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Abstract

Pandemics have been recognized as a serious global threat to humanity. To effectively pre-

vent the spread and outbreak of the epidemic disease, theoretical models intended to depict

the disease dynamics have served as the main tools to understand its underlying mecha-

nisms and thus interrupt its transmission. Two commonly-used models are mean-field

compartmental models and agent-based models (ABM). The former ones are analytically

tractable for describing the dynamics of subpopulations by cannot explicitly consider the

details of individual movements. The latter one is mainly used to the spread of epidemics at

a microscopic level but have limited simulation scale for the randomness of the results. To

overcome current limitations, a hierarchical hybrid modeling and simulation method, com-

bining mean-field compartmental model and ABM, is proposed in this paper. Based on this

method, we build a hybrid model, which takes both individual heterogeneity and the dynam-

ics of sub-populations into account. The proposed model also investigates the impact of

combined interventions (i. e. vaccination and pre-deployment training) for healthcare work-

ers (HCWs) on the spread of disease. Taking the case of 2014-2015 Ebola Virus Disease

(EVD) in Sierra Leone as an example, we examine its spreading mechanism and evaluate

the effect of prevention by our parameterized and validated hybrid model. According to our

simulation results, an optimal combination of pre-job training and vaccination deployment

strategy has been identified. To conclude, our hybrid model helps informing the synergistic

disease control strategies and the corresponding hierarchical hybrid modeling and simula-

tion method can further be used to understand the individual dynamics during epidemic

spreading in large scale population and help inform disease control strategies for different

infectious disease.

Introduction

The rapid spread of an infectious disease can have a devastating impact on humanity, lowering

the quality of people’s lives and causing increased mortality. To effectively reduce the epidemic

size, considerable studies have been carried out to investigate the mechanism of the infectious

disease dynamics and making optimal interventions for controlling epidemic size.
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Mathematical models are tools to study the underlying mechanisms of infectious diseases

and to evaluate the impact of interventions towards disease control [1–4]. Susceptible-

Infected-Recovered (SIR) model, raised by Kermack and McKendrick [5], is the first epidemic

model describing the dynamics of virus transmission among populations. The SIR model, a

mean-field compartmental stochastic model, describes the individual mobility at a macro-

scopic level by separating the epidemic dynamics of sub-populations in patches and connect-

ing them via transmission channels [6]. This model was further developed by Legrand J et al.

by proposing a stochastic Susceptible-Exposed-Infected-Removed (SEIR) model to fit data

from the 1995 and 2000 outbreaks in Congo and Uganda [7]. Furthermore, Berge et al. [8]

studied the effect of vaccination and self-protection measures in the transmission dynamics of

Ebola in Africa. However, the mean-field compartmental model cannot consider the stochastic

nature of the movement of the individual explicitly for it cannot describe the mobility dynam-

ics on individual level.

One the other hand, the ABM has been widely used to study the epidemic dynamics on the

individual level which considers the individual activities such as birth, death, buried, infection,

recovery and movement [9–11]. ABM can and has been used to examine how multi-level poli-

cies and programs influence population health [9]. Siettos et al. [12] developed an ABM with 6

million individuals interacting through a small-world social network in order to study the

EVD in Sierra Leone. However, the randomness of ABM’s output leads to the uncertainty in

calibrating parameters and the sophisticated contact network. Therefore, when modeling large

scale population, it is tough to gain an insight into the epidemic dynamics through ABM.

Countermeasures for disease prevention such as aiming at preventing disease transmission

have been widely studied in recent years. Some researchers investigated single-focus interven-

tion [13–15] while other works analyzed combinations of interventions [16–19]. Berge T. et al.

[19] studied the impact of contact tracing, quarantine and hospitalization on disease dynamics

and assessed the efficiency of different given control strategies. Hollingsworth et al. [17] inves-

tigated how contact-reducing interventions and availability of antiviral drugs or vaccines con-

tribute to the epidemic dynamics. Zhang et al. [18] modeled and evaluated the spread of

epidemic with intervention strategies of workforce shift and combination with school closure.

With the increased complexity of interventions, the individual behaviour plays an essential

role in the epidemic dynamics which cannot be treated by deterministic compartmental mod-

els assuming the sub-populations as well-mixed population. However, such a model is yet to

be established and this challenge has motivated our study.

