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Abstract

Cancer is a disease of the genome caused by oncogene activa-
tion and tumor suppressor gene inhibition. Deep sequencing
studies including large consortia such as TCGA and ICGC identi-
fied numerous tumor-specific mutations not only in protein-
coding sequences but also in non-coding sequences. Although
98% of the genome is not translated into proteins, most studies
have neglected the information hidden in this “dark matter” of
the genome. Malignancy-driving mutations can occur in all
genetic elements outside the coding region, namely in enhancer,
silencer, insulator, and promoter as well as in 50-UTR and
30-UTR. Intron or splice site mutations can alter the splicing
pattern. Moreover, cancer genomes contain mutations within
non-coding RNA, such as microRNA, lncRNA, and lincRNA. A
synonymous mutation changes the coding region in the DNA
and RNA but not the protein sequence. Importantly, oncogenes
such as TERT or miR-21 as well as tumor suppressor genes such
as TP53/p53, APC, BRCA1, or RB1 can be affected by these alter-
ations. In summary, coding-independent mutations can affect
gene regulation from transcription, splicing, mRNA stability to
translation, and hence, this largely neglected area needs func-
tional studies to elucidate the mechanisms underlying tumorige-
nesis. This review will focus on the important role and novel
mechanisms of these non-coding or allegedly silent mutations in
tumorigenesis.
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Introduction

Cancer remains one of the leading causes of death worldwide

according to the World Cancer Report 2014 (Stewart & Wild, 2014).

Already in 1902, Theodor Boveri speculated that cancer might be a

disease of the genome (Boveri, 2008). Research of the last decades

confirmed this hypothesis and deepened our understanding of the

genomic landscape of cancer (Alexandrov et al, 2013; Weinstein

et al, 2013). We now know that a broad spectrum of molecular

events can drive tumorigenesis. Genetic events range from amplifi-

cations, deletions, insertions, translocations, loss of heterozygosity

to missense, non-sense, or frameshift point mutations (Stratton

et al, 2009; Vogelstein et al, 2013). Both, activated oncogenes and

inactivated tumor suppressor genes, can contribute to tumorigenesis

and progression by conferring tumor-specific properties, called the

hallmarks of cancer (Hanahan & Weinberg, 2000). Also epigenetic

events and infectious agents as the human papillomavirus can have

a tumorigenic effect, but these are beyond the scope of this review

(zur Hausen, 2009; Baylin & Jones, 2011).

Although substantial progress in understanding of the cancer

driver events has led to the development of new targeted therapeutics

(Druker et al, 2001a; Sordella et al, 2004), the last decade of research

has revealed that the genomic landscape of cancer is substantially

more complex than previously assumed. This has been largely

driven by the introduction of high-throughput next-generation

sequencing techniques, which unravel the extensive mutational
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heterogeneity of tumors (Leiserson et al, 2015). These techniques

allow rapid sequencing of a large number of complete genomes so

that an increasing amount of cancer genome data becomes available

(Kandoth et al, 2013). International consortia are involved in

the generation and structuring of the abundance of information

(Lawrence et al, 2013). The Cancer Genome Atlas (TCGA) Research

Network aims to analyze molecular tumor profiles, for example, by

detecting patterns across different types of cancer (Weinstein et al,

2013). The International Cancer Genome Consortium (ICGC) coordi-

nates large-scale cancer genome studies at the genomic, epigenomic,

and transcriptomic levels. Over 25,000 genomes from 50 different

cancer types are being sequenced to improve therapy, prognosis,

and discovery of new targets (ICGC, 2010). For example, the

identification of new mechanisms contributing to medulloblastoma

tumorigenesis led to novel targets for therapy (Jones et al, 2012).

These large-scale approaches show a large number of different

mutations (Wood et al, 2007), but dissecting the role of individual

mutations in this landscape as either driver or passenger mutations

will pose the next challenge (Kandoth et al, 2013; Weinstein et al,

2013).

Glossary

Acceptor splice site
Splice site at the end of an intron (30 end).
AU-rich elements (ARE)
Conserved motif of adenine/uridine bases in the 30-untranslated
region (UTR) of an mRNA controlling mRNA decay.
Branch point
Sequence within the intron needed during splicing for the creation of
the lariat structure. The adenine of the branch point forms a
phosphodiester bond with the 50 end of the intron.
Cis-acting element
A non-coding sequence in a gene or transcript with regulatory effects
on the same or a nearby gene (in cis).
Consensus splice site
Nucleotide sequences that serve as splice sites in the majority of
premature gene transcription. These include the highly conserved
dinucleotides GT (50 end of intron) and AG (30 end of intron).
Cryptic splice site
Inactive splice site which can be activated when the previous
dominant splice site loses its function.
Donor splice site
Splice site at the beginning of an intron (50 end).
Driver mutation
Mutation that confers a growth advantage for the tumor leading to
malignant initiation, promotion, or progression.
Epigenetic events
Events of gene regulation without underlying alterations in the DNA
sequence, for example, through DNA methylation or histone modification.
Enhancer
Transcription factor binding site located up to 1 Mbp up- or
downstream of a particular gene with bidirectional effects. The
binding of a transcription factor to an enhancer results in the
upregulation of the transcription of the respective gene.
Exon skipping
Exons are sequences that are usually retained during the splicing
process and are part of the mature transcript. Exon skipping denotes
a form of alternative splicing in which an exon and its neighboring
introns are spliced out, for example, due to mutations in or different
strengths of splice sites.
Insulator
Genomic region that creates a boundary between an enhancer and
neighboring genes. Enhancer-blocking insulators limit the number of
genes which an enhancer can influence through selective disruption
of enhancer–promoter interaction.
Internal ribosome entry site (IRES)
Alternate ribosomal binding site (RBS) in mRNA, downstream of the
classic RBS at the 50 cap.
Intron retention
Introns are sequences that are usually cut out during the splicing
process and are not part of the mature transcript. Intron retention
denotes a form of alternative splicing in which whole or parts of
introns remain in the RNA, for example, due to mutations in or
different strengths of splice sites.

