled from 0 (no persistence) to

100 (maximal population size in relation to climate

alone), integrates the growth and SI as a representation of

a specific geographical location’s overall suitability for

propagation and persistence of a species. A natural occur-

rence is only possible where EI is greater in value than

zero (Sutherst et al. 2007; Park et al. 2014).

Model framing in CLIMEX

As this study compares the abilities of various techniques

to project suitable climate for independent records of the

species in Australia, the intention in selecting species was

to find species available at a global scale and in Australia,

which were previously studied using CL. Scott and

Batchelor (2006) provide a detailed explanation of CL

parameters on Asparagus asparagoides, Shabani and Kotey

(2015) on Triticum aestivum L., Taylor et al. (2012) on

Lantana camara L., Shabani et al. (2012) on Phoenix

dactylifera L., Pattison and Mack (2008) on Triadica seb-

ifera, Shabani et al. (2014) on Fusarium oxysporum f.

spp., Kriticos et al. (2009) on Opuntia robusta, and Sha-

bani and Kotey (2015) on Gossypium. It should be men-

tioned that the CL parameters taken from other studies

are based on occurrences on a global scale and Australia,

while in our study, Australian occurrences were not con-

sidered. We rebuilt the CL models for each species by

considering the global occurrence, excluding Australia.

Thus, parameters for each species were modified to main-

tain an optimized CL projection for occurrence data at

the global scale excluding the Australian ones, through

lack of occurrence data in Australia. Refer to Table S1 for

the details on values and predictors that were used for

each species on CL and correlative models.

Assessing the performance of species
distribution models

To assess the performance of SDMs, we utilized the

Hanssen–Kuipers discriminant or true skill statistic (TSS),

which expresses Sensitivity + Specificity – 1 (Allouche

et al. 2006). Sensitivity denotes the proportion of pre-

dicted observed presences, thus quantifying omission

errors. Specificity denotes the proportion of predicted

observed absences, thus quantifying commission errors.

As an alternative, the receiver operating characteristic

(ROC) curve (Fielding and Bell 1997) can be used to

assess an ordinal score model’s accuracy. All possible

thresholds are used in the construction of ROC curves,

classifying scores into confusion matrices, finding Sensi-

tivity and Specificity for each matrix, and thereafter plot-

ting Sensitivity against the corresponding proportion of

false positives, equal to 1 � Specificity. Using all possible

thresholds overrides the need for the selection of a single

threshold, which may be arbitrary (Liu et al. 2005), allow-

ing for an appreciation of the compromise between Sensi-

tivity and Specificity (Pearce and Ferrier 2000). The area

below the ROC curve (AUC) is frequently employed as a

single threshold-independent rating of model performance

(Thuiller et al. 2005). AUC has been shown to be preva-

lence independent (McPherson et al. 2004) and is thus

seen to be a highly effective indicator of ordinal score

model performance. In conservation planning, however,

the practical purposes of SDMs, for example, identifying

biodiversity hotspots and representative conservation sites,

frequently demand presence–absence maps of the distri-

butions of species, and therefore the choice of a threshold

for the transformation of ordinal results into presence–
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absence predictions (Berg et al. 2004). For these purposes,

the evaluation of accuracy in prediction should rather be

based on the selected threshold, as opposed to threshold-

independent ROC curves. Bioclim and some other more

frequently used SDMs generate dichotomous presence–ab-
sence species distribution predictions, to which ROC

curves cannot be applied. In this regard, research has

shown AUC to be well suited to evaluating ordinal score

model performance in logistic regression, in terms of its

threshold-independent nature (Allouche et al. 2006).

In this study, we divided presence points into two sam-

ple data categories of training and test points per species.

The presence points of the complete species global distri-

bution, with the exception of the Australian continent,

were used as the training dataset, and the out-of-sample

data (Australian occurrences) were used to test SDM per-

formance. We focused on the area under the ROC curve

(i.e., AUC), true statistical skill (TSS), and Sensitivity

(i.e., true-positive rate) to evaluate SDM performance. To

calculate AUC, we plotted the Sensitivity of SDMs against

1 – Specificity, and to determine TSS, we calculated Sensi-

tivity + Specificity – 1. Due to the mechanistic physiologi-

cally based manner of CL and its independency from

presence-background data, we could not calculate these

metrics of SDM performance. However, we considered

Sensitivity and fractional predicted area of Australia (the

proportion of cells predicted to have suitable habitat for

the species (Phillips et al. 2006)) to compare the perfor-

mance of all SDMs, including the CL model. As we had

no data on species true absence in Australia for each

model, we calculated the proportion of the extent of Aus-

tralia identified as suitable, as an index of model’s poten-

tial overestimation. To identify the suitable range from

unsuitable climatic extent, particularly used for calcula-

tion of threshold-dependent metrics of evaluation (e.g.,

Sensitivity, Specificity, and TSS), we employed the mini-

mum training probability of presence as the presence/ab-

sence threshold.

