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Immunity against Mycobacterium tuberculosis (Mtb) is highly complex, and the outcome
of the infection depends on the role of several immune mediators with particular temporal
dynamics on the host microenvironment. Autophagy is a central homeostatic mechanism
that plays a role on immunity against intracellular pathogens, including Mtb. Enhanced
autophagy in macrophages mediates elimination of intracellular Mtb through lytic and
antimicrobial properties only found in autolysosomes. Additionally, it has been
demonstrated that standard anti-tuberculosis chemotherapy depends on host
autophagy to coordinate successful antimicrobial responses to mycobacteria. Notably,
autophagy constitutes an anti-inflammatory mechanism that protects against
endomembrane damage triggered by several endogenous components or infectious
agents and precludes excessive inflammation. It has also been reported that autophagy
can be modulated by cytokines and other immunological signals. Most of the studies on
autophagy as a defense mechanism against Mycobacterium have been performed using
murine models or human cell lines. However, very limited information exists about the
autophagic response in cells from tuberculosis patients. Herein, we review studies that
face the autophagy process in tuberculosis patients as a component of the immune
response of the human host against an intracellular microorganism such as Mtb.
Interestingly, these findings might contribute to recognize new targets for the
development of novel therapeutic tools to combat Mtb. Actually, either as a potential
successful vaccine or a complementary immunotherapy, efforts are needed to further
elucidate the role of autophagy during the immune response of the human host, which will
allow to achieve protective and therapeutic benefits in human tuberculosis.
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INTRODUCTION

Mycobacterium tuberculosis (Mtb) has killed nearly 1000 million
people since the XIX century. And although an affordable and
effective treatment is available to fight this pathogen, tuberculosis
(TB), together with COVID19 in 2020-2021, is the leading cause
of death from a single infectious agent. Therefore, improvement
of treatment is included among the central aims of developing
new strategies against this disease. Accordingly, it has been
proposed that supplementing anti-TB therapy with host
response modulators will augment standard TB treatment
(Madhur et al., 2016). However, the immune response against
Mtb is highly complex. The outcome of TB infection depends, at
least in part, on several immune mediators that display critical
temporal roles on the host microenvironment (Sodhi et al., 1997;
Ottenhoff et al., 1998; Chen et al., 2008; Pasquinelli et al., 2009;
Cooper, 2010; Jurado et al., 2012; Mayer-Barber et al., 2014;
Pellegrini et al., 2021). It has been suggested that host-directed
therapies (HDT) could be untapped strategies as complementary
therapies against TB, augmenting the host defences and/or
limiting tissue damage associated with infection (Martıńez-
Colón and Moore, 2018; Wan et al., 2018; Xiong et al., 2018).
In this context, autophagy arises as an attractive therapeutic
target, but currently available data on autophagy in TB patients
and the potential clinical use of this cellular process remain
insufficient. Here, we review the current knowledge of autophagy
as a potential complement of anti-TB chemotherapy.
AUTOPHAGY

Autophagy is an evolutionarily-conserved cellular process that
mediates the lysosomal degradation of cytoplasmic components
and damaged organelles, allowing eukaryotic cells to generate
nutrients under starvation conditions and maintain cellular
homeostasis. Three types of autophagy have been described:
chaperone-mediated autophagy, microautophagy, and
macroautophagy, herein referred to as autophagy (Jacomin
et al., 2018). Importantly, autophagy participates in innate and
adaptive immunity against intracellular pathogens, including
Mtb (Gutierrez et al., 2004). Actually, increased autophagy in
macrophages eliminates intracellular Mtb via lytic and
antimicrobial mechanisms of the autolysosomes (Ponpuak
et al., 2010). Notably, autophagy constitutes an anti-
inflammatory mechanism that protects against endomembrane
damage triggered by several endogenous components or
infectious agents and precludes excessive inflammation
(Castillo et al., 2012; Deretic and Levine, 2018). The autophagy
process can be modulated by different immunological mediators
(Djavaheri-Mergny et al., 2006). In particular, critical cytokines
regulate both positively and negatively the autophagic response
affecting survival of mycobacteria (Harris et al., 2007). Besides,
the importance of the host autophagy process to manage an
effective antimicrobial effect on mycobacteria during
chemotherapy has been reported (Kim et al., 2012). A better
understanding of the connections between autophagy and the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
immune response may have wide applications given that the
pathology accompanying several diseases involves some form of
inflammation (Deretic and Levine, 2018).
AUTOPHAGY IN TB PATIENTS

