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Abstract: Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe 

therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. 

Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infec-

tions. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been 

published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Research-

ers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the 

development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the de-

sign of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for 

phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named de-

polymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorham-

nosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins 

encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. 

In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnos-

tics and biotechnology in general. 
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1. INTRODUCTION 

At the beginning of the 20th century, Frederick Twort [1] 
and Felix d’Hérelle [2] as bacteriophage discoverers, pro-
posed phage utilization as natural antibacterial agents. At 
that time, at least seven commercial phage preparations to 
combat skin abscesses, ulcers and other topical infections, 
had been manufactured. Unfortunately, the lack of knowl-
edge of phage biology, non-standardized manufacturing pro-
cedures and storage of phage products made them considera-
bly unstable, which gave rise to reasonable distrust among 
physicians and clinicians [3, 4]. Studies on bacteriophages in 
Western Europe and the United States were discontinued, 
when era of antibiotics started and when penicillin discovery 
by Alexander Fleming became a fact. Drug therapy intro-
duced in the large-scale was remarkably successful, there-
fore, the interest in phage research/applications has been 
diminished. However, drug extensive application have re-
sulted in the massive increase of bacterial drug resistance 
and the scientists have turned back to the idea of phage utili-
zation as potential alternative tool against pathogens. Nu-
merous publications mostly from Eastern Europe and the 
Soviet Union have proved the efficacy of phages in eradica-
tion of most common bacteria causing various infections in 
humans and animals [5-10]. Nowadays, endolysins, exopoly-
saccharidases, and other phage-encoded proteins, are  
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extensively explored as effective natural antibacterials in 
food product preservation, in animal feeding, and in plant 
cultivation [11-14]. Due to the high specificity of host recep-
tors’ recognition by phage particles, bacterial viruses have 
also been successfully utilized as a clinical diagnostic tool 
and in detection of potential foodborne pathogens [15, 16]. 
The rapidly developing synthetic biology creates new possi-
bilities in the design of genetically modified phages or re-
combinant phage-derived particles to improve their applica-
tion in therapy, diagnostics and biotechnology [17, 18]. In 
this review, we concentrate on current data regarding emerg-
ing approaches in use of unmodified and engineered bacte-
riophages and phage-derived products. 

2. BACTERIOPHAGES 

Bacterial viruses (phages) can be found in each environ-
ment inhabited by their bacterial hosts. In aquatic systems, 
the abundance of phage population was estimated as 104 to 
108 virions per ml, and as 109 virions per 1 g in the soil and 
sediment particles [19]. Currently, over 5500 different bacte-
riophages, having genetic information encoded by dsDNA, 
ssDNA, ds RNA and ssRNA, have been discovered, [20]. 
Phage life cycle can be carried out by several schemes: lytic, 
lysogenic, pseudolysogenic and chronic [19]. The intensive 
research on phage biology and genetics allows for increase 
the phage potential in different areas of human activity. The 
main promises are associated with phage and phage-encoded 
proteins utilization in: (i) phage typing; (ii) phage therapy; 
(iii) food decontamination; (iv) medical devices disinfection;  
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(v) bacterial detection; (vi) drug delivery (vehicles) and 
(vii) molecular biology. The novel and old approaches in 
bacterial diagnostics (typing, detection, separation) have 
been recently presented in several papers [15, 16, 18, 21, 22]. 
Generally, diagnostic techniques have been divided into 
three types: (i) phage amplification assay – detection of liv-
ing cells only; (ii) phage as a recognition agent; and (iii) de-
tection of intracellular components after phage-induced lysis. 
Described methods include the utilization of: (i) natural 
phages in standard plating assay and determination of plaque 
forming units, or phage detection by labelled anti-phage an-
tibodies; (ii) genetically modified phages carrying additional 
reporter genes (LRP, GFP, β-Gal) or tagging peptides for 
further staining, and detection based on bioluminescence, 
fluorescence, enzymatic reactions or by electrochemical and 
mass sensors; (iii) measurement of ATP or bacterial enzymes 
(α- and β-Gal) release, and analysis of culture media compo-
sition changes. The particular characteristics and possibilities 
in phage-derived protein application in bacterial diagnostics, 
as well as in bacterial eradication, will be discussed below 
following the section dedicated to virulent particles.  