The unprecedented outbreak of Ebola virus disease(EVD), a significant public health prob-

lem, in West Africa during 2014–2016 led to 28,638 cases, with 11,316 deaths as of 20 January

2016 [20]. The World Health Organization(WHO) declared EVD a “public health emergency

of international concern” in 2014 [21, 22]. The current EVD outbreak in West Africa is

unprecedented in many ways, including the high number of doctors, nurses, and other health

workers who have been infected. Siettos C. et al. [23] developed an ABM to investigate the epi-

demic dynamics of EVD and provided estimates for key epidemiological variables. Merler S.

et al. [24] studied the influence of safe burials procedures, availability of Ebola treatment units

and household protection kits by ABM. A new WHO report, investigating the infection of

health worker(HCW) has indicated that HCWs are between 21 and 32 times more likely to be

infected by Ebola than the general population [20]. In many epidemics, Healthcare worker

(HCW) has been the transmission link to the general population, acting as ‘super-spreaders’ in

early epidemics. As they belong to a high-risk and relatively easily identified group, it is neces-

sary to evaluate the impact of healthcare worker-targeted intervention strategies. Vaccination

is known as one of the most effective interventions for reducing the morbidity and mortality

during the epidemic outbreak. Multiple mathematical modeling analyses aimed to evaluate the
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impact of vaccination during the outbreak of Ebola epidemics have been undertaken [25–29].

Based on their study [24], Merler S. et al. [29] further developed a spatially explicit microsimu-

lation model in order to study the effectiveness of ring vaccination strategies. Besides, pre-

deployment training for HCWs also plays an important role in reducing infections. Studies

indicate that the low level of knowledge, negative attitude and sub-standard practices can be

eliminated through continued training and provision of needed and adequate resources in

HCW’s line of duties [30, 31]. However, few studies have incorporated both prophylactic vac-

cination strategies and the pre-deployment training strategies into the Ebola dynamic model.

In this paper, we propose a new hierarchical hybrid modeling and simulation method, cou-

pling SEIR dynamic model and ABM, which takes the advantages of each approach (individual

heterogeneity for ABM and population size and reliable output for SEIR model) into consider-

ation. Based on the characteristic of Ebola virus transmission in West Africa, we consider the

problem of how to study the epidemic dynamics in the entire region while the individual het-

erogeneity is also considered. We develop a hybrid model based on the hierarchical structure

to simulate the dynamics of Ebola epidemic and evaluate the impact of intervention strategies.

Different vaccination and training strategies targeted to HCWs are incorporated into the pro-

posed hybrid model so as to provide optimal interventions. The published data by WHO for

2014–2015 epidemic in Sierra Leone are used for validation and the recommended vaccination

and training interventions are given for the prevention of the spread of disease.

Our work makes three contributions. Firstly, we propose a hierarchical hybrid modeling

and simulation method which constructs infectious disease transmission dynamics at different

scales. The “macroscopic” model (based on SEIR model) describes the size of the general pop-

ulation in the affected area and the “microscopic” model (based on ABM) describes how

multi-level policies and programs shape population health. Secondly, we build an extended

SEIR dynamic model based on the newly raised hierarchical modeling method and take into

account both vaccination and training strategies on HCWs to better understand the dynamics

of Ebola epidemic and its treatment. Thirdly, we reveal the essential characteristic of the

impact of combined interventions on EVD transmission, extending the previous work by tak-

ing synergistic strategies into account.

The content of this paper is organized as follows. “Methods” describes the proposed hierar-

chical hybrid modeling and simulation method and its corresponding hybrid model analyzing

the dynamics of disease transmission during the 2014 EVD outbreak in Sierra Leone. “Results”

presents the validation results of our proposed model and studies the effects of combined

interventions. “Discussion” illustrates our conclusion, the comparison between the previous

work corresponding to intervention strategies and our hybrid model and the future work

based on our present study.

Methods

Model data

The epidemic of Ebola in Sierra Leone was simulated and validated using both specific disease

characteristic parameters derived from literature researches and the parameters estimated by

simultaneously minimizing the squared differences between the model output of infectious

cases and the cases reported by WHO for the 2014 epidemic as reported [32, 33]. The simula-

tion period (from May 12, 2014 to November 13, 2015) is divided into three phases (first

period: May 12, 2014 to September 12,2014 a total of 123 days, second period: September

12,2014 to November 18,2014, a total of 67 days, third period: November 19,2014 to November

13, 2015, a total of 360 days) according to the growth trend of reported cases. The reported

data is shown in Fig 1. In the first 123 days, a sharpen increase in the reported Ebola cases
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among HCWs per month and a slight increase per week in reported cases among overall

population are shown. In the second period (123 to 190 days) the new cases among HCWs

decreased and the new cases among the overall population show rapid increase. In the third

period (190 to 550 days), both cases among HCWs and the overall population decrease (Fig 1).

Model assumption

The main purpose of this model is to simulate the outbreak of Ebola and analyse the influence

of different education and vaccination scenarios. Considering the real affection of vaccination

and education, we makes the following assumptions:

1. Population births, deaths from other factors(except caused by Ebola) during the epidemic

are not considered.

2. Vaccine assumed: time to onset of protection: 7 days. Duration of protection: 180 days. Effi-

cacy: 100%. [34] Daily rate at which vaccination is carried out: 5% HCW.

