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Abstract

The establishment of diatom communities depends on environmental factors such as the

type of substrate and geographic conditions that influence the dispersal processes of these

organisms. The main goal of this study was to evaluate the similarity between diatom com-

munities associated with the macroalgae Prasiola crispa (Lightfoot) Kützing in relation to

spatial distance from six sampled sites located in the South Shetland Islands, Maritime Ant-

arctica. The diatom flora associated with Prasiola crispa was represented by 23 species dis-

tributed in 15 genera. Pinnularia australoschoenfelderi Zidarova, Kopalová & Van de Vijver,

Luticola austroatlantica Van de Vijver, Kopalová, S.A.Spaulding & Esposito, Luticola

amoena Van der Vijver, Kopalová, Zidarova & Levkov, Pinnularia austroshetlandica (Carl-

son) Cleve-Euler and Psammothidium papilio (D.E. Kellogg et al.) Kopalová & Zidarova

were the most abundant species in our samples, together they represented 68% of the total

number of individuals collected. There was great similarity and abundance of the diatom

communites among the sampled points, which resulted in the absence of a linear relation-

ship pattern with distance between sampling points. We conclude that distance was not a

factor of differentiation of Antarctic diatom communities associated with terrestrial green

macroalgae. This suggests that Antarctic environments may have unique characteristics

with homogeneous abiotic factors, at least in relation to this substrate.
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Introduction

The diatom species diversity of the Antarctic is limited by extreme conditions, and studies

have led to the conclusion that not all Antarctic islands share a similar flora, although the over-

all diversity of this flora on the continent is limited compared to tropical and subtropical

regions [1]. Furthermore, many of the diatom taxa recently described are endemic to Antarc-

tica and not cosmopolitan [2,3]. Regarding the study of diatom communities, in recent years, a

more refined taxonomy has revealed a large number of new species in Antarctica [4–16].

Among biological substrates where microalgal communities may grow, terrestrial macro-

scopic algae, though unexpected at first, may be included. The class Trebouxiophyceae

includes a group of morphologically heterogeneous eukaryotic green algae that occur mainly

in soil and continental waters. The genus Prasiola Meneghini belongs to this class and includes

marine, terrestrial and continental species. Prasiola crispa (Lightfoot) Kützing is a terrestrial

species of Antarctica, which usually grows on moist soils that are fertilized by bird guano,

being more abundant inside and around penguin colonies. These macroalgae tolerate repeated

cycles of freezing and thawing during the year, as well as high levels of UV radiation during

the summer [17]. At the micro-scale level, the substrate of periphytic communities may pro-

vide more than an inert surface, since its physical and chemical characteristics can influence

the composition of the community and algal biomass [18–20].

Studies that address distribution patterns often document a decrease in species similarity as

spatial distance increases between communities [21–23]. This reduction of similarity is attrib-

uted to some major factors such as environmental conditions and species dispersal processes.

The influence of spatial distance can be summarized as follows: the larger the distance between

sites, the larger are the environmental variations and, therefore, the difference between species

tends to be also larger. Spatial distance is a factor that influences the displacement of species

across smaller distances, once that this factor increases the chances of survival, and therefore is

different from migration which applies over greater distances [21]. The main goal of this study

was to evaluate the similarity between diatom communities associated with P. crispa spatially

distributed in six sites located in the South Shetland Islands, Antarctica. The proposed hypoth-

esis is that the larger the spatial distance between sampling points, the smaller the similarity of

diatom communities associated with P. crispa.

Material and methods

During the Brazilian Antarctic Expeditions XXXIII (2014–2015) and XXXIV (2015–2016) (Fig

1), samples of P. crispa where obtained from Ardley Island, Halfmoon Island and King George

Island (Copacabana, Punta Plaza, Steinhouse and Voureal), in the Maritime Antarctica

(Table 1). All collections were authorized by the Secretariat of the Interministerial Commis-

sion for Sea Resources (SECIRM) and endorsed by the Brazilian Government’s Ministry of the

Environment, under the activities regulated by the Brazilian Antarctic Program

(PROANTAR).