Kozak consensus sequence
A nucleotide sequence motif in mRNA essential for ribosomal
assembly and initiation of translation around the start codon.
Long non-coding RNA (lncRNA)
Long non-coding RNAs are non-coding transcripts with a length of
> 200 nucleotides and lacking a significant coding potential. LncRNAs
affect a variety of cellular functions: they regulate gene expression,
influence the activity and localization of proteins or nucleic acids, or
act as scaffolds for the formation of cellular substructures and protein
complexes.
microRNA (miRNA)
Short, non-coding RNA (18–25 nt) that can repress gene expression at
the post-transcriptional level by binding to mRNAs.
NCI-60 Panel
A panel of the US National Cancer Institute comprising 60 different,
well-characterized human cancer cell lines that is used to test natural
and chemical products and serves as a tool in cancer research.
Passenger mutations
Mutation that does not promote the fitness of malign cells or even
damage them.
PIWI-interacting RNAs or piRNAs
A class of small non-coding RNAs mainly involved in the silencing of
transposable elements (TEs) in germ cells.
Polyadenylation
After cleavage of a pre-mRNA at its 30-end to terminate the transcript,
roughly 250 adenosines are attached to the mRNA sequence that
form the poly(A) tail ensuring translational efficacy and increasing
mRNA stability.
Promoter
Region of DNA located within the close upstream area of a gene that
contains binding sites for specific transcription factors crucial for the
initiation of transcription.
Seed region
Nucleotides 2–8 of a microRNA largely determining target recognition
by usually perfect complementarity to the target mRNA.
Single nucleotide polymorphism (SNP)
Single nucleotide variation in the genome that is found in at least 1%
of the population.
Silent mutation
Base substitution anywhere in the genome without any effect on the
amino acid sequence of coding genes, for example, mutations outside
of genes or in regulatory elements or synonymous mutations.
Synonymous mutation
Base substitution in the coding sequence of a protein-coding gene
that does not modify the amino acid sequence of the gene product
due to the redundancy of the genetic code.
Trans-acting element
A factor, usually a protein or oligonucleotide, with regulatory effects
on a gene distant from its transcriptional source (in trans).
Upstream open reading frame (uORF)
Open reading frame in the 50-UTR with regulatory effects on the
translation of the main ORF downstream on the same mRNA
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So far, cancer research has mostly focused on mutations that

alter protein-coding sequences. For example, the standard Catalogue

Of Somatic Mutations In Cancer (COSMIC) only lists aberrations in

the coding sequences of genes (Forbes et al, 2008). However, this

coding fraction only represents less than 2% of the human genome

(Weinhold et al, 2014). Indeed, the vast majority of the genomic

sequence is either transcribed into non-coding RNAs or comprised

of regulatory elements (Alexander et al, 2010). Nevertheless, this

part of the genome has been mostly neglected as irrelevant for

decades despite early examples of functional relevance, for example,

of the non-coding RNAs MALAT1 (Ji et al, 2003; Gutschner et al,

2013) or H19 (Gabory et al, 2006) (a comprehensive list of all gene

names used in the review is provided in Table EV1).

The huge amount of sequence data now available provides the

chance to explore the role of this dark matter in cancer genomes. In

this review, we give a comprehensive overview on genetic aberra-

tions not altering coding information and highlight the mechanisms

whereby they nevertheless affect tumorigenesis. These include

synonymous mutations as well as mutations in regulatory elements,

untranslated regions, splice sites, and non-coding RNAs.

Regulatory elements

Functional mutations in regulatory regions, such as promoters and

enhancers, can either create or destruct transcription factor (TF)

binding sites. Additionally, structural aberrations such as transloca-

tions, deletions, insertions, or duplications can alter the interaction

between regulatory elements and the coding genes they control. For

example, strong promoters or enhancers brought into proximity of

MYC or PAX5 can activate these oncogenes (Busslinger et al, 1996;

Gerbitz et al, 1999).

Mutations occurring in regulatory regions—depending on

whether the binding site of an activating or repressing transcription

factor is affected—can result in transcriptional up- or downregulation.

If oncogenes or tumor suppressor genes are affected, mutations in

regulatory elements may constitute causative events in tumorigenesis.

In 2013, a promoter mutation was discovered in the telomerase

reverse transcriptase (TERT) gene in melanoma patients (Horn et al,

2013). TERT encodes the catalytic subunit of telomerase, an enzyme

that preserves the chromosomal ends, which would otherwise be

shortened in each cell division. Aberrant TERT expression results in

a limitless proliferative potential, a hallmark of cancer (Hanahan &

Weinberg, 2000). The somatic transitions C228T and C250T in the

TERT promoter do not only occur in melanoma, but strikingly in

numerous malignancies such as hepatocellular carcinoma (HCC)

and are among the most frequent mutations in cancer (Vinagre et al,

2013; Totoki et al, 2014; Weinhold et al, 2014; Melton et al, 2015).

These mutations create a novel binding site for the ETS transcription

factor GABP in the TERT promoter leading to an increased transcrip-

tional activity (Bell et al, 2015). Consequently, these mutations

constitute an important step in tumorigenesis. In addition, a syner-

gistic interaction of the TERT promoter mutations with the BRAF

V600E mutation that induces the ETS transcription factor possesses

clinical relevance (Xing et al, 2014). Moreover, the mutated TERT

promoter is a candidate biomarker for recurrence detection of

urothelial carcinoma and thus constitutes a novel diagnostic tool

(Kinde et al, 2013).

Mutations in regulatory regions can also cause the downregula-

tion of tumor suppressors. In melanoma, three recurrent C > T tran-

sitions within the promoter region of the tumor suppressor gene

SDHD disrupt ETS binding sites decreasing its transcription rate.

These somatic promoter mutations correlate with a shorter overall

survival in melanoma patients (Weinhold et al, 2014).

Enhancer mutations can likewise increase transcriptional levels

of oncogenes. In T-cell acute lymphoblastic leukemia (T-ALL), a

somatic heterozygous insertion creates a binding site for the tran-

scription factor MYB. Thereby, a large regulatory element, a so-

called “super-enhancer”, is created leading to the overexpression of

the oncogene TAL1 (Mansour et al, 2014). Another recent example

is the germline single nucleotide polymorphism (SNP) rs2168101

G > T in a super-enhancer within the first intron of LMO1. The G

allele of this SNP constitutes a transcription factor binding site in

the super-enhancer that drives the expression of the oncogene

LMO1 and predisposes to neuroblastoma (Oldridge et al, 2015). The

term super-enhancer describes a large enhancer with extraordinarily

high transcription factor enrichment (Pott & Lieb, 2015). Such

super-enhancers may serve as tumor-specific targets and promising

results have emerged in multiple myeloma, where selective super-

enhancer inhibition caused loss of oncogene expression (Loven

et al, 2013).

Vice versa, downregulating mutations exist in enhancers. For

example, the enhancer of the B-cell differentiation factor PAX5 is

disrupted by somatic mutations, impairing the maturation of B cells

and promoting chronic lymphocytic leukemia (CLL) (Puente et al,

2015).