3. Only trained HCW have opportunities to be vaccinated.

4. There are several phases in the education and the probability of being infected correlates

with HCW’s level of education.

5. Education assumed: pre-deployment training is prior to HCWs who are willing to be

trained.

Hybrid modeling and simulation method and the model

Traditional epidemiological models are ‘susceptible, exposed, infected, and removed (SEIR)’

model or its variants. SEIR model or its variants picture the epidemic dynamics inadequately

as continuous deterministic processes and strongly simplified the representation of social

activities. However, considering the impact of intervention strategies in the emergency

response, the disease transmission dynamic model needs to add up details for individual activi-

ties. We propose a hybrid modeling and simulation method combining ABM and SEIR

dynamic. In our method, epidemiological model based on SEIR framework is used at the

macro level, inside which agents are modeled at the micro level using ABM. The mobility

dynamic of sub-populations is described on the macro level while the individual heterogeneity

is shown in the micro level. An illustration of the ABM method based on SEIR in the hybrid

model is presented in Fig 2. Our method handles stochastic events such as vaccination and

Fig 1. Reported Ebola cases for 2014–2015 Sierra Leone epidemic among overall population and among HCWs. Data for the overall population

cases were reported by WHO [32] and data for HCW cases were collected by Fang et al. [33]. A: Reported incidence in the overall population in 2014–

2015 Sierra Leone epidemic(cumulative cases). B: Weekly Ebola cases among HCWs(weekly cases).

https://doi.org/10.1371/journal.pone.0254044.g001
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pre-deployment training and continuous processes like the spread of virus at the same time.

The global model runs in hybrid time with epidemic dynamics calculated in continuous time,

and individual state changes and their related processes (training, vaccination stage, decision

to work) occurring as discrete asynchronous events.

Based on this hybrid modeling and simulation method, we build a detailed hybrid model to

investigate the epidemic dynamics of EVD in Sierra Leone, study the effect of interventions

(vaccination and education) on HCW and provide recommendations for potential future

health-related emergency responses for the government. The hybrid model can reproduce the

viability of a HCW in a heterogeneous environment by coupling a decision making submodel

in ABM, with a contact infection model in SEIR model.

SEIR dynamic model. According to [25], the study expend the general SEIR model which

separates susceptible group into susceptible HCW and susceptible general population. In our

study, we introduce a related but also new model with a difference. In our SEIR model, we use

a similar structure as [25]. Eight compartments in the model, as shown in Fig 2, categorize the

total population in Sierra Leone. The population in each individual compartment at any given

point in time has been estimated by accounting for the inflows and outflows into the compart-

ment. In addition to the general SEIR model, the sub-population “susceptible(S)” are separated

into “susceptible HCW” and “susceptible general population” as shown in Fig 2. In addition,

the “susceptible HCW” has been modeled in a deeper level by ABM and its detail is described

in “Agent-based model” part.

Briefly, Susceptible individuals (S) may be Exposed (E) to virus after contact with an infec-

tious individual and become Infectious (I) after the incubation of virus, being capable of infect-

ing others. Some of the infected individuals may be Hospitalized (H). The unhospitalized

patients in I and the hospitalized patients in H will be in one of two states: be dead(D), with

Fig 2. The whole frame of the hybrid model. SHCW means susceptible HCW and SG means susceptible general population. The “susceptible HCW”

sub-population acts as linkage between the agent-based modeling and the system dynamics modeling. The state transition diagram shown in the ABM

has a detailed description in section “Agent-based modeling”.

https://doi.org/10.1371/journal.pone.0254044.g002
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capacity of infecting others before going through safe burials procedures or holding funerals

(F), or they may recover(R). The transmissions and the ordinary differential equations describ-

ing this model are listed in the S1 File.

Agent-based model. ABM is a microscopic modeling method and its benefits can be sum-

marized as followed: i. ABM can describe emergent phenomena; ii. ABM descrides system in a

natural way; and iii. ABM’s flexibility. In our study, multiple interventions such as education

and vaccination need to be considered [35]. The HCW’s state of change is nonlinear and can

be depicted by chance or if-then rules. It is difficult to describing discontinuity in individual

behavior with aggregate flow equations. Therefore, ABM is used for its ability to deal with such

system. Besides, ABM describes and simulates our system in a natural way. In our ABM, each

parameter had intuitive meaning and the adjustment of the value has guiding significance to

government policy making. We do not generate social-transmission network in ABM for we

only focus on the uninfected HCWs who do not contribute to virus transmission and the con-

tact infection is considered in the SEIR model.