The samples of P. crispa were stored in sealed plastic bags and frozen for further analysis in

the Laboratory of Phycology of the Federal University of Santa Maria (UFSM), Rio Grande do

Sul, Brazil. To prepare the material, cell contents and organic matter of the samples were

removed by oxidation with hydrogen peroxide (H2O2) and potassium permanganate

(KMnO4) [24]. After washing with distilled water, permanent slides were mounted using

Naphrax (refractive index of 1.74, Brunel Microscopes Ltd, Chippenham, Wiltshire, United

Kingdom), Qualitative and quantitative analyses were carried out under a Leica DM750 optical

microscope. The quantitative analyses were performed with approximately 80 valves for each

sample, because the abundance is very small in the substrate. Thus, it was necessary to prepare
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several permanent slides to make observations under this criterion. Species represented by

only one or two valves in each sample were excluded from the study to avoid potential contam-

inants [25–27]. A specific bibliography for identification of polar diatoms was used [1, 8–11,

14–15, 28–45].

For data analysis, the spatial distance in meters between each pair of sampling sites was cal-

culated based on the registered geographical points. Thus, a geographic distance matrix

(Table 2) was constructed for further comparison using the matrices from biological similarity

of relative abundance (abundance of individuals by taxa) (Table 3) and species composition

(presence and absence of taxa in points).

The estimation of species richness was based on a simple arithmetic of the estimators, with-

out consideration of standard deviations [46]. The samples sufficiency was calculated based on

the percentage of values observed in relation to the estimated values. In order to compare the

Fig 1. Map of the location of sampling points where Prasiola crispa was collected in Antarctica. Ardley Island (62˚

12’40.40"S 058˚55’38.70"W), Halfmonn Island (62˚35’41,5"S 059˚55’10,1"W) and King George Island: Copacabana

(62˚10’38,4"S 058˚26’57,3"W), Punta Plaza (62˚5’14.69"S 058˚23’35,21"W), Steinhoose (62˚04’18,9"S 058˚22’28,2"W)

and Voureal (62˚10’2,6"S 058˚17’52.0"W). The Scar Antarctic Digital Database was used as background shapefile to

produce this image and the authors follow the Licence Terms and Conditions under de CC-BY disclamer. More

information can be accessed at https://add.data.bas.ac.uk/repository/entry/show?entryid=f477219b-9121-

44d6-afa6-d8552762dc45.

https://doi.org/10.1371/journal.pone.0226691.g001

Table 1. Sample site coordinates.

Sample Site Latitude Longitude

Ardley Island 62˚12’40.40"S 058˚55’38.70"W

Halfmoon Island 62˚35’41.5"S 059˚55’10.1"W

King George Island: Copacabana 62˚10’38.4"S 058˚26’57.3"W

King George Island: Punta Plaza 62˚5’14.69"S 058˚23’35.21"W

King George Island: Steinhouse 62˚04’18.9"S 058˚22’28.2"W

King George Island: Voureal 62˚10’2.6"S 058˚17’52.0"W

https://doi.org/10.1371/journal.pone.0226691.t001
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species richness among the sample points, individual rarefaction curves were constructed, and

compared in the lowest abundance value among them (N = 41), in order to correct for differ-

ences in size and sample effort. For this purpose, the abundance data of each species were used

for each sampling point. The EstimateS program (Department of Ecology & Evolutionary Biol-

ogy, University of Connecticut, Storrs, USA) was used for analyses, with 100 randomisations

of the data [47]. Rank-abundance diagrams were constructed to describe and compare the dis-

tribution of abundance and dominance of species at each sampling site using relative abun-

dance data [48]. To describe these distributions numerically, the Pielou equitability index was

adopted, based on the Shannon diversity index.

Table 2. Distance table in meters between sampling points where Prasiola crispa was collected in Antarctica.