The general characteristics of phage utilization in bacte-
rial infection treatment are summarized in (Table 1) and dis-
cussed in detail in the following description. 

The most abundant group of lytic phages belong to tailed 
dsDNA viruses (the Caudovirales order), thus the main in-
terest in phage application, past and present, has focused on 
three families: (i) Myoviridae; (ii) Siphoviridae, and (iii) 
Podoviridae [3, 23, 24]. The high efficiency of lytic phage 
therapy is based on its two principal properties: specificity in 
recognition of appropriate complementary receptors on sus-
ceptible host, and bacterial cell disintegration after a short 
viral life cycle leading to fast eradication of the targeted 
pathogen [23, 25-30]. 

Most bacteriophages may infect limited number of strains 
among a single bacterial species. The ability to affect is con-
ditioned by highly specific interaction between host cell sur-
face receptors and phage attachment structures [19, 31]. 
Phages may recognize several bacterial cell structure com-
ponents as their receptors: outer membrane proteins, pepti-
doglycan (PG), teichoic acids, oligosaccharides, lipopolysac-
charide (LPS), capsule, flagellum, type IV fimbriae, and sex 
pilus [28, 29]. The limited host range of individual phage 
may be considered as an advantage because phages eliminate 
only the targeted strain, protecting normal flora colonizers 
unrelated to pathogen species. 

Nowadays the accessibility and usability of synthetic bi-
ology allow us to modify natural phages or design engi-
neered viruses exhibiting desired attributes. Lu and co-
workers [32] have presented lytic Enterobacteria phage T7 
expressing biofilm-degrading enzyme enable to hydrolyse 
exopolysaccharide compounds (EPS) in bacterial biofilm 
during propagation. Such modified phage could be applied in 
eradication of monoculture or as phage-cocktail to treat mix-
cultured biofilm. The primary concern for using engineered 
organisms is that it may affect the balance between natural 
viruses and bacterial hosts in the environment. However, 
Gladstone and co-authors [33] have proved that from an evo-
lutionary point of view engineered phages carrying addi-
tional genes (for example of EPS depolymerase) lost the 

ability to compete with non-modified phages specific to the 
same host, where the latter could propagate freely and much 
faster on host cells in which EPS had been degraded by 
phage enzyme originated from the engineered competitor.  

The virulence capacity of lytic phages conditions the an-
tibacterial efficacy. Phage generation time, including the 
duration of efficient adhesion, latent period and progeny 
release, is an important element. The second aspect is the 
rate of phage population growth, what means the number of 
phage particles formed during one life cycle. The high ad-
sorption rate to particular bacteria, large burst size, and short 
generation time define a strong antibacterial efficacy. Never-
theless variation of certain conditions influence on phage 
virulence. One of them is the current state of the bacterial 
culture, because predators may propagate most intensively 
on exponentially grown bacterial population. The second 
aspect is the multiplicity of infection (MOI), which is 
fundamental for phage titre-dependent killing [34-36]. Phage 
titre increases only in the presence of bacterial host, there-
fore the efficient concentration of phage particles may be 
achieved and maintained at the site of infection, until it is 
needed. Because of these features, bacteriophages are named 
as self-replicating antibacterial agents [37]. This advantage 
allows the reduction of curative doses. Unfortunately, lytic 
phage propagation sometimes leads to undesirable conse-
quences. Rapid release of cellular toxins or disintegration of 
Gram-negative outer membrane in a short period may result 
in a systemic inflammatory response and serious side effects 
on the host [38].  