In order to study the effect of interventions on HCWs, we assume the susceptible HCWs

(SHCW) as “agents” in order to study their behavior towards the given interventions. As in Fig

2, ABM is applied to gain an insight into the group of SHCW in the SEIR dynamic model. Each

agent has an associated social state related to their reaction towards education or vaccination

interventions. The agent makes decisions depending on its current condition. The output of

the ABM is the number of exposed HCWs calculated by the information gathered in the SEIR

model. And the exposed HCWs, in return, join in the dynamics of virus transmission in the

SEIR model.

The micro level model structure is shown in Figs 3–5. Considering the vaccination and

education strategies, our micro level model is separated into two modules: education and vac-

cination. The decision tree is depicted by a state-chart diagram built inside the model and eval-

uated once per time step. According to the transition rules, each HCW changes his or her state

by time step. (S1 File).

In the education module, HCWs are separated into several types according to their aca-

demic certificate and their willingness to work. The arrows in Fig 3 represent the possible tran-

sitions and their shifting mechanism follows the rules presented in the earlier study [36]. We

mainly focus on the pre-deployment training which prepared for HCW in the Ebola affected

area. Other factors which represent the situation of education are also considered in the ABM.

We specifically designate the parameters that represent the amount of schooling (professional

training for HCWs) as several decision making processes (diamond shapes in Fig 3) and their

corresponding transition rate P1-P3. The meaning and value of these three parameters are

described in Table 2. Here, we focus on the rate of P3 which explains the coverage of pre-

deployment training among HCWs.

At the first stage of the state chart(Fig 3), those who had knowledge of EVD before the out-

break turn into “Initial Ebola Education” state while others turn into the state of “Novice”. At

the second stage of the state chart, those who have knowledge of EVD before the outbreak

attend intensive training according to the transmission rate “P2” while those who have low

level of knowledge attend the pre-deployment training according to the transmission rate

“P3”. After these two stages, those who do not attend the training would be “unprotected” and

eventually come to the “Exposed” state after a incubation period of 2 to 21 days of the Ebola

virus while working in health facilities. Those who attend the training move to the “trained”

state and thus carry out appropriate precaution and take the initiative to get vaccination.

HCWs who have been intensively trained (HCWs who were in the “Trained” state) move

into the vaccination module (Fig 4) according to the vaccine penetration rate. The two
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modules are connected though the state of “trained” as shown in Fig 5. As mentioned in

model assumption, only the “trained” HCWs can further turn into the vaccination state. Con-

sidering the vaccine characteristic which includes the onset of protection and the duration of

protection, agents in this phase are separated into several states: i. HCWs who have already

vaccinated but the efficacy of vaccine has not been onset yet (V1), ii. HCWS who are protected

by the effective vaccine (V2), iii. Vaccinated HCWs revert to susceptible state after the effi-

ciency of vaccine (remain in the state “Trained”). The transformation rules of these three states

follow the vaccine characteristics. The main transition paths are listed as followed:

1. HCWs in “trained” state move to “V1” according to the vaccine penetration.

2. HCWs in “trained” state turn to be “Exposed” before getting vaccination.

3. HCWs in “V1” state turn to be “Exposed” before the onset of the efficacy of vaccine.

4. HCWs in “V1” state move to “V2” as the vaccine starts taking effect.

5. HCWs in “V2” state revert to “Trained” state upon expiration of vaccine efficacy.

Fig 3. The education module in the agent-based model. The state chart presents each HCW’s behavior towards

education interventions. The rectangular boxes represent the states of HCWs, the diamond means branch, the solid

arrow represents transition under a certain condition (ex. “Yes”), and the dashed arrow represents the default (ex.

“No”).

https://doi.org/10.1371/journal.pone.0254044.g003
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Fig 4. The vaccination module in the agent-based model. “V1” represents HCWs who have already vaccinated but

the efficacy of vaccine has not been onset yet. “V2” means HCWs who are protected by the effective vaccine.

https://doi.org/10.1371/journal.pone.0254044.g004

Fig 5. The structure of the model of micro level based on the activity of HCWs. The education module and the

vaccination module are concentrated by the state “Trained” which is described both in the two modules. The arrows

demonstrate the available state transition path.

https://doi.org/10.1371/journal.pone.0254044.g005
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Experimental design

In order to analyze the effects of implementation of both independent and synergistic inter-

ventions, scenes under independent intervention and synergistic interventions are considered.

1. Without interventions: The simulation runs with the parameters that are parameterized

and validated by the data reported by WHO.

2. Pre-deployment training strategies: The impact of education strategies are assessed by rais-

ing the rate of P3 from 95% to 100% at a step of 1%. Additionally, the value of P3 keeps 95%

in the scenario that without interventions.

3. Vaccination strategies: The strategies are evaluated by prophylactic vaccination of 10%,

30% and 50% of HCWs.

4. Combined intervention strategies: P3 varies from 95% to 100% at a step of 1% with 10%,

30% or 50% HCWs get vaccination.

The cumulative number of cases and deaths represents the size of the epidemic. The varia-

tion trend in the cumulative number of cases and deaths indicates the effect of interventions.