Lastly, deletions can also affect insulator regions. Deregulation of

the H19/IGF2 locus causes the Beckwith–Wiedemann syndrome,

which can give rise to embryonic tumors such as Wilms’ tumors.

Germline microdeletions within the regulatory region of the

H19/IGF2 locus can affect the insulator function resulting in reversed

enhancement of two genes (Sparago et al, 2004; Ideraabdullah et al,

2014).

In addition to the examples described above, other mutations

and especially polymorphisms in regulatory regions of cancer genes

are associated with tumorigenesis (Table 1).

50-Untranslated regions (50-UTR)

The untranslated regions (UTRs) flanking the coding region in

mature messenger RNA (mRNA) regulate translation or mRNA

stability through diverse mechanisms (Fig 1, Table 2). Trans-acting

RNA binding proteins (RBPs) and small RNAs can bind to either

simple sequence elements or secondary and tertiary structures of the

50-UTR as well as the 30-UTR (reviewed in Di Liegro et al, 2014).

Cis-acting elements in the 50-UTR mediate translational regula-

tion via the 50-cap or the secondary structure. Stable 50-UTR struc-

tures impede translation by reducing the accessibility for the

translational machinery and ribosomal scanning. For example,

mutations in RB1 stabilize the 50-UTR secondary structures and are

likely conducive to retinoblastoma (Kutchko et al, 2015). In addi-

tion, mutations in the Kozak consensus sequence can lead to leaky

scanning and reduced translation initiation, for example, a somatic

mutation in BRCA1 in breast cancer (Signori et al, 2001; Wang et al,

2007).
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Internal ribosome entry sites (IRES) allow cap-independent

translation—a mechanism crucial under cellular stress. A point

mutation in the IRES trans-acting factor binding domain of TP53

reduces cap-independent translation in steady-state as well as

under conditions of cellular stress (Khan et al, 2013) which may

be linked to melanoma (Soto et al, 2005). Upstream open reading

frames (uORFs) can reduce translation efficiency of the main open

reading frame (ORF) or induce mRNA decay (reviewed in Barbosa

et al, 2013). A germline mutation resulting in the deletion of a

uORF stop codon in the CDKN1B gene shortens the intercistronic

region and downregulates the translation of the main ORF in a

case of multiple endocrine neoplasia syndrome type 4 (MEN4)

(Occhi et al, 2013). In contrast, a common polymorphism in the

50-UTR of the ERCC5 gene leads to the expression of a uORF

(Somers et al, 2015). The translation of this uORF induces the

expression of ERCC5 protein leading to resistance to platinum-

based chemotherapy and decreased survival in pediatric ependy-

moma (Somers et al, 2015). Alternatively, mutations within the

50-UTR can create aberrant initiation codons. A premature start

codon by a germline mutation altering CDKN2A predisposes to

melanoma (Liu et al, 1999). Other examples for frequent muta-

tions in the 50-UTR still await functional characterization such as

a somatic mutation in BCL6 in non-Hodgkin lymphoma (Migliazza

et al, 1995).

Table 1. Alterations within regulatory DNA elements.

Genetic event Regulation
Affected
gene Gene function Alteration Reference

New binding site
for activating TF

↑ TERT (M) Catalytic subunit
of telomerase

C228T, C250T (promoter) Bell et al (2015); Heidenreich
et al (2014); Horn et al (2013)

TAL1 (M) Oncogene, transcription factor insertion (super-enhancer) Mansour et al (2014)

MCL1 (M) Apoptosis inhibitor insertion (promoter) Moshynska et al (2004);
Tobin et al (2005)

CCND1 (P) Oncogene, regulation of
cell cycle progression

multiple SNPs (enhancer) Schodel et al (2012)

MMP1 (P) MMP (�1,607) 1G/2G (promoter) Liu et al (2012)

HGF (P) Cell proliferation, survival,
migration, and morphogenesis

truncation deletion (promoter) Ma et al (2009b)

LMO1 (P) Transcription factor SNP in super-enhancer Oldridge et al (2015)

New binding site
for repressing TF

↓ BRM (P) Cancer susceptibility gene insertion (�741, �1,321)
(promoter)

Gao et al (2013); Liu
et al (2011); Wong et al (2014)

Disrupted binding site
for activating TF

↓ SDHD (M) Tumor suppressor gene,
subunit of succinate
dehydrogenase complex

3 hotspots C > T (promoter) Weinhold et al (2014)

WDR74 (M) Cell cycle control, apoptosis 52 hotspots C > T (promoter) Weinhold et al (2014)

PAX5 (M) B cell differentiation factor multiple mutations (enhancer) Puente et al (2015)

CK-19 (M) Tumor marker (NSCLC) G (�99)C (promoter) Fujita et al (2001)

MMP2 (P) MMP C (�1,306)T (promoter) Liu et al (2012)

Disrupted binding
site for repressing TF

↑ AMACR (P) Racemase in
fat metabolism

germline deletion (promoter) Zhang et al (2009b)

Disrupted insulator ↑/↓ IGF2/H19 (M) Proliferation control germline deletion (insulator) Ideraabdullah et al (2014);
Sparago et al (2004)

Unknown ↓ PLEKHS1 (M) Largely unknown 23 hotspots C > T (promoter) Weinhold et al (2014)

↓ CASP8 (P) Induction of apoptosis �652 6N del (promoter) de Martino et al (2013);
Li et al (2010); Malik
et al (2011); Wang et al (2009)

↑ NFKB1 (P) Transcription factor insertion (promoter) Fan et al (2011); Mohd Suzairi
et al (2013); Tang et al (2010);
Zhang et al (2009a)

↓ BRCA1 (P) Tumor suppressor,
DNA repair gene

5-kb deletion
(promoter + 50-UTR)

Brown et al (2002)

↓ MMP3 (P) MMP (�1,171) 5A/6A (promoter) Liu et al (2012)

↑ MMP7 (P) MMP A (�181)G (promoter) Liu et al (2012)

↑ MMP9 (P) MMP C (�1,562)T (promoter) Liu et al (2012)

Mutations are marked with (M); polymorphisms are marked with (P).
TF, transcription factor; MMP, matrix metalloproteinase.
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Synonymous mutations

While silent mutations refer to all mutations not altering the amino

acid sequence of a coding gene including mutations outside of genes

or in regulatory elements or UTRs, synonymous mutations are a

specific subset of silent mutations in which the mutation occurs in

the coding region of a gene but does not alter the amino acid

sequence due to the redundancy of the genetic code. In the past,

synonymous mutations have been presumed to exert no functional

effect. However, they are subject to natural selection in many

species and are therefore likely to be functional (Drummond &

Wilke, 2008; Supek et al, 2010). A few examples also indicate a role

for synonymous mutations in diseases (Supek et al, 2014) (Fig 2,

Table 3). In cancer, synonymous mutations are estimated to

account for 20% of all point mutations, 6–8% of which are selected

for and therefore may act as driver mutations (Supek et al, 2014).