Sample sites Ardley Copacabana Halfmoon Punta Plaza Steinhouse Voureal

Ardley 0

Copacabana 25.17 0

Halfmoon 66.76 89.14 0

Punta Plaza 31.07 10.43 97.19 0

Steinhouse 32.74 12.37 99.00 1.98 0

Voureal 33.13 7.96 96.46 10.20 10.55 0

https://doi.org/10.1371/journal.pone.0226691.t002

Table 3. List of all observed species with their acronyms and abundance in the samples from Antarctic Islands.

Sample points

Species Acro Ard Cop Hal Pup Ste Vou

Luticola amoena Van der Vijver, Kopalová, Zidarova & Levkov A 0 0 0 0 5.57 0

Luticola austroatlantica Van de Vijver, Kopalová, S.A. Spaulding & Esposito B 0 0 0 0 2.29 0

Luticola muticopsis (Van Heurck) D.G. Mann C 0 0 0 0 1.97 1.35

Achnanthes sp. D 0 0 0 2.41 0 0

Achnanthidium aff indistinctum Van de Vijver & Kopalová E 0 1.31 0 0 10.49 0

Cyclotella meneghiniana Kützing F 0 1.74 0 0 0 0

Cocconeis pinnata var. matsii Al-Handal, Riaux-Gobin & Wulff G 2.44 44.12 10.59 12.65 7.22 11.97

Eunotia aff pseudopaludosa Van de Vijver, de Haan & Lange-Bertalot H 0 0 32.71 21.68 24.92 2.51

Fragilaria cf parva Tuji & D.M. Williams I 2.44 4.36 1.87 3.32 0.33 0

Hantzschia amphioxys f. muelleri Ts. KoBayashi J 7.32 4.36 0 0 0 0

Pteroncola carlinii Almandoz & Ferrario K 0 0 0 8.43 7.54 0

Mayamaea cf atomus (Kützing) Lange-Bertalot L 0 0 4.98 0 0 0

Navicula aff perminuta Ǿstrup M 0 2.18 0 0 0 0

Pinnularia aff microstauron (Ehrenberg) Cleve N 0 3.06 3.43 0 0 0

Pinnularia australoschoenfelderi Zidarova, Kopalová & Van de Vijver O 51.21 0 13.39 0 0 53.86

Pinnularia austroshetlandica (Carlson) Cleve-Euler P 24.39 9.61 0 4.82 6.23 17.57

Pinnularia borealis Ehrenberg sensu lato Q 12.19 0 3.12 9.94 14.75 0

Psammonthidium rostrogermainii Van de Vijver, Kopalová & Zidarova R 0 2.18 0 0 6.56 0

Psammothidium germainii (Manguin) Sabbe S 0 0 7.78 0 3.94 0

Psammothidium papilio (D.E. Kellogg et al.) Kopalová & Zidarova T 0 13.1 2.18 7.23 8.19 9.85

Pseudogomphonema kamtschaticum (Grunow) L.K.Medlin U 0 6.98 4.05 0 0 2.89

Luticola olegsakharovii Zidarova, Levkov & Van de Vijver V 0 0 8.09 20.18 0 0

Thalassiosira gracilis var.expecta G. Fryxell & Hasle X 0 7.86 7.78 0 0 0

Acro = Acronyms; Ard = Ardley; Cop = Copacabana; Hal = Halfmoon; PuP = Punta Plaza; Ste = Steinhouse; Vou = Voureal.

https://doi.org/10.1371/journal.pone.0226691.t003
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The diversity was partitioned into the alpha, beta and gamma components using Hill’s

numbers [49,50] with the “entropart” package [51] in the R program (R Foundation for Statis-

tical Computing, Vienna, Austria) (R Core Team 2017), with the approach of multiplicative

partitioning of diversity.

Jaccard and Bray-Curtis dissimilarity coefficients were used to calculate dissimilarity

between pairs of sampling points based on incidence and abundance data. An array of geo-

graphical (Euclidean) distances between points was derived from the longitude and latitude

coordinates. Subsequently, the Jaccard and Bray-Curtis distance matrices were regressed with

the geographic distance matrix using linear regressions [52].