Results

Model parameterization and validation

The parameters fitted to the published data by WHO for 2014–2015 epidemic in Sierra Leone

can be seen in Tables 1 and 2. Parameters in the ABM are fixed and their values are determined

as close to reality as possible according to the prior knowledge [37–40]. Therefore, the free

parameters (“Fitted” parameters listed in Table 1) that require calibration are in the SEIR

dynamic model. We develop the hybrid model using the multi-method simulation software

AnyLogic Professional (version 8.3.1) [41] and perform calibration by “Calibration Experi-

ment” in AnyLogic. The daily new cases and deaths in the overall population were used for

Table 1. Parameters for the hybrid model.

Parameter Description 0–123 Days 123–190 Days 190–550 Days Source

N Size of the total population in Sierra Leone (2014) 7,017,144 [42]

HCW Health care worker 1153 [43]

1/σ Incubation Period 7 days 7 days 7 days [7]

1/γD Mean duration from death to burial 2 days 2 days 2 days [7]

1/α Mean duration from onset of infection to hospitalization 2.4 days 2.4 days 2.2 days [25]

bIHCW
Contact rate for infectious individuals in HCW 117.8 15 5.1 fitted

bHHCW
Contact rate for hospitalized individuals in HCW 189.21 23.64 8.88 fitted

bDHCW
Contact rate for dead but not buried individuals in HCW 0.0726 0.0525 0.045 fitted

bINHCW
Contact rate for infectious individuals in general population 0.635 0.594 0.425 fitted

bHNHCW
Contact rate for hospitalized individuals in general population 0.002 0.001 0.0009 fitted

bDNHCW
Contact rate for dead but not buried individuals in general population 0.07 0.0514 0.048 fitted

δ1 Case fatality rate for unhospitalized individuals 0.46 0.38 0.19 fitted

δ2 Case fatality rate for hospitalized individuals 0.46 0.38 0.19 fitted

1/γ Mean duration from onset of infection to death or recovery 6 days 6 days 6 days [25]

1/γH Mean duration from hospitalization to death or recovery 6.2 days 8.3 days 16 days [25]

K1 Proportion of HCW among the total population at the start of the epidemic 0.016% Calculated

Parameters that are not tagged with sources were fitted to the published data according to the basic model output.

https://doi.org/10.1371/journal.pone.0254044.t001
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calibration. Through calibration experiment, the difference between the simulation output

and the given data is calculated with the help of the “difference” function. The integration

range is the intersection of argument ranges of the two datasets. The “difference” function

returns a non-negative value which is a square root of the average of square of difference

between sets of data. By running 3000 iterations of the calibration experiment, we obtain the

minimal value and the corresponding parameters, as it means the least difference between two

sets of data. In addition, we set fixed intervals for the free parameters during calibration refer-

ring to the parameters reported by Potluri R. [25].

The comparison between the model output of Ebola cases and deaths among total popula-

tion and among HCWs in Sierra Leone with the data reported by WHO are shown in Fig 6.

The deterministic model fit well for both the cases in the overall population and the cases

among HCWs, for the curve of the model output is close to the curve of the reported cases in

both groups. The starting date of the x-coordinate “day 0” represents March 22,2014 while the

end of the simulation date represents November 13,2015.

The mean model outputs show 14452 cases(95% CI 8650–16310) and 4041(95% CI 2734–

5851) deaths compared to 14122 cases and 3955 deaths reported by WHO. Considering the

group of HCWs, the mean model outputs show 312 cases compared to 299 cases reported by

WHO. The basic reproduction number R0 for this hybrid model is 1.30(1.26� R0� 2.53)

which is consistent to the reported estimation of R0 for the 2014 Sierra Leone epidemic in the

earlier work [27].

Impact of pre-deployment training

To evaluate the impact of pre-deployment training, Fig 7 shows cumulative infected popula-

tion under different coverage rate of pre-deployment training among HCWs. Additionally,

although the value of P3 in the initial case may not precisely reveal the real situation, the bias

of P3 has little impact on our study for we mainly focus on the trend rather than the specific

value. It can be seen that i. a small increase of the number of HCW (95% to 96% HCW) getting

pre-deployment training can help reduce 31.93% cases and 31.85% deaths among the overall

population (Table 3). ii. About 10% of Ebola cases and deaths among general population can

be reduced by 1% increase in the coverage of pre-deployment training for HCW. iii. Enhanc-

ing the education for the frontline HCW can have a positive impact on the disease prevention.

Impact of vaccination

To evaluate the impact of vaccination, we compare the simulation results between the cases

under different prophylactic vaccination strategies. Fig 8 shows the results of different

Table 2. Parameters for the hybrid model (education related).