Most of the studies that investigated autophagy as a defense
mechanism against Mtb have been accomplished in murine cell
lines, mouse models, primary culture cells, or human cell lines
infected with the pathogen. However, very limited information
regarding the study of the autophagic response in TB patients is
available. During the past decade, we have studied Mtb-induced
autophagy in two populations of patients with active disease,
classified according to their T cell responses to the bacterium.
Briefly, high responder (HR) TB patients displayed significant T
cell proliferation and IFN-g production against Mtb-antigen
(Ag), while low responder (LR) TB patients displayed weak or
no T cell responses to the antigen (Pasquinelli et al., 2004).
Interestingly, we detected the highest autophagy levels in healthy
donor (HD)´s monocytes whereas the lowest quantities were
observed in monocytes from LR patients (Rovetta et al., 2014).
Accordingly, it has been reported that Beclin-1, a signaling hub
of autophagy, is increased in alveolar macrophages from TB
patients and that those individuals with higher Beclin-1 levels
achieve faster bacillary sterilization (Yu et al., 2016). Recently, we
observed that autophagy levels decreased significantly in
neutrophils from TB patients as compared to HD (Pellegrini
et al., 2020). Moreover, a direct correlation between neutrophil
numbers and TB severity was detected (Pellegrini et al., 2020).
Given that during Mtb infection autophagy protects against
massive inflammation (Deretic and Levine, 2018), the reduced
levels of autophagy observed in neutrophils from TB patients
could be related to the frequent harmful inflammatory responses
that take place during active disease.

Effect of the Diversity of Mtb Strains on
the Autophagy Process
The immune response to Mtb is influenced by factors both from
the host and the bacteria (Sousa et al., 2020). Accordingly, some
studies have demonstrated a differential ability of different Mtb
strains to modulate autophagy. In particular, Li et al. described
that clinical isolates from Mtb differ in their ability to induce
autophagosome formation (Li et al., 2016). The authors
investigated the effect of more than 180 Mtb clinical isolates on
the autophagy process in THP-1 macrophages. Interestingly,
they observed that the capacity of inducing autophagy varied
significantly among different isolates. Notably, patients infected
with Mtb strains that displayed reduced autophagy-inducing
ability showed more severe disease and displayed adverse
treatment outcomes, suggesting that an autophagy deficiency
induced by Mtb isolates augmented the risk of poor clinical
outcomes in TB patients (Li et al., 2016).

The majority of the studies on the host immune response to
Mtb infection have been performed using the laboratory strain
H37Rv (see Tables 1–3). Moreover, most of the research
January 2022 | Volume 11 | Article 820095
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performed with samples from TB patients does not consider the
original Mtb strain that infected the host. Thus, investigation of
the effect of Mtb genetic variability on the modulation of the
autophagy process is of great interest.

Genome sequence analysis has identified seven phylogeographic
Mtb lineages: four referred to as evolutionarily “ancient” and
three as “modern”. Interestingly, the “modern” strains were
shown to display high virulence (Romagnoli et al., 2018).
Therefore, Romagnoli et al. investigated the impact of the genetic
diversity of Mtb strains on the host innate immune response by
evaluating the autophagy response. Remarkably, the authors
demonstrated that modern Mtb strains are able to avoid the
autophagy machinery affecting the regulation of specific T-
cell responses.

Together, the studies described above might suggest a possible
limitation of using autophagy as a novel therapy against Mtb.
However, on the other side, it was proposed that analyses of
autophagosome formation by diverse clinical isolates of Mtb
might contribute to the evaluation of TB outcomes (Li et al.,
2016). Furthermore, the study of the genetic variability ofMtb on
autophagy modulation was proposed to have translational
implications for the design of HDT, which should consider
both the autophagic and immunogenic properties of the
lineage of the Mtb candidate. Accordingly, by studying 681 TB
patients Sousa et al. showed that Mtb isolates from cases with
mild disease stimulate strong cytokine responses in contrast to
bacteria from patients with severe TB, indicating that Mtb strains
manipulate host-pathogen interactions to drive variable TB
severities. Then, they suggest to include Mtb genetic diversity in
the development of HDT (Sousa et al., 2020). Finally, external
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
autophagy modulators might act as adjuvants in Mtb treatment
helping to overcome autophagy regulation/inhibition by
pathogenic strains.