Assessing the satisfactory agreement
between the output of six different
bioclimatic models on eight species in
Australia (spatial comparison)

There were 720 possible comparisons (combinations) to

assess the extent of agreement between the output of six

different bioclimatic models and eight species (spatial

comparison); however, in this study, we compared the

outputs of the mechanistic model against the correlative

models. Thus, CL outputs on the eight species were

extracted using ArcGIS software. All areas with EI > 0,

for each species, were overlaid onto suitable areas pro-

jected separately by GLM, MaxEnt, Bioclim, RF, and

BRT. Thereafter, all locations that satisfied the conditions

of suitability for each correlative model, together with CL,

were selected and extracted on the basis of agreement

between models (CL with GLM, CL with MaxEnt, CL

with Bioclim, CL with RF, and CL with BRT).

Results

The modeling method showed an impact on predicted

potential distributions for an independent area, and there

were differences between various method projections

(Figs 1 and 2). Our results indicated that the mean AUC

values, achieved by the five correlative models on eight

species, were above 0.77. Despite having a high AUC

value, the model based on the training dataset failed to

predict the occurrence of the studied species in some

places where it is clearly known to occur (Figs 1 and 2).

Comparing TSS of different models, based on test data

(Australian occurrences), shows the relatively comparable

measurement of the modeled TSS between the Bioclim,

GLM, and MaxEnt models for Asparagus asparagoides,

Phoenix dactylifera L., and Gossypium, (Table 2). For

example, TSS for Asparagus asparagoides in Bioclim,

GLM, MaxEnt, and BRT models were 0.73, 0.72, 0.74,

and 0.76, respectively, while only 0.42 in RF model. A

similar trend was also seen for Lantana camara L.

(Table 2). In contrast, in the related comparison for Tri-

adica sebifera, a moderate correlation between TSS of each

model was achieved; TSS for Triadica sebifera from Bio-

clim, GLM, MaxEnt, BRT, and RF were 0.85, 0.90, 0.27,

0.29, and 0, respectively.

Comparing the mean TSS of the eight species shows

that GLM had the highest TSS (0.49), while Bioclim,

MaxEnt, BRT, and RF values were 0.36, 0.37, 0.35, and

0.12, respectively. In this comparison, the lowest TSS

belonged to RF, which indicates the poorest performance

of the model in extrapolation, when compared to the per-

formances of Bioclim, GLM, MaxEnt, and BRT (Table 2).

Comparing the mean Sensitivity of different correlative

models for the eight species shows that Bioclim, GLM,

and MaxEnt had a similar and consistent Sensitivity

(0.78, 0.86, 0.84), when compared to BRT and RF (0.67

and 0.035).

The five correlative modeling techniques applied here

differ in how they deal with extrapolation (Figs 1 and 2).

The evaluation of correlative and envelope SDMs perfor-

mance, based on mean TSS and mean AUC values among

eight species, showed that GLM and MaxEnt had TSS of

0.41 and 0.29 with AUC of 0.80 and 0.76 (Fig. 3A), while

TSS and AUC for other SDMs were close to, but lower

than the GLM and MaxEnt values.

As mentioned earlier, because of the mechanistic physi-

ologically based manner of CLIMEX and its independency

5978 ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Comparison of Species Distribution Models F. Shabani et al.



from presence-background data, we could not calculate

TSS and Specificity metrics on this model. However, we

considered Sensitivity and fractional predicted area in

Australia to compare the performance of all SDMs,

including CLIMEX. The comparison of models’ Sensitiv-

ity against fractional predicted area in Australia showed

that GLM and MaxEnt, with the best Sensitivity, calcu-

lated a relatively low fractional predicted area of Australia,

compared to other SDMs, revealing a low probability of

overestimation of this model in an independent area. We

found that Bioclim computed the largest proportion of

an independent area as suitable climate condition (i.e.,

fractional predicted area) (Fig. 3B). GLM, MaxEnt, and

CL had an acceptable and close Sensitivity and fractional

predicted area, while BRT and RF had the poorest perfor-

mance (Fig. 3B).