These concerns have led researchers to explore non-lytic 
filamentous phages replicating in bacteria by permanent slow 
release of progeny, without cell lysis [39, 40]. Additionally, 
ssDNA phages are accessible objects for gene manipulation. 
There are several studies discussing the application of natu-
ral and modified Enterobacteria phage M13, Ike and fd and 
Pseudomonas phage Pf3 [17, 40-43]. The group of Hagens 
[40, 42] have proposed the utilization of modified M13 and 
Pf3 filamentous phages to overcome problems related to 
sudden bacterial lysis and to enhance antibacterial efficacy 
of phages. The researchers have designed phages that carry 
additional genes of the restriction endonuclease or holin sys-
tem, causing bacterial genome degradation or inner mem-
brane dysfunction, respectively, but preventing cell disinte-
gration. Engineered phage Pf3 was designed in two versions: 
replicating non-lytic and non-replicating. The latter version 
prevented undesirable release of genetically modified viruses 
to the environment, while forcing the application of high 
MOI. Lu and Collins [44] have proposed to combine stan-
dard drug treatment with engineered antibiotic-enhancing 
phage M13mp18 carrying the lexA3 gene, a repressor of the 
SOS bacterial response. It turned out that such a combination 
significantly enhanced the efficacy of ciprofloxacin, gen-
tamicin and ampicillin in drug-resistant strains, regardless of 
antibiotic mode of action. Similar improvement have been 
obtained by the application of M13mp18 carrying other 
genes encoding crucial elements of bacterial cell biology 
(SoxRS – responsible for cellular susceptibility to superox-
ide; CrsA – regulator of glycogen synthesis; OmpF – an 
outer membrane protein conditioning drug penetration). M13 
phages designed by Lu and Collins [44] were able to im-
prove antibiotic activity against drug-resistant strains, 
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Table 1. Major Features of Phages Applied As Antimicrobial Agents. 

Phage Type Characteristics Advantages Limitations 

Natural phages 

lytic dsDNA Caudovirales 
bacteriolytic; phage titer-dependent 

killing; lytic efficacy: MOI, burst 

size, growth rate; effective on grow-

ing cells 

self-replicating agent; 

concentration increase at the infection site; 

low MOI is usually sufficient 

endotoxin (LPS) and other toxins 

release during cell lysis possible; 

inflammatory response may occur 

non-lytic ss DNA Inoviridae 
Enterobacteria phage M13 

Pseudomonas phage Pf3 

filamentous phages; do not lyse the 

host during progeny release 

self-replicating agent; prevention of endotoxin (LPS) 

and other toxins release during cell lysis 

no visible changes in viability of in-

fected bacterial culture; relatively fast 

occurring of resistance by modifica-

tion/loss of pili receptors 

temperate dsDNA Siphoviridae 
Pseudomonas phages DMS3, MP22, 

D3112 

integration into bacterial genome; do 

not lyse the host during lysogenic 

infection 

inhibition of bacterial virulence factors (bacterial group 

motilities, biofilm formation); 

host gene disruption by phage integration possible; 

prevention of endotoxin (LPS) and other toxins release 

during cell lysis 

possible threats of unexpected conse-

quences related to random integration 

into bacterial chromosome (horizontal 

gene transfer) 

Genetically modified phages designed to reduce endotoxin release and to enhance antibacterial potency 

lytic ds DNA Podoviridae 
Enterobacteria phage T7 

self-replicating agent; 

carrying additional genes of biofilm-degrading enzyme 

self- replicating agent with concern of 

recombinant phage release to envi-

ronment; 

non-lytic ss DNA Inoviridae 
Enterobacteria phage Ike and fd 

Enterobacteria phage M13 

Pseudomonas phage Pf3 

self- or non-replicating agent; 

receptor domain modification extending host range; 

carrying additional genes of: 

toxic proteins, restriction endonucleases, holins, repres-

sors of SOS system or other factors enhancing antibiotic 

activity 

self- replicating agent with concern of 

recombinant phage release to envi-

ronment; 

non- replicating agent needs high MOI 

value (≥ 1000); 

relatively fast occurring of resistance 

by modification/loss of pili receptors; 

temperate ds DNA Siphoviridae 
Enterobacteria phage λ 

phage display system, gene transfer, bio-detection, bio-

control, phage vaccines, therapeutic binding agents; 

specificity similar as antibodies, used as inhibitors or 

agonists 

non- replicating agent, immunogenic 

 