Parameter Description Value Source

P The number of HCWs trained in a week 100

HCWs

[38]

T Duration of intensive training 5 days [37].

NK proportion of HCW who stopped working did not have knowledge of EVD 60% [37]

P1 the percentage of the total HCWs that had knowledge of EVD before the outbreak 10% [38–

40]

P2 the percentage of HCWs who had knowledge of EVD before the outbreak and

attended intensive training during the outbreak

90% [38–

40]

P3 the probability for unprepared and unskilled frontline HCW to attend pre-

deployment training during the outbreak

95% [38–

40]

https://doi.org/10.1371/journal.pone.0254044.t002
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coverage rate of HCWs prophylactic vaccination and the cases without intervention. The

model output shows that when 10% HCWs get vaccination (about 115 HCWs which make up

0.0016% of the population in Sierra Leone), 54% cases and 51% deaths of the general popula-

tion can be avoided. In other word, 67.33 cases can be averted by per vaccination when 10%

HCWs get vaccination. When 30% HCWs get vaccination, 26.17 cases can be averted by per

vaccination. Besides, vaccination of 50% HCW helps reduce 16.38 cases per vaccination

(Table 4).

Fig 6. Comparison of the output of the simulation result with published data. A: Comparison of cumulative Ebola

cases reported by the WHO with model output. B: Comparison of cumulative Ebola mortality reported by the WHO

with model output. C: Comparison of cumulative HCW Ebola cases reported by Fang et al. with model output.

https://doi.org/10.1371/journal.pone.0254044.g006
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Fig 7. Impact of pre-deployment training of different proportions of HCWs on cumulative Ebola cases and

deaths. A: Cumulative cases. B: Cumulative deaths.

https://doi.org/10.1371/journal.pone.0254044.g007

Table 3. Impact of pre-deployment training for healthcare workers on cumulative cases and deaths among overall population caused by EVD.

Parameter 95% of HCW 96% of HCW 97% of HCW 98% of HCW 99% of HCW 100% of HCW

Number trained 1095 1107 1118 1130 1141 1153

Cumulative cases 14452 9838 8668 7360 5377 4206

Proportion of cases averted vs no intervention - 31.93% 40.02% 49.07% 62.79% 70.90%

Cumulative deaths 4041 2754 2398 2034 1480 1164

Proportion of deaths averted vs no intervention - 31.85% 40.66% 49.67% 63.38% 71.20%

The 95%CI for the output in the table are shown in S1 File.

https://doi.org/10.1371/journal.pone.0254044.t003

Fig 8. Impact of prophylactic vaccination of different proportions of HCW on cumulative Ebola cases and deaths.

A: Cumulative cases. B: Cumulative deaths.

https://doi.org/10.1371/journal.pone.0254044.g008

Table 4. Impact of vaccination for healthcare workers on cumulative cases and deaths among overall population caused by EVD.

Parameter No vaccination 10% of HCW vaccinated 30% of HCW vaccinated 50% of HCW vaccinated

Number vaccinated 0 115 345 575

vaccination efficiency/per vaccination - 67.33 26.17 16.38

Cumulative cases 14452 6708 5423 5031

Proportion of cases averted vs no vaccination - 53.58% 62.48% 65.19%

Cumulative deaths 4041 1980 1607 1489

Proportion of deaths averted vs no vaccination - 51.00% 60.23% 63.15%

The 95%CI for the output in the table are shown in S1 File.

https://doi.org/10.1371/journal.pone.0254044.t004
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The efficiency of vaccination also depends on the time estimated for completing vaccina-

tions among certain group. However, the duration time of vaccinating the certain group is also

influenced by the infrastructural challenges, the time the vaccination taken for onset of protec-

tion and also the degree of dispersion of the people who need vaccination.

Comparing to the previous study result that effective EVD vaccination rates were estimated

to be 42% for the overall population [44], our study shows that only 10% HCWs (0.00016% of

the whole population) get vaccination can be effective. The simulation results indicate that i.

vaccination of a small proportion of populations can effectively reduce the size of epidemic.

Also, vaccinating HCWs can be seen as an effective method to eliminate virus transmission

channels between HCWs and the infected people. ii. The aversion rates in Table 4 show that

vaccination of 30% and 50% HCW have similar effect. This result indicates that the effects of

vaccination on HCW are limited with the expansion of vaccination coverage. iii. Considering

the efficiency of vaccination, vaccination of 30% HCW is recommended.

Impact of combination of vaccination and education

To explore the effects of the combined interventions, we vary the pre-deployment training rate

from 95% to 100% at a step of 1% while the values of the vaccination coverage vary from 10%

to 50% with increments of 20%. The simulation results which collected the epidemic cases and

deaths of scenarios with respect to different intervention combinations is demonstrated in Fig

9. Fig 10 depicts the median, interquartile and 1.5 times the interquartile range of the output

under different intervention strategies. To further investigate the effects of the segregation

strategies, Fig 11 illustrates the simulation results by the aversion rate of cumulative incidence

and mortality compared with the no intervention scenario.