Immunological Mediators
Autophagy is a process recognized to be regulated by cytokines
and other immunological signals (Djavaheri-Mergny et al., 2006;
Harris et al., 2007; Goletti et al., 2013; Chen H. et al., 2015;
Pelissier-Rota et al., 2015; Martıńez-Colón and Moore, 2018;
Wan et al., 2018). TNF was originally shown to induce
autophagy in Ewing sarcoma cells (Djavaheri-Mergny et al.,
2006). Recently, TNF was demonstrated to promote the
autophagy of Mtb-infected osteoclasts and constrain the
apoptosis of mature osteoclasts (Liu W. et al., 2020).
Furthermore, Liu et al. suggest that their data describe a novel
osteoarticular TB-activated cytokine network where autophagy
could have an important role in the pathogenesis of
osteoarticular TB, pointing out the use of drugs such as TNF
for treating this type of TB (Liu W. et al., 2020). Moreover, IFN-g
augments the autophagy process in macrophages and other cells
(Gutierrez et al., 2004; Goletti et al., 2013), whereas IL-4, IL-10
and IL-13 inhibited autophagy in murine macrophages and
human cell lines (Harris et al., 2007; Park et al., 2011).
Accordingly, it has been demonstrated that autophagy
participates in the immune response of TB patients against
Mtb, in direct association with the specific IFN-g levels
secreted against the pathogen (Rovetta et al., 2014). By
blocking Mtb-Ag-induced IFN-g, a marked reduction of
autophagy was measured in monocytes from HR patients. In
contrast, the incorporation of small quantities of IFN-g
TABLE 1 | Immunological mediators modulate the autophagy process during active tuberculosis.

Immunological
mediators

Effect on
autophagy

Validation in human samples Mtb strain Host origin Reference

TNF Stimulation Osteoarticular pathological tissues from TB
patients. Validated with osteoclasts from HD

Mtb H37Rv and H37RvDeis Chinese men cohort from Wuhan Liu G. et al.
(2020)

IFN-g Stimulation Monocyte-derived macrophages from HD M. bovis BCG Not detailed Gutierrez
et al.
(2004)

Monocytes from TB patients and HD Mtb H37Rv whole cell lysate Argentine population cohort from Buenos
Aires

Rovetta
et al.
(2014)

Monocytes from TB patients and HD Mtb H37Rv, Mtb H37RvDRD1
and Mtb H37Rv whole cell
lysate

Argentine population cohort from Buenos
Aires

Tateosian
et al.
(2017)

IL-4, IL-10, IL-13 Inhibition Human cell lines U937 and THP-1;
Monocyte-derived macrophages

M. bovis BCG Not detailed Harris et al.
(2007)

IL-17A Stimulation Monocytes from TB patients and HD Mtb H37Rv, Mtb H37RvDRD1
and Mtb H37Rv whole cell
lysate

Argentine population cohort from Buenos
Aires

Tateosian
et al.
(2017)

IL-26 Stimulation Monocyte-derived macrophages from HD Mtb H37Ra and M. leprae Not detailed Dang et al.
(2019)

SLAMF1 Stimulation Neutrophils from TB patients and HD Mtb H37Rv whole cell lysate Argentine population cohort from Buenos
Aires (Caucasian, American Indian, Asian)

Pellegrini
et al.
(2020)

PGE2 Stimulation Monocytes and neutrophils from TB
patients and HD

Mtb H37Rv whole cell lysate Argentine population cohort from Buenos
Aires (Caucasian, American Indian, Asian)

Pellegrini
et al.
(2021)
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significantly augmented autophagy in LR patients (Rovetta et al.,
2014). We also demonstrated that IL-17A increased autophagy
in infected monocytes from HR patients (Tateosian et al., 2017).
However, in severe LR TB patients’ monocytes, a defect in the
ERK1/2 signaling pathway prevented an augment in autophagy
caused by IL-17A. Both IFN-g and IL-17A increased the levels of
autophagy in HR patients, promoting mycobacterial killing
(Tateosian et al., 2017). Besides, Dang et al. demonstrated that
addition of IL-26 to human M. Leprae infected monocytes
induced autophagy (Dang et al., 2019). Furthermore, LC3-
positive autophagosomes were mainly detected in lesions from
T-lep (tuberculoid) as compared with L-lep (lepromatous)
patients, indicating that M. Leprae dampened autophagy in
human cells as an immune escape mechanism (Silva et al.,
2017). It has been reported that type I glycoproteins such as
SLAMF1 recruit molecules like Beclin-1 to the phagosome,
participating in the connection to the cellular machinery that
controls bacterial killing (Berger et al., 2010; Ma et al., 2012).
Accordingly, we recently demonstrated that human neutrophils
express SLAMF1 upon Mtb-stimulation, a protein that
colocalized with LC3B+ vesicles (Pellegrini et al., 2020).
Furthermore, SLAMF1 activation augmented neutrophil
autophagy induced by Mtb, and neutrophils from TB patients
showed reduced levels of SLAMF1 and lower amounts of
autophagy against Mtb as compared to HD (Pellegrini et al.,
2020). The eicosanoids, a family of potent biologically active lipid
mediators, modulate immune responses in Mtb infection and
have been suggested as potential HDT targets. Actually,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
manipulation of PGE2 and/or 5-LO was suggested to
potentially counteract the type I IFN response in patients with
severe TB as a HDT against Mtb (Mayer-Barber et al., 2014).
Recently, we reported that PGE2 promotes autophagy in
monocytes and neutrophils cultured with Mtb . We
demonstrated that PGE2 augmented the percentage of LC3+