Spatial comparison on satisfactory agreement between

the output of six different bioclimatic models on Triticum

aestivum L. and Fusarium oxysporum f. spp. showed that

Bioclim, GLM, MaxEnt, and BRT were 85–90% in agree-

ment with CL extrapolation outputs, while RF’s outputs

were about 30% similar to CL projections spatially

(Fig. 4A). Similar comparisons for Triadica sebifera

showed that there was an agreement between BIOCLIM,

GLM, MaxEnt, and BRT projections with CL outputs

(Fig. 4A). In contrast, differences on CL, Bioclim, GLM,

MaxEnt, and RF extrapolation outputs for Opuntia

robusta were significant (Figs 2A and 4A). Figure 4A also

indicates that 30–35% Bioclim, GLM, MaxEnt, and BRT’s

outputs were similar to CL projections. On the other

hand, the comparison of the individual technique of CLI-

MEX to an ensemble approach of the five correlative

models (Fig. 4B) for eight different species showed that

there was a better agreement between the ensemble out-

put of correlative model projections with CL outputs

(Fig. 4B) when compared to only using single-modeling

techniques (Figs 1, 2, and 4A).

Discussion

In this study, data were obtained from various databases,

while presence data were collected in the field and can

therefore represent local (microclimate) suitable for the

species, although not reflected by the coarse 10’ climate

Figure 1. Projections of an independent area for the potential distribution of (A) Asparagus asparagoides, (B) Fusarium oxysporum f. spp., (C)

Gossypium, and (D) Lantana camara L. using correlative and mechanistic niche models. Warmer colors show areas with better-predicted

conditions.
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data. This might lead to overly optimistic predictions

regarding suitable climate, particularly as some of the cal-

ibration areas might have a greater variety of climatic

conditions within a 10’ pixel, than in Australia (Austin

and Van Niel 2011). However, we were limited by the

data available at a global scale for the modeling, of which

the best available is 10’ climate data. Microscale data

would have been ideal, but were not available.

A number of the plant species modeled are invasive

species (Asparagus asparagoides, Lantana camara L.,

Opuntia robusta) in Australia, which may have implica-

tions for evaluating model fit, as these species may not

yet have filled their potential distributions and models

appearing to overestimate distribution limitations may

not be fully reflective. Alternatively, other species modeled

are cultivated (e.g., Triticum aestivum L., Phoenix dactylif-

era L., Gossypium), which also may have implications for

the model evaluation, as factors aside from climate may

determine where these species are grown (Shabani and

Kumar 2014; Shabani et al. 2016). However, distinguish-

ing between exotic and native records was outside the

scope of the study and thus this is one of the limitations.

Analysing the results displayed in Figures 1 and 2 gives

rise to a range of questions concerning characteristics

required from models in specific situations. For example,

in terms of the use of SDMs for predicting species range

shifts under climate change, or the extrapolation of their

movement to new regions, it is essential to understand

the performance of the algorithm, as projected for envi-

ronmental combinations not sampled by the training

data. Thus, the question of whether the algorithm extrap-

olation is appropriate from an ecological perspective must

be asked. In testing the implementation of the various

methods, different behaviors were apparent; however, the

choice of which is most appropriate should be seen to be

as much an ecological and/or physiological question as a

statistical one. On the operational level, there were more

choices than those which we demonstrated – for example,

MaxEnt has inbuilt options for predicting absence,

beyond the data range. A far larger range of tests is

demanded, including prediction to new combinations of

environments, for a complete investigation of extrapola-

tion or forecasting behavior. It is paramount to first

understand the different modeling needs relevant to

Figure 2. Projections of an independent area for the potential distribution of (A) Opuntia robusta, (B) Phoenix dactylifera L., (C) Triadica sebifera,

and (D) Triticum aestivum L. using correlative and mechanistic niche models. Warmer colors show areas with better-predicted conditions.
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specific SDMs and thereafter research the best means of

achieving these requirements. Understanding the workings

of specific models and the devising of evaluation criteria

closely matched to the associated questions enable best

decisions regarding the modeling approach (Elith & Gra-

ham, 2009). For more clarification, refer to Elith and Gra-

ham (2009).