This selection occurs especially in oncogenes and is not reported for

tumor suppressor genes, except for p53 (Supek et al, 2014).

Synonymous polymorphisms can correlate with the clinical

outcome or therapy response and therefore serve as biomarkers; for

example, they are associated with an increased risk of renal cell

carcinoma recurrence (Schutz et al, 2013), with Gefitinib response

in non-small-cell lung cancer (Ma et al, 2009a), or with Herceptin

response in breast cancer (Griseri et al, 2011).

Synonymous substitutions can have functional consequences

affecting various steps of protein biosynthesis resulting in changes

in protein abundance and structure (reviewed in Hunt et al, 2014;

Supek et al, 2014). Mechanisms include disruption or creation of

splicing regulatory sites, alterations of mRNA stability, gain or loss

of miRNA binding sites, and changes in translation efficiency.

Although several functional mechanisms have been invoked in

different diseases, only few are elucidated in cancer (Fig 2).

The most frequently reported mechanisms are related to dysfunc-

tional splicing in tumor suppressors. Synonymous mutations can

target exonic splicing regulatory sites, namely exonic splicing

enhancers (ESE) and exonic splicing silencers (ESS). These motifs
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EXAMPLES
IN CANCER

ERCC5
CDKN1B

RB1 TP53 BRCA1? CD274
KRAS
MBL2

TNFAIP2

CCND1

5'

RBP

uORF main ORF polyA tail

miRNA
binding site

RBP
binding site

Secondary
structure

Stuctural 
stability

Translation

mRNA stability

Translation

APA

3' UTR length

RBP interaction uORF length

Translation

ORF length

Translation

Translation

IRES

ITAF

5' untranslated region 3' untranslated regionORF

3'

Figure 1. Schematic depiction of mutations within the 50- and 30-UTR.
Mutations can alter the secondary structure of the 50- or 30-UTR or occur in RNA binding protein (RBP) binding sites, upstream ORFs (uORF), internal ribosome entry
sites (IRES; ITAF: IRES trans-acting factor), start codons of open reading frames (ORF), microRNA binding sites, or polyadenylation signals (polyA). These alterations can
affect translation efficiency, mRNA stability, ORF length, or RBP interaction as well as cause alternative cleavage and polyadenylation (APA). Prominent examples of
genes involved in tumorigenesis (green: induced, red: decreased) that exhibit mutations (red star) in such elements are illustrated.

Table 2. Mutations and SNPs in 50-UTR elements associated with cancer.

Gene Variant Regulatory element/Mechanism Effect on protein Cancer type Reference

CDKN1B 4-bp deletion C.-456-453del (g) uORF Decrease MEN4 Occhi et al (2013)

CDKN2A G-34T (g) Aberrant initiation codon N/A Melanoma Liu et al (1999)

C-MYC C2756T (s) IRES Increase Multiple myeloma Chappell et al (2000)

ERCC5 A25G (SNP) uORF Increase Pediatric ependymoma Somers et al (2015)

RAD51 G135C (SNP) Splice site/secondary structure Decrease Breast cancer Antoniou et al (2007)

RB1 G17C, G18U (SNV, N/A) Secondary structure Decrease Retinoblastoma Kutchko et al (2015)

TP53 C119T (SNP) IRES Decrease Melanoma Khan et al (2013);
Soto et al (2005)

Mutational status as indicated in (); s, somatic; g, germline; N/A, not available; SNP, single nucleotide polymorphism; SNV, single nucleotide variant.
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play a crucial role in identifying correct splice sites and when elimi-

nated can lead to exon skipping, ectopic splice sites or activation of

cryptic splice sites and a subsequent change in protein structure

(Cartegni et al, 2002). Fifteen percent of synonymous mutations/

point mutations have been estimated to cause human genetic

diseases due to splicing defects (Krawczak et al, 1992). BRCA2

synonymous mutations result in exon skipping and protein trunca-

tion (Anczuków et al, 2008; Raponi et al, 2011) and could be

disease causing (Hansen et al, 2010). Exon skipping in APC is found

in familial adenomatous polyposis (FAP) and colon cancer patients

(Montera et al, 2001). Moreover, a new splice site is created in APC

in lung cancer patients (Pe�cina-Slaus et al, 2010). Synonymous

mutations can also drive tumorigenesis by splice site inactivation in

the TP53 (p53) gene (Supek et al, 2014).

Synonymous mutations in proto-oncogenes can also be func-

tional. In melanoma cells, a synonymous substitution causes

increased mRNA stability of the oncogene BCL2L12. This is due to

the loss of the microRNA miR-671-5p target site in the coding

sequence (Gartner et al, 2013). Also, a synonymous change in

CYP2D6 leads to decreased mRNA expression, resulting in an

impaired drug oxidation phenotype affecting therapy response. Spec-

ulatively, this synonymous mutation could alter the secondary struc-

ture of the mRNA leading to its degradation (Toscano et al, 2006).

Synonymous mutations could also affect translational speed and

thus change cotranslational protein folding (Yu et al, 2015). When a

synonymous substitution results in a rare codon, transfer RNA

(tRNA) availability can decrease the translational speed. This dif-

ference in translational speed can be associated with alternative

protein conformation since—for example—a domain may have

more time to fold before the next domain is translated (Yu et al,

2015). Domains can fold differently by either experiencing or not

experiencing stabilization from neighboring domains (Purvis et al,

1987; Sauna & Kimchi-Sarfaty, 2011). Vice versa, the removal of a

ribosomal pause site by a synonymous mutation can lead to an

alternative protein conformation, allowing cooperative folding of

two domains (Tsai et al, 2008). A nucleotide substitution in the

MDR1 gene alters the substrate specificity of this ABC transporter

(ATP-binding cassette transporter) that is involved in multi-drug

resistance of cancer cells potentially by giving rise to an alternative

protein conformation (Kimchi-Sarfaty et al, 2007).

Lastly, mutations in overlapping open reading frames (ORFs)

may be synonymous in one, but can result in a missense mutation

in another ORF (FitzGerald et al, 1996). The same might hold true

for transcription in the antisense direction.