neutrophils and monocytes upon Mtb-Ag stimulation.
Furthermore, the exogenous addition of this eicosanoid
triggered a functional autophagy flux both in monocytes and
lymphocytes from TB patients (Pellegrini et al., 2021). Thus,
according to our results, PGE2 might be a new target for the
development of novel therapeutic tools to fight Mtb. Table 1
summarizes the data mentioned in this section.

Non-Coding RNAs in Autophagy
Modulation During Human Tuberculosis
In recent years, there was a growing body of evidence suggesting
a critical role of non-coding RNAs (ncRNAs) in regulating host-
pathogen interactions and immunity. A variety of pathogens,
including Mtb, have been described to modulate the expression
of these modulators by evading host responses and influencing
the outcome of the infection (Staedel and Darfeuille, 2013; Zhang
et al., 2019). Actually, some authors have proposed that
miRNAs/lncRNAs regulation is an important strategy
employed by Mtb to survive inside host cells (Kundu and Basu,
2021). Mycobacteria can alter the host miRNA expression profile
for their benefit, affecting antimicrobial responses, cytokine
production, metabolism and inflammation, among other
TABLE 2 | Non-coding RNAs influence autophagy outcome during human tuberculosis.

ncRNA Target Effect on
autophagy

Validation in human samples Mtb strain Host origin Reference

miR-30A Beclin-1 Inhibition Expression in alveolar macrophages,
association with clinical data and treatment

Mtb H37Rv (in vitro functional experiments) Chinese cohort
from Beijing

Chen Z.
et al.
(2015)

miR144* DRAM2 Inhibition Expression in PBMCs and lung and lymph
nodes biopsies from TB patients, functional
experiments in human MDMs

Mtb H37Rv (in vitro functional experiments)
miR144* expression confirmation upon
infection with Mtb H37Ra, M. bovis BCG and
M. abscessus

Samples from
Korea Biobank
Network

Kim et al.
(2017)

miR-125b-
5p

DRAM2 not
described

Expression in primary monocytes from TB
patients

Mtb H37Rv Chinese cohort
from Xinjiang

Liu G. et al.
(2020)

CircAGFG1 miRNA1257
- Notch

Stimulation Expression and correlation with autophagy/
apoptosis in alveolar macrophages

Not detailed Chinese cohort
from Chilin

Shi et al.
(2020)

miRNA-
27a

Cacna2d3 Inhibition miRNA expression profiles from PBMCs of
patients with active pulmonary TB

Mtb H37Rv Chinese cohort
from Shanghai

Liu et al.
(2018)*

lncRNA-
EPS

– Inhibition Negative correlation with LC3 levels in
monocytes from TB patients

– Chinese cohort
from Wuhan

Ke et al.
(2020)**

PCED1B-
AS1

miR-155 Stimulation Expression in peripheral monocytes from TB
patients, functional experiments in human
MDMs

Mtb H37Rv (in vitro functional experiments) Chinese cohort
from Xinxiang

Li et al.
(2019)

miR-155 ATG3 Inhibition Expression and functional experiments in
Mtb-infected human dendritic cells

Mtb H37Rv Samples from
Blood Bank of
University "La
Sapienza", Italy

Etna et al.
(2018)

miRNA-
889

TWEAK Inhibition miRNA next-generation sequencing (NGS)
analysis in PBMC of RA patients with latent
TB infection, functional experiments in
human PBMCs

Mtb H37Rv and M. bovis BCG (in vitro
functional experiments)

Taiwanes cohort
from Taichung

Chen et al.
(2020)
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processes (Yang and Ge, 2018). Moreover, the differential
miRNA and lncRNA profiles detected in clinical samples from
TB patients have led to an increasing interest in their use as TB
biomarkers (Sabir et al., 2018). Importantly, some of these TB-
associated ncRNAs play a role in the regulation of autophagy
during Mtb infection, although most of these studies have been
performed in murine models or cell lines.