Why not AUC?

Species distribution models are valuable tools in address-

ing questions and issues in the fields of climate change

ecology, and biogeography, as well as in evolutionary and

conservation biology, and thus, understanding perfor-

mance testing and evaluation methods of correlative and

mechanistic models is vital to their practical usefulness

(Guisan and Thuiller 2005). In this respect, AUC is a fre-

quently used measure of model performance (Manel et al.

2001; Thuiller et al. 2005; Lobo et al. 2008), having been

shown to be independent of prevalence, in both the theo-

retical (Hanley and McNeil 1982; Zweig and Campbell

1993) and empirical spheres (McPherson et al. 2004). In

measuring model performance, AUC is threshold inde-

pendent and thus particularly suitable for the perfor-

mance evaluation of ordinal score models such as logistic

regression with true presence–absence data. But most of

the time, data of the absence locations are not available

and presence data are the only accessible data of the spe-

cies. In this situation, envelope (e.g., Bioclim) or dis-

tance-based (e.g., Domain or Mahalanobis distance)

models are the option for SDM (Farber and Kadmon

2003). However, in practice, a dichotomous prediction of

presence–absence is frequently demanded, thus necessitat-

ing the application of a threshold to transform probabil-

ity/suitability scores into presence–absence data. For

example, presence–absence data on species composition

in a specific location are required for most reverse selec-

tion algorithms (Tsuji and Tsubaki 2004). As data avail-

able are often incomplete, SDMs are frequently employed

for predicting the presence or absence of a particular spe-

cies in a potential locality (S�anchez-Cordero et al. 2005).

Estimating the hotspots of biodiversity is also frequently

presence–absence prediction based (Schmidt et al. 2005).

Assessing global change impacts at the community levels

could be achieved by species assemblage prediction of

stacked binary SDMs (Guisan and Rahbek 2011; D’Amen

et al. 2015). Presence–absence predictions do not allow

for the construction of ROC plots and, thus, AUC cannot

be used to evaluate accuracy of the predictive maps used

in this type of application. Results shown in Table 2 indi-

cate that a high value of AUC for each species and for

each model does not guarantee the output accuracy. In

this regard, we believe that the MESS maps will notT
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identify changes in correlations between variables, and

tests for these are also critical because the model parame-

ters are estimated on the correlation structure between

predictors in the training data. For most models, predic-

tions to areas with substantially different correlations

between important variables will be unreliable (Harrell

2001). This is particularly problematic when the available

predictors are only indirectly related to the species’ distri-

bution (Austin 2002). The selected set might together rep-

resent the unmeasured directly influential variable

reasonably well, but if correlations between them change

in new areas, prediction will be compromised.

Utilizing TSS measurement of accuracy, which is insen-

sitive to prevalence (Allouche et al. 2006) and the frac-

tional predicted areas (Phillips et al. 2006) in Australia of

eight different species, showed that GLM and MaxEnt

had the best Sensitivity, while Bioclim was the best on

fractional predicted area (Fig. 3B). Bioclim and CL out-

puts were also close to GLM and MaxEnt and, therefore,

could be considered in the same cluster (Fig. 3B). We

also note that the comparison of the individual technique

of CL to an ensemble approach of the five correlative

models showed that there was a better agreement between

the ensemble output of correlative model projections with

the mechanistic model output when compared to only

using single-modeling techniques. This finding is in line

with Ara�ujo and New (2007) who have documented that

using ensemble forecasting has clear advantages over sin-

gle model forecasts. In this regard, it should be noted that

our results also indicated that it is paramount to have

some knowledge of how reliable SDM predictions are and

that ideally this should be tested on an individual case

basis, as the TSS for Asparagus asparagoides in Bioclim,

GLM, MaxEnt, and BRT models was 0.73, 0.72, 0.74, and

0.76, respectively, while it was 0.42 in RF model. In

addition, the Sensitivity of Asparagus asparagoides in Bio-

clim, GLM, MaxEnt, and BRT models was 0.98, 0.96,

0.98, and 0.95, respectively, while it was 0 in RF. In con-

trast, AUC for this species was 0.93, 0.95, 0.95, 0.95, and

1 in Bioclim, GLM, MaxEnt, BRT, and RF, respectively

(Table 2); this finding agrees with Lobo et al. (2008) who

documented that AUC is not an appropriate measure of

comparative accuracy between model results for five rea-

sons: (1) the probability values predicted and the close-

ness of fit of the model are ignored; (2) the test

performance summary includes regions of the ROC space

which would rarely be operative; (3) commission and

omission errors are equally weighted; (4) there is no

information about the model errors’ spatial distribution;

and, most importantly, (5) the extent to which modeling

is executed strongly influences the well-predicted absence

rate and the AUC scores. This, however, does not imply

that any of these statistics are misleading (Lobo et al.