The standard coefficients of these regression models were used as measures of the decay

rate when comparing similarity as a function of geographical distance between points [22]. In

addition, biotic distance data were correlated with the geographic distance matrix in order to

corroborate the relationship probability values based on 10,000 permutations using the Mantel

test [23]. Statistical analyses were performed in the R program using the "vegan" packages [53]

and "betapart" [54] packages, and visualised through dendrograms also using the "vegan" pack-

age [53] in R environment.

In order to verify which component of the beta diversity predominantly contributed to the

dissimilarity between sampling points, species presence/absence dissimilarity was decomposed

into substitution (turnover) and nestedness [54] components, while abundance based dissimi-

larity was decomposed into the components of abundance balanced variation and abundance

gradients [55]. For this, Jaccard and Bray-Curtis dissimilarity coefficients were used in the

"betapart" package [56] implemented in the R program. The matrices of beta diversity compo-

nents based on presence / absence and abundance were also associated to the geographic dis-

tance matrix, as previously described, in order to verify which dissimilarity component was

related to the spatial configuration of the sampling sites.

The protocols used for the present study can be accessed through protocols (dx.doi.org/10.

17504/protocols.io.6tcheiw).

Results and discussion

The diatom flora associated with Prasiola crispa at the six sampling sites were represented by

23 species (Figs 2 and 3) distributed in 15 genera. Two species are typical of marine environ-

ments: Pseudogomphonema kamtschaticum, Cocconeis pinnata var. matsii and Pteroncola carli-
nii. The presence of these species in these terrestrial sites is probably related to their proximity

to the sea.

Comparing the rarefied richness of the islands, in order to correct for sample size differ-

ences between sites, we observed that Steinhoose and Halfmoon had higher species richness,

even when comparing the same number of individuals (total abundance = 41 in both sites)

(Fig 4). Intermediate richness was observed in Copacabana and Punta Plaza, and even though

Voureal had the largest number of individuals, this site had similar rarefied richness to that of

Ardley, which had the lowest number of species and individuals (Fig 4).

The most abundant species were Pinnularia australoschoenfelderi (20.0%), Luticola austroa-
tlantica (15.5%), Luticola amoena (15.3%), Pinnularia austroshetlandica (9.2%) and Psam-
mothidium papilio (8.0%), which altogether represented 68% of the total number of

individuals collected. There was a difference in the most abundant species between each sam-

pling site (Fig 5). The dominance pattern in Steinhoose and Punta Plaza, the two areas closest

to each other in this study, was similar, with high abundance of L. austroatlantica and P. bore-
alis. These two areas also had the highest Pielou equitability values (Punta Plaza: Pielou = 0.91,

Steinhoose: Pielou = 0.89). However, L. austroatlantica, was also the most abundant at the

Diatoms associated with Antarctic green macroalgae
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other extreme of the distance gradient in Halfmoon (Pielou = 0.86). P. australoschoenfelderi
dominated in Ardley (Pielou = 0.73) and Voureal (Pielou = 0.71), while L. amoena dominated

in Copacabana (Pielou = 0.76). This species was also among the three most abundant species

in Halfmoon, Punta Plaza and Voureal.

Fig 2. Taxa of diatoms in LM. 1. Achnanthes sp, 2. Achnanthidium aff indistinctum, 3. Cyclotella meneghiniana, 4–10.

Cocconeis pinnata var. matsii, 11. Eunotia aff pseudopaludosa, 12. Fragilaria cf parva, 13. Hantzschia amphioxys, 14–

17. Luticola amoena, 18–21. Luticola austroatlantica, 22–25. Luticola muticopsis, 26. Luticola olegsakharovii e 27.

Mayamaea cf atomus. LM scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0226691.g002
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The diversity partition demonstrated that true diversity based on species richness (greater

weight on rare species), Shannon’s entropy (similar weight on common and rare species), and

Simpson index (greater weight on dominant species) showed similar response patterns, with

higher values in Steinhoose (Table 4). The alpha diversity was approximately ten species for

Fig 3. Taxa of diatoms in LM. 28–31. Navicula aff perminuta, 32–34. Pinnularia australoschoenfelderi, 35–37.