Few reports have explored the role of these intermediaries in
autophagy by using primary human cells from TB patients
(Table 2). Accordingly, by analyzing GSE 29190 and
GSE34608 miRNA microarray datasets Kim et al. detected that
only 10 miRNA were differentially expressed in peripheral blood
mononuclear cells (PBMCs) and biopsies from lungs and lymph
nodes from TB patients, for example, miR-144* (Kim et al.,
2017). Importantly, the authors demonstrated that miR-144*
targets DRAM2 (an interactor of Beclin 1 and UVRAG) in
human monocytes/macrophages, thus affecting autophagosome
formation (Kim et al., 2017). Consequently, DRAM2 levels were
decreased in monocytes from TB patients as compared to HD
(Liu G. et al., 2020).

Furthermore, some studies have used primary cells obtained
directly from the site of infection. Accordingly, Chen et al.
demonstrated that miR-30A suppresses the elimination of
intracellular Mtb by inhibiting autophagy. In fact, a higher
concentration of miR-30A in alveolar macrophages from
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
bronchoalveolar lavage (BAL) of smear-positive patients were
detected in comparison with smear-negative patients and HD.
Moreover, the expression of this miRNA decreased upon anti-TB
treatment (Chen Z. et al., 2015). Besides, circAGFG1 was found
to upregulate autophagy in Mtb–infected alveolar macrophages
by targeting miRNA-1257, which in turn suppresses Notch
signaling pathway (Shi et al., 2020).

Notably, Li et al. observed that PCED1B-AS1, a 410-bp
lncRNA, is down-regulated in TB patients, which is
accompanied by increased autophagy (Li et al., 2019). This
function is carried out through binding with miR-155 to
control its expression. This observation is concordant with a
previous work demonstrating that Mtb can manipulate cellular
miR-155 expression to regulate Atg3 levels, decreasing
autophagosome formation in human dendritic cells (Etna
et al., 2018). Finally, one study has explored the role of miR-
889 and autophagy to maintain latent TB status (Chen et al.,
2020). Chen et al. observed an increased miR-899 expression in
latent TB individuals as compared to HD, which was
significantly restored after anti-TB therapy. The authors
identified the cytokine TWEAK as the target of miR-899,
which inhibits autophagy and maintains mycobacterial survival
in a human TB granuloma model (Chen et al., 2020). In
summary, the increasing evidence found in murine models and
cell lines demonstrates that some miRNAs/lncRNAs directly
TABLE 3 | SNPs in autophagy-related genes associated with TB. List of SNPs in genes codifying for proteins involved in autophagy that have been found to be
associated with increasing or decreasing susceptibility to active TB.

Gene SNP Alleles Consequence Association with
TB

Mtb strain involved Host origin Reference

IRGM1 rs9637876 C>T Non Coding
Transcript
Variant

Decreased
susceptibility

Mtb Euro-American lineage (and
not TB caused by by M. africanum
or M. bovis)

Patients cohort from Ghana (Ahsanti,
Eastern and Central regions)

Intemann
et al.
(2009)

IRGM1 rs10065172 C>A,T Missense
Variant

Increased
susceptibility among
African Americans

Not determined Caucasian and African American
patients cohort from Boston, EEUU,

King et al.
(2011)

IRGM1 rs10065172
rs10051924
rs13361189

C>A,T
T>A,C
T>C

Missense
Variant
Non Coding
Transcript
Variant

Increased
susceptibility

Chinese patients cohort from
Hubei Han region

Not determined Lu et al.
(2016)

IRGM1 rs4958846 T>C 2KB Upstream
Variant

Decreased
susceptibility

Not determined Chinese patients cohort from Hubei
Han region

Yuan et al.
(2016)

ULK1 rs12297124
rs7300908

G>T
C>T

Intron Variant
Intron Variant

Associated with
latent TB

Not determined Patients cohort from Seattle, EEUU,
self-identified as black or Asian

Horne et al.
(2016)

LAMP1 rs9577229 C>T Missense
Variant

Increased
susceptibility

Mtb Beijing genotype Indonesian patients cohort from
Jakarta and Bandung regions

Songane
et al.
(2012)

MTOR rs6701524 A>G Intron Variant Increased
susceptibility

Mtb Beijing genotype Indonesian patients cohort from
Jakarta and Bandung regions

Songane
et al.
(2012)

P2X7 SNP000063002
(−762)

C>T 762b
Upstream
Variant

Decreased
susceptibility

Not determined Patients cohort from the western
region of Gambia

Li et al.
(2002)

P2X7 1513A-C A>C Missense
Variant

Increased
susceptibility

Not determined Cohorts of refugee and australian
patients with northern european and
vietnamese ancestry

Fernando
et al.
(2007)

VAMP8 rs1010 T>C /
T>G

3 Prime UTR
Variant

Increased
susceptibility

Not determined Chinese patients cohort from Hubei
Han region

Cheng
et al.
(2019)
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participate in the host response to Mtb by modulating
autophagy. These studies were partially confirmed in human
studies as we summarized here. Then, ncRNA-based
therapeutics appear as an attractive target to directly modulate
autophagy as novel HDT. However, an efficient drug design
including ncRNA should be protected from degradation and
successful delivery to the site of infection has to be ensured
(Singh et al., 2021).