2008) but simply that different aspects of performance are

measured by different statistics and that decisions must

be made regarding the relevance to the application of the

model in terms of appropriate statistics.

It should be noted that there are a number of

important decisions to be made in constructing an

SDM and our study, as well as other related studies,

describes factors which can impact on or limit results

including (1) occurrence in theoretically unsuitable

habitat of a particular mobile species, (3) occurrence in

theoretically unsuitable habitat of sessile species (e.g.,

plants), (3) failure to observe a species in a suitable

habitat, (4) low detectability of a particular species, (5)

ecotypes of the same species and sibling species, (6)

historical bias in natural history collections, and (7) no

absences (Guisan and Thuiller 2005; V�aclav�ık and

Meentemeyer 2012).

Figure 3. (A) True skill statistic and AUC in correlative models for eight species using evaluation data. (B) The Sensitivity of correlative and

mechanistic models with fractional predicted areas in Australia.
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(A)

(B)

Figure 4. (A) Spatial comparison on a

satisfactory agreement between the output of

five correlative models with CLIMEX (CL), using

eight species (B) comparing the individual

technique of CL to an ensemble approach of

the five correlative models.
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We also note that in the present study, geographic

location and “space” were not taken into account and

that therefore results may have been different if dispersal,

barrier effects, and biogeographic history had been

included. Australia might indeed have areas with climate

combinations that are found nowhere else on the planet

(calibration data) and therefore represent a “an indepen-

dent area”/no-analog climate. Finally, we highlight that in

this study, the absolute performances of different models

in the “an independent area” climate were investigated.

Differences in model performance of “known” and “in an

independent area” climate for the different techniques

were also observed; some had a higher AUC, TSS, but a

large difference in performance between “known” and

“an independent area” climate, while others had a lower

AUC, TSS but more stable performance in different cli-

mate spaces (Engler and Guisan 2009). Thus, it might be

useful to consider the geographic locations and “space.”

Conclusion

Understanding the application of a particular algorithm

gives insight into various features related to its predic-

tions, helping to answer why particular patterns occur. As

each one of these models (CL, Bioclim, GLM, MaxEnt,

BRT, and RF) provides slightly different results on projec-

tions, it may be safer to use an ensemble of models.

Utilizing the impact of measurement of accuracy, TSS,

and the fractional predicted areas on eight different spe-

cies in Australia showed that Bioclim, GLM, MaxEnt, and

CL outputs were generally close and produced a better

performance in comparison with BRT and RF.

With conservation strategies becoming increasingly reli-

ant on the distribution model outputs, it is essential to

understand the level of accuracy of output predictions,

which should be tested on an individual case-by-case

basis. Where insufficient data impede validation, a rough

guide to factors impacting on model reliability fulfills the

purpose. Model reliability is dependent on both the data

properties used in parameterization and the spectrum of

ecological characteristics of a particular species. However,

as the ecological characteristics impact on our ability and

the possibilities to collect the necessary data, methodolog-

ical and ecological factors affecting output accuracy are

frequently intertwined.

Future improvements to methodology include compar-

ative assessment of how various scales may be considered

in SDMs, in relation to species behavioral characteristics,

dispersal ability, study area extent and parameters, and

general data characteristics, and enhancing evaluation and

validation frameworks for assessing SDM errors and inac-

curacies.
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Figure S1. The kernel density map of Asparagus aspara-

goides and Gossypium that were used to generate back-

ground points for the training purposes and the

background points generated for Australia for model

comparison.

Figure S2. The multivariate environmental similarity sur-

face (MESS) maps of all the eight species.

Table S1. CLIMEX parameter values as obtained from the

literature for the various species to model the global dis-

tribution.

Table S2. Comparison of AUC, TSS and performance of

the different models for Lantana camara L for the known

and novel environments.
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