persistent cells and biofilm-forming cells. Another study 
dealt with problems associated with the very limited spec-
trum of activity found in natural phages, related to high 
specificity of receptor recognition. Marzari has created the 
different set of proteins forming pili-recognizing phage fi-
bres, made of two filamentous phages Ike and fd, resulting in 
an extended host range of the engineered phage. A very in-
teresting approach was the idea of natural temperate phages 
application for modification of bacterial virulence, presented 
in some reports [45-47]. By integration into the bacterial 
genome, temperate Pseudomonas phages DMS3, MP22, 
D3112 were able to inhibit the expression of virulence fac-
tors such as bacterial group motility (swarming and twitch-
ing motility) or biofilm formation, which in consequence 
significantly reduce the mortality of Pseudomonas-infected 
animals. This phenomenon may be related to the host gene 
disruption by phage integration, CRISPR/Cas system inter-
action or to mechanisms independent of host background. 
Another way, to use temperate phages, has been described in 

detail in a recent review focusing on lambda phage display 
systems [48]. In that paper, the authors have discussed the 
advantages and capabilities of phage display utilization as a 
convenient tool for gene transfer, vaccine design and deliv-
ery, as well as bio-sensors, bio-detectors and bio-control 
agents. 

The application of phages as antimicrobials, regardless of 
the nature of the virus (lytic, non-lytic, temperate, engi-
neered), must always take into consideration the host anti-
phage resistance mechanisms. In the phage-bacteria co-
evolution, the latter has developed numerous adaptive strate-
gies preventing viral infection. The anti-phage resistance 
mechanisms have been described recently in several com-
prehensive reviews [14, 49, 50]. There are four major types 
of mechanisms blocking phage propagation at crucial life 
cycle steps: (i) inhibition of phage adsorption; (ii) the restric-
tion-modification (RM) system and clustered regularly inter-
spaced short palindromic repeats (CRISPR) for phage DNA 
degradation; (iii) the superinfection exclusion system (Sie) 



1760    Current Medicinal Chemistry, 2015, Vol. 22, No. 14 Drulis-Kawa et al. 

preventing DNA integration; and (iv) the abortive infection 
system (Abi) blocking phage transcription, translation or 
virion assembly. The most common resistance mechanism is 
based on phage adsorption prevention, which may be 
achieved by loss, modification or masking of a targeted bac-
terial receptor. Phages as a permanent partner of bacteria 
have been evolving simultaneously and adapt to new recep-
tors or produce specific enzymes degrading saccharides that 
mask primary receptors (discussed below). 

Anti-phage bacterial resistance can be acquired by muta-
tion and selection, or/and horizontal gene transfer. The tem-
perate phage acquisition or conjugation process may lead to 
acquisition of resistance genes. Finally, protecting mecha-
nisms can be shed vertically from parental to daughter cells. 
Induction and propagation of temperate phage or the plasmid 
transmission condition the horizontal dissemination of resis-
tance genes [19]. Several papers have reported the preva-
lence and probability of phage resistance development and it 
varied from a low-frequency level (10-8) during phage ther-
apy, to 10-4–10-8 in some in vitro analyses [51-53]. The dis-
crepancy between clinical observations and in vitro results 
can be attributed to the immune system activity, particular 
phage virulence or environmental condition variation [17, 
54, 55]. To prevent possible resistance development among 
bacterial population, the phage cocktails usually composed 
of 3-5 types of viruses are applied in routine phage therapy 
[19, 38]. The cocktails are the most often designed to contain 
phages infecting through different cell receptors. It increases 
targeting and overcomes the possible alteration in cell sur-
face epitopes associated with phage adsorption [38, 53]. Un-
fortunately, no precise official guidelines have been made 
yet, despite the fact that standardized methods of phage 
cocktails preparation have already existed [56, 57]. It has to 
be emphasise that detailed comprehensive genetic and phe-
notypic characterization of therapeutic phages has to be per-
formed, to detect the unfavourable features such as toxic or 
harmful enzyme production or presence of lysogeny encod-
ing genes [34]. Nowadays the new generation sequencing 
methods allow to study enormous number of phage genomes, 
however, the big part of phage genes are still described as 
hypothetical, putative proteins with predicted or unknown 
function. The deliberations about the advantages and limita-
tions of phage application as antimicrobials in comparison to 
antibiotics, including pharmacodynamic (PD) and pharma-
cokinetic (PK) aspects have been discussed in detail else-
where [58]. 