Respectively, Tables 5 and 6 shows the cases, deaths as well as the proportion of cases

averted versus the cases under no intervention scenarios, corresponding to the result in Figs 9

and 10. It can be seen that the number of cumulative cases decreases gradually with the

increase of education rate under the same coverage proportion of vaccination, shown in Figs 9

and 10. However, the influence of vaccination under the synergistic interventions showed dif-

ference with the single intervention cases. The cumulative cases and deaths do not keep a

remarkable decrease with the increase of vaccination rate. According to Table 5, with P3 kept

the rate of 0.96, the proportion of cases averted are seen to be 31.93% without vaccination as

Fig 9. Impact of combined interventions on cumulative Ebola cases and deaths. The combined intervention refers to combination of education and

vaccination strategies. A: Cumulative cases. B: Cumulative deaths.

https://doi.org/10.1371/journal.pone.0254044.g009
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Fig 10. The median, interquartile range and 1.5 times the interquartile range of the simulation output under different combination of interventions.

A-D: Cumulative cases under different combination of intervention strategies. E-H: Cumulative deaths under different combination of interventions.

https://doi.org/10.1371/journal.pone.0254044.g010
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compared to 67.27% with 10% of HCW getting vaccination. 35.34% cases averted by the inter-

vention of increasing 10% HCW to get vaccination.

In contrast, vaccination of 50% of HCW with 96% HCW getting trained results in an aver-

sion of 70.54% cases which means that only 3.27% cases can be averted by increasing 40%

HCW to get vaccination. Comparing with the without education intervention scenarios,

53.58% of cases can be averted when 10% of HCW get vaccination while 62.48% of cases can

be averted with 30% vaccination proportion. A 8.9% increase is seen between the ‘10% vacci-

nation’ scenario and ‘30% vaccination’ scenario. With the further increase of the coverage of

pre-deployment training, the downward shift in the overall Ebola cases and deaths becomes

less pronounced among the vaccination rate of 10%, 30% and 50%.

Based on Fig 11, Tables 5 and 6, there are several conclusions to be made concerning these

results. i. The combination of interventions for Ebola prevention and protection is more effec-

tive than the single intervention. ii. Although the combination of interventions is seen to

add substantial benefit to the epidemic prevention and protection, the efficiency of expanding

vaccination coverage shows a decline when the education strategies are implemented simulta-

neously. iii. Unlike the recommended strategies given in the “Impact of vaccination strategies”,

vaccination of 10% of HCW can achieve a higher efficiency than vaccination of 30% of HCW.

In other word, with the intervention of expanding the coverage of pre-deployment training for

Fig 11. Impact of combined interventions on aversion rate compared with no vaccination scenario. A: Cases aversion rate. E-H: Deaths aversion

rate.

https://doi.org/10.1371/journal.pone.0254044.g011

Table 5. Impact of combined interventions on cumulative Ebola cases and the proportion of cases averted versus no vaccination scenarios.

Vaccination rate P3

0.95 0.96 0.97 0.98 0.99 1

0 14452 9838 8668 7360 5377 4206

Proportion of cases averted vs no vaccination 0 31.93% 40.02% 49.07% 62.79% 70.90%

0.1 5475 4730 3771 2837 2035 1131

Proportion of cases averted vs no vaccination 62.11% 67.27% 73.91% 80.37% 85.92% 92.17%

0.3 5291 4396 3345 2624 2045 1199

Proportion of cases averted vs no vaccination 63.39% 69.58% 76.85% 81.84% 85.85% 91.70%

0.5 5009 4258 3770 2625 1966 1345

Proportion of cases averted vs no vaccination 65.34% 70.54% 73.91% 81.84% 86.40% 90.69%

The 95%CI for the output in the table are shown in S1 File.

https://doi.org/10.1371/journal.pone.0254044.t005
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HCW, 10% of vaccination rate is recommended in the process of Ebola epidemic prevention

and protection.

Discussion and conclusion

Given that analysis mentioned above, we draw the following conclusions: i. The hybrid model-

ing and simulation method we propose in this work can be used to construct the hybrid simu-

lation method model based on the specific epidemic case. ii. The hybrid simulation model fits

the dynamics of 2014–2015 Ebola epidemic outbreak in Sierra Leone. iii. Our proposed hybrid

model can simulate the implementation of synergistic interventions which effectively slow

down the spread of epidemic. iv. Vaccination of 10% HCW in addition to intensified training

on HCWs during the outbreak has a significant impact and the further increase of the vaccina-

tion rate results in little improvement.