In the past, synonymous mutations were assumed to be

randomly distributed and used as controls for comparing mutation

Functional mechanisms caused
by synonymous mutations

MDR1

(?)

Examples
in other 
diseases 

ESE

A Splicing 

Examples
in cancer 

BRCA1/2

APC

TP53 

CD44
Osteo-
porosis

CHRNE
Myasthenic
syndrome

mRNA

Translation Degradation

mRNA

B mRNA stability 

CYP2D6

(?)

COMT
Temporo-
mandibular
joint 
disorder 

Degradation

miRNA

BCL2L12 IRGM
Crohn’s 
disease

D Translation / Protein folding

a Translation initiation

b Translation elongation

c Cotranslational folding

CFTR
Cystic 

5'

5'

5'

5'

5'

5'

3'

3'

3'

3'

5' 3' 5'

5' 3'

5'

5'

5'

3'

3'

3'

5'

5'

3'

3'

C microRNA binding 

3'

3'

3'

Figure 2. Functional mechanisms caused by synonymous mutations.
(A) Synonymous mutations can affect mRNA splicing. Of the possible splice
events, an example of exon skipping by deletion of an exonic splicing
enhancer (ESE) is shown (red). (B) Synonymous mutations can alter mRNA
stability by modifying the secondary mRNA structure and lead to either
translation (green) or mRNA degradation (red). (C) Protein abundance can be
altered by either creating (red) or abrogating (green) a miRNA binding site in
the mRNA. (D) Synonymous mutations can affect translation at different
stages: (Da) translation initiation is favored by a less complex mRNA
secondary structure (green) and hindered by a more stable secondary
structure around the start codon (red). (Db) Codon choice and tRNA
availability can either increase (green) or decrease (red) translational
elongation speed. (Dc) The removal or creation of a ribosomal pause site can
alter the protein conformation and structure. A ribosomal pause site in
between two domains allows the translated domains to fold independently
(green). The removal of a ribosomal pause site allows the cooperate folding of
the two domains (red).
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frequencies (Kimura, 1977). However, the described examples

demonstrate that synonymous mutations can be relevant in cancer

initiation, progression, and therapy response. Mutational studies of

the past as well as public databases should be re-investigated in

order to determine a potential bias due to the inappropriate use of

synonymous mutations as controls and to prevent the loss of valu-

able information hiding in synonymous mutations.

Splice sites and introns

Splicing is a highly regulated process which adds a layer of complex-

ity to protein biosynthesis in eukaryotic cells (Padgett et al, 1986). It

can be disrupted or altered by mutations in trans-acting splicing

factors or cis-acting sequences in exons and introns. Splicing

mutations are increasingly recognized as important contributors to

disease and are often linked to cancerogenesis (Wang & Cooper,

2007; Sterne-Weiler & Sanford, 2014). Unlike mutations in splice

factors and splicing mutations in exons, intronic mutations outside

of the coding regions are often overlooked.

The majority of characterized intronic splicing mutations lead to

the destruction or creation of consensus splice sites. Depending on

the presence of cryptic splice sites, the outcome of these mutations

can differ (Fig 3).

The destruction of splice sites is mostly caused by mutations in

the highly conserved GT and AG dinucleotides at the 50- or 30-
intron-ends, respectively. Splice site destruction can result in either

deletion of the adjacent exon or retention of the adjacent intron. For

example, a pathogenic donor splice site mutation in the tumor

suppressor gene MEN1 is responsible for the retention of intron 9

(Carrasco et al, 2004), while a mutation of a splice acceptor site in

CDKN2A causes exon skipping in melanoma patients (Petronzelli

et al, 2001). In MLH1, a T > A mutation in the polypyrimidine tract

of a splice acceptor site provokes exon skipping classified as patho-

genic in a hereditary non-polyposis colon cancer (HNPCC) patient

(Clarke et al, 2000). Although exon skipping is commonly caused

by acceptor splice site mutations, donor splice site mutations can

also account for exon skipping for instance in WT1 (Schneider et al,

1993). Mutations in 50 or 30 splice sites are reported for the oncogene

MET in lung cancer resulting in skipping of exon 14 (METex14).

This leads to a functional protein lacking the binding site for the

CBL E3 ligase. Hence, the oncoprotein partially escapes ubiquitina-

tion and degradation (Kong-Beltran et al, 2006). Molecular profiling

of lung adenocarcinoma reveals that 4% of tumors harbor METex14

(The Cancer Genome Atlas Research Network, 2014). Less

frequently, destructions of splice sites are caused by mutations

outside the GT and AG dinucleotides. In the presence of cryptic

splice sites, these mutations can lead to deletion or partial intron

retention in the processed mRNA transcript as the cryptic site

becomes the novel used splice site. For example, a childhood

adrenocortical tumor (ACT) harbors a splice acceptor site mutation

in TP53 which activates a downstream cryptic splice site leading to

the deletion of the first ten nucleotides of exon 11 (Pinto et al,

2011). Vice versa, a G > A transition in the splice donor site in TP53

results in the insertion of six amino acids in a patient with Li-Frau-

meni-like syndrome (LFL syndrome) (Piao et al, 2013).

The creation of a novel splice site can render a consensus splice

site cryptic. In a family with an attenuated retinoblastoma pheno-

type, a novel splice acceptor site in RB1 mediates the insertion of

four nucleotides in the mRNA (Sanchez-Sanchez et al, 2005). In

proximity to another cryptic splice site, one de novo splice site can

create a cryptic exon. A BRCA2 deep intronic mutation turns a cryp-

tic splice site into a perfect consensus sequence (Anczukow et al,

2012). In several CLL cases, a point mutation in the 30-UTR of the

NOTCH1 gene creates a novel splice acceptor site which together

with a cryptic splice site in the coding sequence leads to an addi-

tional splicing event and the deletion of 158 coding nucleotides

including a PEST signal and hence leading to protein stabilization

(Puente et al, 2015).

In addition to the destruction or creation of splice sites at the

intron boundaries, mutations in the branch point can alter splicing.

In NF2, a G > A transition creates a novel branch point, resulting in

the usage of two cryptic splice sites which define a cryptic exon of

106 nucleotides (De Klein et al, 1998).

The last category of intronic mutations that affect splicing

concerns splicing regulatory elements. In ATM, a cryptic exon is

activated through a deep intronic four nucleotide deletion in an

intron-splicing processing element (ISPE) complementary to the U1

Table 3. Examples for functions of synonymous mutations.