3. PHAGE-ASSOCIATED POLYSACCHARIDE DE-

GRADING ENZYMES 

Polysaccharide-degrading enzymes, also referred to as 
polysaccharide depolymerases, are virion-associated proteins 
employed by phages to enzymatically degrade the capsular 
(alginate, hyaluronan, polysialic acid, amylovoran) or struc-
tural (LPS, PG) polysaccharides of their hosts, at the initial 
step of a tightly programmed phage infection process (Fig. 
1). 

The ability to overcome these structures by enzymes with 
polysaccharide depolymerization activity allows some 
phages to infect encapsulated E. coli K1 and K95 serotypes 
[59, 60], V. cholerae O139 [61], P. aeruginosa , P. putida 

and P. agglomerans strains [62-64], specifically recognize 
the bacterial polysaccharide and then degrade it, which is 
essential to gain access to the appropriate receptors responsi-
ble for irreversible phage attachment to the bacterial cell. 
Others phages, including for instance phage P22 and phage 
9NA, hydrolyse the outer LPS layer to provoke DNA ejec-
tion and consequently further progress of the infection proc-
ess, without the need for using other additional receptors [65, 
66]. Most phage depolymerases can occur in two forms: (i) 
as an integral component of a virion particle, usually in the 
form of small tailspikes or fibre proteins attached to the base 
plate, though they may also be located in other positions (e.g. 
within the internal head or in the viral membrane), and (ii) as 
a soluble protein generated during host lysis after phage 
maturation [67]. 

Depending on the mode of degradation of carbohydrate-
containing polymers on the surface of bacterial cells, phage-
associated enzymes fall into two main groups: hydrolases 
(EC 3.2.1.-) and lyases (EC 4.2.2.-) [68]. The first ones de-
grade either the peptidoglycan, capsular polysaccharides or 
the O-antigen side-chains of LPS. They catalyse cleavage of 
the glycosyl-oxygen bond in the glycosidic linkage by hy-
drolysis. Lyases, in turn, utilize the β-elimination mechanism 
to introduce a double bond between the C4 and C5 of the 
non-reducing uronic acid after cleavage of the glycosidic 
linkage between a monosaccharide and the C4 of uronic 
acid. Examples of such enzymes are alginate and hyaluronan 
lyases. 

The polysaccharides surrounding the bacterial cells are 
an evolutionary achievement of prokaryotes. These conser-
vative structures are important virulence factors protecting 
bacterial cells against both immune host defences and antibi-
otics. Numerous attempts of how to destroy these polysac-
charides, are involved in practical novel approaches to com-
bat pathogens. Phage-borne polysaccharide degrading en-
zymes alone or in combination with other agents represent a 
promising yet challenging antimicrobial therapy and useful 
diagnostic tools.  

3.1. Peptidoglycan Hydrolases 

Virion-associated peptidoglycan hydrolases (VAPGHs), 
analogous to endolysins discussed below, are phage-encoded 
lytic enzymes that specifically degrade PG, catalysing the 
breakdown of one of the four major bonds in it. According to 
their enzymatic activity they have been classified into at least 
four group: (i) lysozymes (e.g. gp5 from T4 phage); (ii) lytic 
transglycosylases (e.g. gp16 from T7 phage, protein P7 from 
PRD1); (iii) glucosaminidases and (iv) endopeptidases (e.g. 
protein P5 from phi6 phage, Tal2009 from Tuc2009 phage) 
[69-73]. It should be noted that in the light of the current 
International Union of Biochemistry and Molecular Biology 
(IUBMB) enzyme nomenclature [74] all the VAPGHs are 
hydrolases except for lytic transglycosylase. The latter 
cleaves the β-1,4-glycosidic bond based on an entirely 
different mode of action. To simplify, the term “PG hydro-
lases” for this whole group of enzymes will be used subse-
quently in this review. Unlike the endolysins employed by 
phages to release progeny particles from the bacterial cell at 
the end of their lytic cycle [75], the VAPGHs are involved in 
the initial stage of phage infection, prior to phage replication, 