Pinnularia austroshetlandica, 38–41. Pinnularia borealis, 42–44. Pinnularia aff microstauron, 45–48. Psammothidium
germainii, 49. Psammothidium papilio, 50. Psammonthidium rostrogermainii, 51–55. Pseudogomphonema
kamtschaticum, 56–59. Pteroncola carlinii e 60. Thalassiosira gracilis var.expecta. LM scale bar = 10 μm.

https://doi.org/10.1371/journal.pone.0226691.g003
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species richness; this analysis further showed that the true beta diversity of Shannon index

(1D) was lower than the richness based on species richness (0D) and based on the inverse con-

centration of Simpson index (2D). This shows that differences between sampling sites occurred

due to the contrast between the most abundant and the rarest species at each site (Table 4).

The beta diversity values for all orders were close to 2, indicating that there are at least two

large groups of species with high substitutions.

Total dissimilarity based on the presence / absence and abundance of species between the

islands was 80.7% and 80.5%, respectively. Similarly, analyses of parity-by-pair dissimilarity,

both presence / absence and abundance based, showed similar patterns of response, but no for-

mation of distinct groups (Fig 6). The high similarity between the nearest sites, Steinhoose and

Punta Plaza, with the most distant site, Halfmoon, for presence / absence as well as for number

of individuals, should be emphasized. Copacabana had the highest average dissimilarity with

the other sampling sites based on species composition (Fig 6A), while Ardley had the greatest

dissimilarity based on abundance of individuals (Fig 6B).

The decomposition of beta diversity based on the presence / absence of species showed that

the species substitution component was the most important relative to dissimilarity among the

sampling sites (73.1%). The relative importance of the nesting component was only 7.6%,

Fig 4. Rarefaction curves of the diatom species associated with Prasiola crispa for the sampled sites. The vertical line

represents the point of comparison between the islands. Confidence intervals were omitted for better visualization.

Ard = Ardley; Cop = Copacabana; Hal = Half Moon; PuP = Punta Plaza; Ste = Steinhoose; Vou = Voureal.

https://doi.org/10.1371/journal.pone.0226691.g004
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corroborating the beta diversity values slightly higher than two shown by the partitioning anal-

ysis of diversity in the alpha, beta and gamma components. These results were strongly influ-

enced by the observed species richness in each sampling site, as well as the high number of

exclusive species (26.1% of the total species). In addition, only 26.1% of the species occurred in

more than 50% of the sites.

Community similarity between sampling sites was not related to the geographical distance

between them, based on incidence (t = -0.509, p = 0.619) and abundance (t = -1.041,

p = 0.3167) (Fig 7A and 7D). Species substitution components (t = 0.610, p = 0.553) and nest-

ing (t = -0.403, p = 0.693) of incidence-based beta diversity were also not related to geographi-

cal distance (Fig 7B and 7C). Similarly, beta diversity components based on the abundance

from balanced variation of abundance (t = 0.180, p = 0.860) and abundance gradients

Fig 5. Plots of abundance (proportional [pi]) of the diatom species associated with Prasiola crispa for the sampled

sites. The abbreviations refer to the names of the species in Table 2.

https://doi.org/10.1371/journal.pone.0226691.g005

Table 4. Multiplicative partitioning of the diatom species diversity associated with Prasiola crispa for the sampled sites.

Islands Components of diversity

Ard Half Cop PuPl Stei Vou A β γ
0D 6 12 12 9 13 7 10 2.3 23
1D 3.73 8.45 6.68 7.31 9.75 3.95 6.38 1.92 12.26
2D 2.91 6.17 4.22 6.32 7.92 2.88 4.44 2.01 8.92

Ard = Ardley; Half = Halfmoon; Cop = Copacabana; Pupl = Punta Plaza; Stei = Steinhouse; Vou = Voureal; true beta diversity of Shannon (1D); species richness (0D);

concentration of Simpson (2D).