Our model combines differential equations for the virus transmission among subpopula-

tions in the epidemic affected area and ABM for the management of HCWs. Such muti-scale

modeling method was also used in meta-population dynamics modeling [45]. In order to min-

imize the randomness raised by ABM, we build the ABM for a small group of people who are

targeted to the interventions and have a significant impact on disease dynamics. Our model

depicts the individual details selectively and keeps the structure of the SEIR model which

ensures the ability to model in large scale population. Additionally, the number of HCWs be

exposed plays the role of linking between the two modeling level. This model, engaging various

dynamics at different scales, outlines a promising method for large-scale system modeling.

The combination of SEIR model and ABM has many advantages: i. Intuitive dynamic repre-

sentation by using data acquired in the real world and modeling at different scales (e.g., spatial

scales and temporal scales). [46] ii. Modeling individual activities, rare events and the virus

transmission process with large scale population. Compared with the earlier studies of model-

ling the epidemic dynamics, our model overcomes the following difficulties: i. The processes

occurring at different scales, individual activities, rare events, sophisticated population struc-

ture must be altogether taken into account [45] in the real landscape. However, the traditional

SEIR framework-based models or its variants based on differential equations [28, 47, 48]

assuming a well-mixed population have difficulty to gain an insight of the model details. ii.

The computational difficulty of modeling large scale population (7017144 people were taken

into account in our study).

The hybrid model proposed in our study provides a reliable method that helps to analyze

the impact of healthcare workers related policies and give efficient combination strategies

Table 6. Impact of combined interventions on cumulative Ebola deaths and the proportion of deaths averted versus no vaccination scenarios.

Vaccination rate P3

0.95 0.96 0.97 0.98 0.99 1

0 4041 2754 2398 2034 1480 1164

Proportion of deaths averted vs no vaccination 0 31.85% 40.66% 49.67% 63.38% 71.20%

0.1 1622 1399 1115 841 601 333

Proportion of deaths averted vs no vaccination 59.86% 65.38% 72.41% 79.19% 85.10% 91.76%

0.3 1569 1308 992 774 603 353

Proportion of deaths averted vs no vaccination 61.17% 67.63% 75.45% 80.85% 85.08% 91.26%

0.5 1484 1261 1019 778 581 330

Proportion of deaths averted vs no vaccination 63.28% 68.79% 74.78% 80.75% 85.62% 91.83%

The 95%CI for the output in the table are shown in S1 File.

https://doi.org/10.1371/journal.pone.0254044.t006
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aiming to protect the high-risk populations against Ebola virus. Comparing our modeling

result with other epidemic model which analyzed the intervention policies implemented for

disease control and prevention, our work illustrates new findings in the presence of consistent

conclusions with the earlier works. Ebola cases reported from Sierra Leone in HCWs repre-

sented a much higher estimated cumulative incidence in HCWs than in non-HCWs [49]

which lead to a high efficiency of HCW-targeted vaccination [27]. Robert A et al. used a math-

ematical transmission model to explore the relative contribution of HCW and the community

to transmission and claimed that ahead-of-time vaccination for 30% of HCW is effective for

disease control [26] which is consistent to our conclusion given for the case that only vaccina-

tion strategies are considered. Besides, we also take into account the intervention of education

and lead to the conclusion that vaccination of 10% HCW can be effective when pre-job train-

ing for HCW is also considered, corresponding to the statement that the achievement of one

policy objective may preclude success with others [17]. Alexis Robert’s et al. predicted that

10% of HCW getting prophylactic vaccination would result in 7685 cases and 3155 deaths and

30% of HCW getting vaccination would result in 5776 cases and 2358 [25] compared with our

model output 6709 cases and 1987 deaths with 10% vaccination rate and 5425 cases and 1611

deaths with 30% vaccination rate. The difference between these two output mainly owing to

the difference in the validation data. In our study, we do not differentiate between confirmed,

probable and suspected cases and regard them as cases in our model for the SEIR model does

not explicitly distinguish these three type of cases. Alexis Robert’s model only considered the

confirmed cases. However, our study come to a similar conclusion for vaccination strategies

for the tend of the impact of vaccination are similar in these two models. Our model can be

seen as an extension or a calibration for the earlier study.

We have identified several improvements that can be made which can be further studied.

Firstly, the infected HCWs and the infected general population were assumed to be homoge-

neous in our study. In the real world, this assumption cannot be held fully which may lead to a

bias between the model output and the real data. Secondly, the relation between vaccination

policy and education policy is much more sophisticated in the real world than that in our

model. The coupling relationship between these two policies can be further investigated.

To conclude, our hybrid simulation model successfully presents the dynamics of EVD

transmission in Sierra Leone and evaluates the impact of different interventions. Our hybrid

modeling and simulation method can be applied to understand the individual dynamics dur-

ing epidemic spreading in large scale population. Besides, such models with heterogeneous

human mobility can help inform disease control strategies for different infectious disease.
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