Mechanism Examples in cancer Nucleotide change Result Examples in other disease

Splicing BRCA1/2 (Anczuków
et al, 2008; Hansen
et al, 2010; Raponi
et al, 2011)

BRCA1, 3719 G > T (g)
BCRA2, 744 G > A (g)
BCRA1, 231 G > T (g)

Exon skipping in vitro
Exon skipping
Exon skipping

CD44 (Vidal et al, 2009) (osteoporosis)
CHRNE (Richard et al, 2007)
(myasthenic syndrome)

APC (Montera et al, 2001;
Pe�cina-Slaus et al, 2010)

1869 G > T (g)
5883 G > A (s)

Exon skipping
New splice site ?

TP53 (Supek et al, 2014) Multiple (s) Multiple

mRNA stability CYP2D6 (Toscano
et al, 2006)

2939 G > A (s) Predicted changes in mRNA
structure may affect stability

COMT (Nackley et al, 2006)
(temporo-mandibular joint disorder)

microRNA
binding

BCL2L12 (Gartner
et al, 2013)

51 C > T (s) Loss of has-miR-671-5p
binding site

IRGM (Brest et al, 2011) (Crohn’s disease)

Translation/
Protein folding

MDR1 (Kimchi-Sarfaty
et al, 2007)

3435 C > T (s) Rare codon might lead to
changes in cotranslational folding

CFTR (Bartoszewski et al, 2010;
Lazrak et al, 2013) (cystic fibrosis)

The examples for the functions of synonymous mutations in cancer and other diseases are listed including the respective references. (g) Germline; (s) somatic.
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snRNP. The deletion disrupts this interaction which is sufficient to

activate the cryptic exon (Pagani et al, 2002). Additionally, the role

of synonymous mutations in exonic splicing enhancers or silencers

has been discussed above.

Intronic splicing mutations classified as pathogenic are prevalent

in many cancer types across a wide range of tumor suppressor genes

(Sterne-Weiler & Sanford, 2014). A more extensive overview on

intronic splicing mutations in cancer can be found in Table EV2.

30-Untranslated regions (30-UTR)

As in the 50-UTR, elements in the 30-UTR can regulate translation

and mRNA stability governing protein abundance (Fig 1).

The most prevalent class of regulatory elements in the 30-UTR
are microRNA binding sites (miR-BS). MicroRNAs (miRNAs) are

small non-coding RNAs regulating the majority of protein-coding

genes (Friedman et al, 2009; reviewed in Winter et al, 2009) by

repressing translation, degrading mRNA by cleavage, or destabiliz-

ing it via deadenylation (Bartel, 2009; Fabian et al, 2010). Genetic

aberrations in miR-BS are frequent, but only functionally analyzed

for individual examples (Table EV3).

Many cancer types show an enrichment of polymorphisms and

mutations in miR-BS. The most prominent example is a germline

SNP in the 30-UTR of the oncogene KRAS known as LCS6 in the

binding site for the LET-7 miRNA (Chin et al, 2008). This polymor-

phism elevates expression levels of KRAS and is associated with an

increased risk of non-small-cell lung cancer (NSCLC). The LCS6

variant and mutations in the coding region of KRAS are mutually

exclusive in the NCI-60 panel (National Cancer Institute 60 human

tumor cell line panel) pointing toward its potential relevance in

tumorigenesis (Kundu et al, 2012). Frequent somatic mutations in

CD274 decrease binding of miR-570 in several cancer entities (Wang

et al, 2012b). Conversely, mutations in the 30-UTR can also increase

affinity to miRNAs or introduce new miR-BS. For the germline SNP

rs10082466 T > C in MBL2, the C-allele enhances the affinity to

miR-25a/b and increases the risk for colorectal cancer (Zanetti et al,

2012). A somatic mutation of the TNFAIP2 gene in an acute myeloid

leukemia (AML) patient results in a Dicer-dependent repression,

suggesting the creation of a new miR-BS for a yet unidentified

miRNA (Ramsingh et al, 2010). A bioinformatical analysis

predicts over 600 somatic mutations in 30-UTRs to interfere with

miRNA binding alone (Ziebarth et al, 2012), and many other

examples propose that this provides a general mechanism during

tumorigenesis.

Polyadenylation signals demarcate the 30-end of a transcript

leading to its cleavage and polyadenylation (polyA) (Moore,

2005). Usage of upstream polyA sites within the 30-UTR causes

alternative cleavage and polyadenylation (UTR-APA). UTR-APA

can promote mRNA stability by the loss of mRNA destabilizing

AA

A

BP
A

SpS SpS

SpS SpS

SpS

BP
A

BP
A

SRE

SRE

SRE

B Effect of splicing mutations

a Destruction

b Creation

c Branch point

d Splicing regulatory elements

a Constitutive exon

b Exon skipping

c Intron retention

e Insertion

f Cryptic exon

d Deletion

A Splicing mutations in introns

Figure 3. Sites and effects of intronic splicing mutations in cancer.
(A) Mutations in introns affecting splicing. a) Mutations in the intron can destroy a consensus splice donor or acceptor site (SpS) at the intron boundaries. b) Intronic
mutations can create a novel splice donor or acceptor site (SpS). c) Mutations in introns can either create or destroy a branch point (BP). d) Mutations in splicing
regulatory elements (SRE) can cause the formation or deletion of an intronic splicing silencer (ISS) or enhancer (ISE). (B) Products of splicing mutations. Depending on
the presence of cryptic splice sites in the vicinity of the aforementioned mutations, the mutations can result in all product types of alternative splicing.
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sites and results in elevated protein levels, as detected in the

(proto-)oncogenes cyclin D1 (CCND1) or IGF2BP1/IMP1 (Mayr &

Bartel, 2009). A mutation that creates a premature polyadenyla-

tion signal in CCND1 shortens its 30-UTR and increases the risk of

mantle cell lymphoma (Wiestner et al, 2007). APA within the

coding region (CR-APA) leads to truncated proteins (Rehfeld et al,

2014) (Table 4).

AU-rich elements (ARE) in the 30-UTR mediate mRNA degrada-

tion; however, no specific mutations have been reported to date. In

larger deletions, the loss of other regulatory sites is considered to be

more relevant (Deshpande et al, 2009; Dixon et al, 2013).

Lastly, mutations in the 30-UTR may also cause aberrant splicing

as described above for NOTCH1 in CLL (Puente et al, 2015).

Non-coding RNAs

Non-coding RNAs (ncRNAs) are a heterogeneous class of transcripts

with low protein coding potential involved in diverse cellular

processes.

MicroRNAs (miRNAs) are small ncRNAs of 18–25 nucleotides.