Genetic Association Studies in
Autophagy-Related Genes
Host and environmental factors have been shown to play a role in
the pathogenesis and development of TB. For thousands of years,
Mtb has co-evolved with humans, suggesting a powerful
evolutionary pressure between the host and pathogen genomes,
and therefore a strong impact of genetic factors on the development
of different TB stages (Campbell and Tishkoff, 2008; Comas et al.,
2013; Galagan, 2014). One particularly powerful approach to assess
the role of some processes in humans is to investigate whether
genetic variation influences susceptibility to infection. Single
Nucleotide Polymorphisms (SNPs) are believed to be the true
source of variability among humans (Pacheco and Moraes, 2009;
Singh et al., 2017) and it is expected that the variants in genes
involved in the pathogen-host interaction are influencing resistance/
susceptibility to the disease.

Some reports have investigated SNPs in genes involved in the
autophagy process, leading to important evidence about its role
during human TB. For instance, IRGM1, a GTPase effector
protein that plays an essential role in autophagy induction, has
been studied in several populations. Rs9637876 IRGM1 SNP was
associated with decreased susceptibility to TB caused only by
Mtb Euro-American lineage in Ghana (Intemann et al., 2009).
Moreover, the rs10065172 SNP within its coding region was
associated with susceptibility to TB among African-Americans
and in a Chinese population (King et al., 2011; Lu et al., 2016).
Interestingly, this polymorphism was previously associated with
mortality of patients with severe sepsis (Kimura et al., 2014).
Furthermore, Yuan et al. identified three polymorphisms in the
IRGM1 promoter region and found that CT genotype of
rs4958846 decreased the risk of pulmonary TB in comparison
with TT genotype (Yuan et al., 2016). In addition, Horne et al.
selected ULK1 and GABARAP as candidate genes since they play
fundamental roles in autophagy initiation and autophagosome
maturation, respectively. Thus, they identified 2 SNPs in ULK1
(rs12297124 and rs7300908) in Asian participants that were
significantly associated with latent TB. Moreover, ULK1-
deficient cells had increased Mtb replication, decreased TNF
response to stimulation, and impaired autophagy. Intriguingly, a
previous work had investigated 22 polymorphisms of 14
autophagy genes in an Indonesian population. The authors
found associations between SNPs in LAMP1 and MTOR genes
and infection with Mtb Beijing genotype, but all those
associations lost statistical significance after correction for
multiple testing (Songane et al., 2012). Similarly, no
associations were found in ATG5 (rs2245214, c.574-
12777G>C) and NOD2 (rs2066844, c.2104C>T) genes in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Romania (Cucu et al., 2017). Besides, 2 SNPs in the P2X7 gene
coding for a plasma receptor that mediates ATP-induced
autophagy, both in the promoter (Li et al., 2002) and the
coding region (Fernando et al., 2007) were found to be
associated with protection against TB. Finally, Cheng et al.
found that rs1010 SNP in the VAMP8 gene is significantly
associated with pulmonary TB in a Chinese Han population
(Cheng et al., 2019). More comprehensive studies are required to
evaluate the contribution of autophagy in different contexts
because these studies are influenced by ethnicity, infection
strains, polygenicity, among others. Table 3 resumes the
results cited in this section.