https://doi.org/10.1371/journal.pone.0226691.t004
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(t = 0.654, p = 0.525) were not related to the geographical distance between sampling sites (Fig

7E and 7F). The Mantel tests, based on 10.000 permutations, corroborated the probability val-

ues for this lack of relationship between the similarity matrix and dissimilarity components

with the between-sites geographical distance. The lack of a positive or negative similarity rela-

tionship with geographical distance occurred due to the high similarity in composition and

abundance among the most distant sampling points. In other words, even very close or very

distant sites have high similarity in diatom composition and abundance, which resulted in the

absence of a linear relationship pattern withdistance. It is possible, however, that if the dis-

tances between samples were greater, a clearer relationship might have been observed. Accord-

ing to [57], when studying phytoplankton, at small scales in general there is no effect of the

distance, and environmental conditions are more significant. The composition of macroscopic

organisms in a habitat seems to be more affected by geographical distances than microorgan-

isms, which is mainly shaped by local conditions [58]. On the other hand, [59], in diatom com-

munities of microbial mats of Antarctic ponds within a similar distance range as our study,

found considerable spatial variation that could not be explained by local physical and chemical

variables. They concluded that the history of dispersal and colonization of diatoms played an

important role in their community structures.

Fig 6. Average dissimilarity between sampling points of the diatom species associated with Prasiola crispa for the

sampled sites based on the presence / absence of species (A) and abundance (B).

https://doi.org/10.1371/journal.pone.0226691.g006
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Prasiola crispa is found in drainage lines in Antarctica and because it is ornithocoprophi-

lous, presents considerable biomass mainly around penguin colonies [60], which makes nutri-

ent availability for both the green algae and the surrounding diatom community higher, when

compared to e.g. epilithic habitats. The lack of differentiation between the communities with

geographic distance could also be attributed to the lower climatic variation in Antarctica com-

pared to tropical and subtropical regions. In a previous study on three marine red macroalgae

in Newfoundland Bay, Antarctica [61], the biophysical-chemical characteristics of each sam-

pling site affected the diatom communities more markedly than the different species of host

macroalgae or even depth of sampling. Moreover, the diversity of the epiphytic community of

diatoms associated with red macroalgae collected near the sea ice of Cape Evans, Antarctica,

showed that species diversity decreased as the depth below the sea ice increased, whereby the

dominant taxa had also changed in relation to depth [62, 63].

Our study showed that even with marked distance between sampling points, there was high

similarity in the composition and abundance of the diatom communities, which resulted in

the absence of a linear relationship pattern with distance. However, it was possible to demon-

strate that regarding dominant species, the closest sampling sites were more similar. Thus, the

inexpressive differentiation of the communities showed that P. crispa as a substrate seems to

be an important factor for the selection of the existing epiphytic community.

There have been an increasing number of studies reporting changes in the community of

Antarctic organisms due to global warming. Some penguin communities are experiencing

population declines as a result of rising temperatures [64] and moss communities are increas-

ing on King George Island, colonizing fields in uncovered areas due to shrinking glaciers [65].

Fig 7. Similarity of Jaccard (A) decomposed into components of substitution (B) and nesting (C), and similarity of Bray-Curtis (D) decomposed

into components of balanced variation of abundance (E) and abundance gradients (F) of the diatom community associated with Prasiola crispa
related to the geographical distance between the sampling sites.

https://doi.org/10.1371/journal.pone.0226691.g007
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Decreases in microbial diversity patterns has also been reported in regions of Patagonian and

other Antarctic lakes, mainly found to decrease in diatom diversity [66,67], as well with evi-

dence for the decline of phytoplankton [68] and bacterioplankton [69]. Such aspects lead us to

reflect on how much the diatom communities as well as the substrate of the present study, P.

cripa can be affected since it grows in humid places with high nutrient input. If we eleminate

these factors, we would also affect the existence of this macroalgae species and, consequently,

that of the associated aerophytic diatom community. Although we have not observed any

exclusive communities present in this substrate we believe that by affecting the stability of P.

crispa in terrestrial wetlands we would also affect the dispersal of associated diatoms.
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