Guided by the seed region, miRNAs bind to complementary sites in

mRNAs repressing their translation and reducing mRNA stability.

miRNAs influence numerous cellular processes including cell cycle

regulation, differentiation, and apoptosis and can therefore act as

tumor suppressors or oncogenes (Winter et al, 2009). Consequently,

alterations in miRNA genes could have a major impact on

tumorigenesis.

miRNA genes are often located in unstable genomic regions

whose deletion is frequently involved in malignancies (Calin et al,

2004). Deletion of miR-15/-16 at chromosome 13q14 stimulates

tumor development due to reduced BCL2 inhibition and dysregula-

tion of cell cycle genes in CLL (Calin et al, 2002; Cimmino et al,

2005; Klein et al, 2010). However, since this genetically unstable

genomic region contains more than this miRNA gene, the miR-15/-16

cluster might not be affected selectively and adjacent genes can also

be part of the same minimally deleted region, for example, the

tumor suppressor gene DLEU7. The deletion of DLEU7 results in a

dysregulated NF-jB pathway and inhibition of apoptosis synergisti-

cally with BCL2 (Palamarchuk et al, 2010). DLEU2 also localizes to

this fragile site and acts as a MYC-dependent host gene of miR-15/16

(Lerner et al, 2009). The combination and interplay of these gene

deletions might be crucial for tumorigenesis.

The miR-486 gene is located at a fragile genomic site at chromo-

some 8p11. Physiologically, miR-486 functions as a tumor suppres-

sor and inhibits the anti-apoptotic protein OLFM4. In up to 30% of

gastric cancers, miR-486 is deleted, increasing cell proliferation and

contributing to tumorigenesis (Oh et al, 2011).

In contrast to deletions of entire miRNA genes, point mutations

can affect either the miRNA precursor and its processing or the

mature miRNA sequence and its target recognition. Several SNPs

have been described in miRNA precursors, and numerous associa-

tion studies are reporting—sometimes conflicting—results on cancer

susceptibility (Slaby et al, 2012 and references therein). The level of

association differs greatly among cancer types, ethnic groups, sex,

and lifestyle factors (Wang et al, 2012a). Since many polymorphisms

Table 4. Variants in the 30-UTR affecting polyadenylation.

Gene Variant Mechanism
Expression/effect
on protein Cancer type Reference

CCND1 Several genomic deletions in
30-UTR (N/A)

Premature
polyadenylation

Increase by enhanced
stability of truncated
mRNA (lacking AU-rich
elements, loss of
miR-BS)

Mantle cell lymphoma
(oncogenic risk)

Wiestner
et al (2007)

Small aberration within 30-UTR
(320 bp from stop codon: single
base insertion (A at position
1344), small deletion (3 bp at
position 1,344–46), duplication
in repetitive element in 30-UTR
(N/A)

Creation of APA
signals

MSH6 Duplication of 20 bp close to the
polyadenylation site (g)

Decreased
efficiency of
polyadenylation

Decrease Lynch syndrome Decorsiere
et al (2012)

TP53 rs78378222
A/C (g: SNP)

Change within
polyadenylation
signal

Decrease Cutaneous basal cell
carcinoma, prostate
cancer, colorectal
adenoma, glioma

Stacey
et al (2011)

PSMD8
TM9SF3
CD59
ANKH
CIAO1
SRSF5
MRSP16
NDUFA6

(N/A) APA
Differential usage
of polyadenylation
sites

Increase by enhanced
stability of truncated
mRNA due to miR-BS
loss

Small intestinal
neuroendocrine tumor

Rehfeld
et al (2014)

Mutational status as indicated in bold in brackets; s, somatic; g, germline; N/A, not available.
APA, alternative polyadenylation.
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do not have functional consequences, experimental verification is

necessary for each individual variation (Diederichs & Haber, 2006).

Most functional polymorphisms, however, influence the processing

of the miRNA precursor and alter the level of the mature miRNA

(Ryan et al, 2010).

In ALL, a somatic 13A > G mutation in the miR-128b gene

reduces its processing efficiency and thus lowers the level of mature

miR-128b (Kotani et al, 2010). Reduced miR-128b is associated with

resistance to the standard therapeutic agent dexamethasone (Kotani

et al, 2009), demonstrating the clinical implications of mutations in

miRNA genes.

Two polymorphisms in the miR-125a gene are associated with

breast cancer (Li et al, 2009; Lehmann et al, 2013). The variants

lead to decreased levels of mature miR-125a and upregulation of its

target ERBB2 (Duan et al, 2007; Lehmann et al, 2013).

Mutations rarely occur in the seed region of the miRNAs

(Saunders et al, 2007), altering their ability to bind to target

mRNAs. Somatic seed mutations of miR-142-3p in diffuse large

B-cell lymphoma, AML, and CLL do not affect its expression level,

but enable binding to the 30-UTR of the ZEB2 mRNA and disrupt

binding to its physiological targets RAC1 and ADCY9 mRNAs

(Kwanhian et al, 2012; The Cancer Genome Atlas Research

Network, 2013; Kminkova et al, 2014).

P-element-induced wimpy testis (PIWI)-interacting RNAs

(piRNAs) are a class of small non-coding RNA molecules that have

originally been identified in Drosophila and are mainly involved in

the silencing of transposable elements (TEs), especially in germ cells

(Girard et al, 2006). A germline SNP (rs1326306) in piRNA 021285

was associated with an increased likelihood for breast cancer (Fu

et al, 2015). This variant resulted in enhanced invasiveness when

transfected into the breast cancer cell line MCF7, in part attributed to

altered DNA methylation patterns of the ARHGAP11A gene leading

to increased expression levels. ARHGAP11A codes for a Rho GTPase-

activating protein that enhances invasiveness in colon and breast

cancer. This is the first example for a piRNA variant implicated in

human cancer, but a growing body of literature dealing with piRNAs

in this context makes it probable that many more are to be discov-

ered. Recently, 273 of 20,831 known human piRNAs were found to

be expressed in numerous somatic tissues in tissue-specific patterns,

suggesting a role in the control of cellular identity (Martinez et al,

2015). In the same study, 522 piRNAs were expressed in tumor

tissues, largely distinguishing malignant from non-malignant tissues

in a cancer type-specific pattern. Together with findings designating

an involvement in post-transcriptional regulation of gene expression

to piRNAs (reviewed in Watanabe & Lin, 2014), this underlines a

functional role of piRNAs beyond the control of TEs and stresses

their potential contribution to tumorigenesis.

Long non-coding RNAs (lncRNAs) are involved in a variety of

cellular functions, although the underlying mechanisms or disease-

causing events are not yet revealed in most cases (Tsai et al, 2011).

lncRNA expression and function are associated with many types of

cancer (Gutschner & Diederichs, 2012), but only very few examples

have been studied for genetic alterations.