Autophagy Activating Compounds for
Human Host Directed Therapy in
Tuberculosis
Autophagy modulation may signify a promising HDT strategy to
fight human TB (Yuk et al., 2009). However, the clinical knowledge
about HDT implementation is still widely deficient. HDT
compounds combined with current TB drugs could shorten and
improve treatments against Mtb infection. Therefore, autophagy
activation by newborn drugs, soluble mediators or agents
administered alone or in combination with anti-TB antibiotics
still requires long-term clinical trials. Nevertheless, preclinical
studies revealed that repurposing licensed drugs with a
demonstrated potential to induce autophagy showed an effective
therapeutic manipulation of host immunity against Mtb infection.
These drugs displaying safe and pharmacokinetic profiles are
promising for the evaluation of their effectiveness in randomized
and controlled clinical trials. Accordingly, several clinical trials
(clinicaltrilas.gov) have been conducted implementing dietary
supplementation of the immunomodulator Vitamin D3. Innate
immunity mediated by Vitamin D3 conferred protection against
infection withMtb (Yuk et al., 2009). Interestingly, Vitamin D3 and
autophagy are physiologically linked via human cathelicidin
(hCAP-18/LL-37), which activates transcription of autophagy-
related genes such as Beclin-1 and Atg5 (Yuk et al., 2009). In the
last ten years, numerous trials were performed supplementing
Vitamin D3 as an adjunctive therapy. Nevertheless, differences in
these trial outcomes have hampered the interpretation about
Vitamin D3 efficacy as HDT for TB. Moreover, the impact of
Vitamin D3 as an adjunctive therapy displayed no effect on culture
conversion and sputum smear negativization (Ralph et al., 2013;
Daley et al., 2015; Tukvadze et al., 2015; Ganmaa et al., 2017; Wu
et al., 2018). However, genetic variation in the Vitamin D receptor
gene was suggested to modify the effects of adjunctive Vitamin D3
in TB patients (Jolliffe et al., 2016). Additionally, multiple
randomized trials suggested that adjunctive Vitamin D treatment
has limited effect in improving clinical and immunologic outcomes
during active Mtb infection despite evidence that specific VDR
polymorphisms are predictive of sputum conversion time (Xia et al.,
2014; Grobler et al., 2016; Zittermann et al., 2016). A phase 2 clinical
study in TB patients (NCT02968927) assess the anti-inflammatory
effects of Vitamin D3 in combination with 3 other adjunctive HDT
compounds: CC-11050, Everolimus and Auranofin (Wallis et al.,
2021). The CC-11050 is a type 4 phosphodiesterase inhibitor that
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displays anti-inflammatory properties (Subbian et al., 2016a;
Subbian et al., 2016b); Everolimus, a serine/threonine-protein
kinase mTOR inhibitor, is an autophagy inducer (Cerni et al.,
2019) and Auranofin is an anti-inflammatory gold salt with
antimicrobial activity against Mtb (Harbut et al., 2015). The
preliminary results confirmed that CC-11050 and Everolimus are
safe and well tolerated indicating a potential benefit to current TB
treatment (Wallis et al., 2021). In other studies, Metformin, the
AMPK-activating antidiabetic drug, was shown to inhibit the
intracellular replication of Mtb, restrict disease immunopathology
and enhance conventional anti-TB drug efficacy (Singhal et al.,
2014). Moreover, in a pre-clinical study metformin administration
in combination with either isoniazid (INH) or ethionamide (ETH)
was reported to decreaseMtb load in lungs of infected mice (Singhal
et al., 2014). Besides, the combined therapy including metformin
with standard TB antibiotics was associated with beneficial
consequences on clinical outcomes in TB (Singhal et al., 2014).
Furthermore, an ongoing randomized clinical trial (NCT-
CTRI/2018/01/011176) is evaluating the safety and efficacy of
metformin as an adjunct used with rifampicin (RIF), INH, ETO
and pyrazinamide (PZA) in patients with pulmonary TB
(Padmapriyadarsini et al., 2019). Moreover, a new clinical trial in
TB/HIV co-infected patients (Phase II A randomized, open-label
trial, NCT04930744) is analyzing the effect of metformin with
standard anti-TB drugs plus anti-retroviral therapy (Sullivan and
Ben Amor, 2012; Marupuru et al., 2017).

Besides, statins (cholesterol-lowering drugs that inhibit b-
hydroxy b-methylglutaryl-CoA (HMG-CoA) reductase) reduce
the risk of coronary disorders and hypercholesterolemia.
However, statins can also influence immunologic responses
(Parihar et al., 2014). In pre-clinical models, statins such as
Simvastatin, Rosuvastatin and Atorvastatin decreased Mtb load by
enhancing autophagy, phagosomal maturation, and reducing
pulmonary pathology, which suggests a potential role for statins
as HDT in TB (Lobato et al., 2014; Parihar et al., 2014).
Consequently, statins are among the most promising HDT agents
for TB. The purpose of the numerous clinical trials that are currently
undergoing is to assess the security, tolerance and pharmacokinetics
of Pravastatin (NCT03882177) or Atorvastatin (NCT04147286) as
adjunctive therapy when combined with standard TB drugs in
adults infected with Mtb. There is still a long way to go by
investigating many other repurposing licensed drugs with the
ability to induce autophagy. For example, the mucokinetic
Ambroxol (Choi et al., 2018), the antidiarrheal drug Loperamide
(Lee, 2015; Juárez et al., 2016), the anti-protozoal drug Nitazoxanide
(Lam et al., 2012), the anti-seizure drug Carbamazepine and
Valproic acid (Schiebler et al., 2015), psychotropic or
antidepressant drugs such as Nortriptyline, Fluoxetine and
Prochlorperazine edisylate and Fluoxetine (Sundaramurthy et al.,
2013; Stanley et al., 2014) are some of the drugs with potential use as
HDT for TB treatment.

Manipulating Autophagy to Improve
Vaccination Against TB
The role of autophagy as a defense mechanism allows to
hypothesize that vaccines that increase the autophagic response
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
might be more effective in preventing the reactivation of latency
or the acquisition of active TB. In fact, autophagy could be key in
the development of effective TB vaccines since this process has
the potential to improve the host immune response against Mtb.
The attenuated Mycobacterium bovis Bacillus Calmette-Guérin
(BCG) is effective in protecting against pulmonary and
extrapulmonary TB in children up to 10 years old (Sterne
et al., 1998; Abubakar et al., 2013), but protection against the
pulmonary form of TB in adults remains highly controversial
(Hatherill et al., 2020). BCG is able to affect the activation of T
cells by evading phagosome maturation, autophagy, and by
reducing MHC-II expression of antigen-presenting cells
(APCs) (Russell, 2001). To avoid these deficiencies, an
autophagy-inducing, TLR-2 activating C5 peptide from
Mtb-derived CFP-10 protein was overexpressed in BCG in
combination with Ag85B. This recombinant BCG was
shown to induce stronger and longer-lasting immunity,
increasing protection in a TB murine model (Khan et al.,
2019). Furthermore, overexpression of Ag85B in BCG induced
autophagy in APCs and increased immunogenicity in mice,
indicating that vaccine efficacy can be augmented by
enhancing autophagy-mediated antigen presentation
(Jagannath et al., 2009). Therefore, exacerbation of autophagy
could contribute to increase the immune response conferred
by BCG. Interestingly, BCG was also genetically modified to
improve its immunogenicity by replacing the urease C encoding
gene with the listeriolysin encoding gene from Listeria
monocytogenes. As a result, BCGDureC::hly (VPM1002) was
demonstrated to promote apoptosis and autophagy and
facilitate the release of mycobacterial antigens into the cytosol
(Nieuwenhuizen et al., 2017). The use of VPM1002 vaccine in
preclinical trials has been shown to be more effective and safer
than BCG (Nieuwenhuizen et al., 2017).
PERSPECTIVES

For most countries, the end of TB as an epidemic disease and a
public health problem still remains an aspiration rather than a
reality. Current treatments still depend on antibiotic therapy
and, considering the increasing antibiotic resistance, additional
therapeutic targets are becoming progressively essential. To this
end, the modulation of the autophagy process arises as an
attractive goal. However, a deeper study of the cellular
mechanisms that operate in humans are required, especially in
TB patients where the infective status of each subject might have
a special impact on autophagy modulation. As described here, at
present the information regarding the human autophagic
response during Mtb infection is very limited and precludes a
better understanding of the process. In fact, the patients’ genetic
background, among other factors, could be determinant in the
development of their specific response to Mtb infection,
influencing the effectiveness of a particular treatment.
Furthermore, most of the existing studies are focused on
autophagy in macrophages as the main target for Mtb, but this
process is implicated in a wide variety of cell types. For example,
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autophagy has been shown to be critical during T cell activation
and differentiation, central processes in TB immunity. Thus,
an expanded analysis over the autophagy process in other
cells such as lymphocytes, dendritic cells, neutrophils,
basophils, among others would be necessary. Moreover, a
broad examination of the immune responses of TB patients
following an autophagy-modulating treatment would be
extremely informative.

Based on the mentioned findings reported by several authors
and our studies, we proposed a schematic summary of the
potential role of autophagy in TB patients according to their
immunological response to Mtb (Figure 1). Briefly,
immunological mediators such as cytokines, lipid mediators or
ncRNAs, influence autophagy in TB patients with different
immunological response to the bacteria. Implementing novel
HDT strategies such as the modulation of autophagy as adjuvant
therapy or novel vaccines might improve the treatment of TB
patients. Current and future studies on autophagy-based
therapeutic candidates may contribute to possible therapeutic/
prevention improvements against TB, directly impacting the
lives of millions of individuals infected with Mtb.
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