HOTAIR is a well-characterized lncRNA which is part of the

HOXC locus and regulates HOXD genes in trans (Rinn et al, 2007).

HOTAIR is overexpressed in hepatocellular carcinoma and breast

cancer where it is associated with metastasis and shortened life

expectancy (Gupta et al, 2010; Yang et al, 2011). The SNP

rs7958904 (C > G) in exon 6 alters the secondary structure of

HOTAIR and decreases cellular growth. In consequence, the risk for

heterozygous carriers to develop colorectal carcinomas might be

reduced (Xue et al, 2015).

Outside of oncology, mutations in the lncRNA RMRP in patients

with cartilage–hair hypoplasia changed its chromatin binding prop-

erties. This lncRNA together with its associated RNA helicase DDX5

was important for the transactivational activity of the transcription

factor RORγt likely causing the disease and hence providing a new

therapeutic option (Huang et al, 2015).

Regarding other non-coding RNA species, no cancer-associated

mutations have been studied in detail in ribosomal RNA (rRNA),

small nuclear RNA (snRNA), transfer RNA (tRNA), or circular RNA

(circRNA). A deletion in the small nucleolar RNA (snoRNA) U50

gene is frequently present in prostate and breast cancer (Dong et al,

2008, 2009), demonstrating that also other ncRNA entities than

miRNAs and lncRNAs might be mutated in cancer.

Conclusions & outlook

Clearly, in addition to the protein-coding genes, the major non-

coding fraction of the genome can be affected by tumor-promoting

mutations. Their number and functional effects have been underes-

timated in the past (Weinhold et al, 2014). High-throughput

sequencing techniques that allow for rapid sequencing of a vast

amount of cancer genomes is now allowing rapid advances in this

field (Stratton et al, 2009). Although international consortia attempt

to structure the vast quantity of information, in-depth analyses of

sequencing data outside of coding sequences are still lacking.

Advanced in silico methods need to be developed to cope with the

huge amount of sequencing results. Most published studies dealing

with non-coding alterations in cancer are merely associative and

generally focus on germline polymorphisms instead of somatic

mutations (Table 1). Even though the molecular mechanisms of

many of these alterations are unknown, the existing examples

provide sufficient evidence for their importance in cancer. Further

investigations to identify the full number of mutations and to delin-

eate their functional impact are required. In studies published so

far, there is a strong bias toward mechanisms which are simple to

analyze such as splicing and miRNA binding. For intronic mutations

affecting splicing, advanced in silico techniques with refined param-

eters based on functional data allow for reliable predictions of

pathogenic events (Xiong et al, 2015).

In contrast, underlying mechanisms of other elements affecting

translation efficiency or mRNA stability, for example, synonymous

mutations, UTR folding into stable structures, or RBP binding sites,

have been mostly neglected. Although numerous lncRNAs are

dysregulated in several cancer entities, much less is known about

their pathological or physiological effects and genetic aberrations

(Prensner & Chinnaiyan, 2011). Hence, large efforts are needed to

comprehensively elucidate the function of these players in

tumorigenesis.

In recent years, the emergence of targeted therapies has revolu-

tionized the treatment of cancer. Imatinib, the prime example

of targeted therapy, shows that a detailed understanding of

the genetic changes in a specific tumor entity can strikingly

increase the survival of patients (Druker et al, 2001b). However,
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breakthroughs in targeted therapy are still limited to a few exam-

ples and acquired resistance is a major challenge. The non-coding

genome might unravel novel mechanisms underlying tumorigenesis

and provide new tumor-specific targets. For example, in vitro and

animal studies applying antisense oligonucleotide therapy to

correct aberrant splicing show promising results (Anczukow et al,

2012; Staropoli et al, 2015). Furthermore, regulatory elements such

as super-enhancers constitute potential therapeutic targets as they

influence critical oncogenic drivers (Loven et al, 2013). Addition-

ally, novel therapeutic approaches aim to replace or inhibit deregu-

lated non-coding RNAs in tumor cells, especially targeting miRNAs

as potent regulators of mRNA translation and stability (reviewed in

Kasinski & Slack, 2011; Rothschild, 2014). These might also be

used to target mutations in miRNA genes that affect the levels of

mature miRNAs or that impact its function. Repressed tumor-

suppressive miRNAs can be replaced or expression or binding of

an oncogenic miRNA to a target mRNA can be inhibited by, for

example, so-called antagomiRs or by introducing miRNA masks

complementary to the specific miR-BS (Garzon et al, 2010). Future

challenges of miRNA therapy include miRNA stability, tissue-

specific delivery systems, and potential off-target effects (Roth-

schild, 2014).

Mutational loss of a miR-BS can stabilize oncogenic mRNAs lead-

ing to increased susceptibility to cancer. In colorectal cancer (CRC),

a SNP at position 8473 (T8473C; rs5275) of the cyclooxygenase-2

(COX2) gene represses binding of miR-542-3p (Moore et al, 2012).

The treatment-of-choice for SNP rs5275 carriers are (selective)

COX-2 inhibitors to significantly reduce the risk or boost tumor

regression of COX-2-dependent CRC (Wang & Dubois, 2010; Dixon

et al, 2013). However, the clinical impact of the respective SNP is a

matter of debate (Cox et al, 2004; Gong et al, 2009). Hence, a

refined investigation of the patient’s mutational status beyond clas-

sical exonic (driver) mutations can significantly improve clinical

outcome.

Lastly, long non-coding RNAs could be exploited therapeutically,

as well (Sanchez & Huarte, 2013), for example, suppression of the

lncRNA MALAT1 in lung cancer metastasis (Gutschner et al, 2013).

Next to therapeutic targets, novel biomarkers may be also hidden

in the “dark matter” of the genome with potential impacts on cancer

diagnosis, prognosis, and response prediction. Numerous differential

expression patterns of miRNAs and lncRNAs have been published to

date, but also differential or cancer-specific piRNA expression is

associated with clinical parameters such as recurrence free survival

and TNM stage in gastric, breast, colon, and kidney cancers (re-

viewed in Ng et al, 2016). In contrast, genetic alterations in these

genes have been much less studied as potential biomarkers despite

their obvious advantage of increased stability compared to expres-

sion alterations. Thus, comprehensive research focusing on both

relevance and mechanisms of the identified mutations as well as

detection of new non-coding alterations in cancer will be of utmost

importance in the coming years.

Expanded View for this article is available online.
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