Bacteriophages and Phage-Derived Proteins – Application Approaches Current Medicinal Chemistry, 2015, Vol. 22, No. 14    1761 

facilitating the penetration of the cell wall by the tail tube 
and promoting subsequent injection of the genome into the 
host cell [76]. In fact, the function of VAPGHs during the 
phage lytic cycle is ambiguous. These enzymes degrade the 
cell wall in order to reach the host cytoplasmic membrane 
during virus entry. Beyond this generally accepted principle, 
it has been reported that some VAPGHs, such as gp49 from 
S. aureus phage phi11, as well as gp16 from E. coli phage T7 
or protein P7 of PRD1, are not essential for phage multiplic-
ity [71, 73, 77]. However, their presence provides the stabil-
ity of viral particles and enables infection under less optimal 
conditions (e.g. cells grown at low temperature or too high 
cell density). It is speculated that such proteins may succour 
the phage infection under conditions in which the PG layer 
possesses greater than average levels of cross-linking (for a 
recent review, see [78]). Likewise, the reduced lysozyme 
activity in the well-studied E. coli-infecting T4 phage was 
not associated with the failure of its capability of infecting a 
host cell, although this process was significantly delayed 
[79]. On the other hand, antibodies specific for the tail-
associated lysine (Tal2009) encoded by Lactococcus lactis 
phage Tuc2009 decreased the phage ability to infect its host 
more than 100-fold [80]. 

The presence of the PG layer in the cell wall of both 
Gram-positive and Gram-negative bacteria appears to indi-
cate widespread occurrence of virion-associated muralytic 
activities, as confirmed by zymogram analysis or by homol-
ogy analysis of sequenced phage and prophage genomes. To 

date, the VAPGHs have been revealed in phages phiMR11 
(gp61) [81], P68 (P17) [82], phiIPLA88 (HydH5) [83], K 
(P128) [84], phi11 (gp49) [77] infecting S. aureus, in phages 
sk1, r1t, c2, Tuc2009 infecting Lactococcus lactis [80, 85] as 
well as in phages specific to Bacillus subtilis such as phi29 
(gp3) [85] and SP-β (CwlP) [86]. Besides the phages specific 
to Gram-positive bacteria, the PG hydrolases from E. coli 
phages such as T4, T5, T7, PRD1 [71, 85, 87-89], Pseudo-
monas aeruginosa (phiKZ, phiKMV) [90, 91], Pseudomonas 
syringae (phi6, phi13) [70, 92], Salmonella Typhimurium 
(P22 phage) [85] have also been identified. Given the sophis-
ticated strategies of cell entry employed by these phages, the 
structural position of their VAPGHs seems to be the optimal 
location for contact with the PG layer of the host cell. It has 
been shown that the PG hydrolytic activity of aforemen-
tioned phages may be associated with individual proteins 
located: (i) at the tail tip (e.g. Tal2009 of Tuc2009 phage, 
gp61 of phage phiMR11); (ii) at the tail baseplate (e.g. gp5 
of T4 phage, gp181 of phiKZ phage); (iii) within the internal 
head (e.g. gp4 of P22, gp16 of T7); (iv) in the viral mem-
brane (e.g. P7 and P15 of PRD1); (v) in the nucleocapsid 
(e.g. P5 of phi 6) [70-72, 80, 81, 85, 88, 91]. Apart from pro-
teins anchored to the virion, the same activity can also be 
found on catalytic domains included in other proteins [85].  

The phenomenon called ‘lysis from without’ was first re-
ported in 1940 [93, 94]. In this process, the rapid disruption 
of the bacterial cells occurs, without phage production, fol-
lowing too high number of some phages adsorbed onto their 

Fig. (1). Phage-derived proteins: location and organization system. 
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surface. Similar process related to PG degradation has been 
well documented for endolysins in controlling Gram-positive 
bacterial infection (reviewed by Schmelcher et al., [95]; 
Fischetti [13]; Pastagia et al., [96]). From that time the 
VAPGHs have emerged as novel antimicrobial agents for 
pathogens eradication (both in medicine and in industry or 
biotechnological settings) [78]. Promising results regarding 
the antimicrobial activity of the VAPGHs against both 
Gram-positive bacteria and Gram-negative bacteria have 
already been proposed [70, 81-83, 91]. Recently, attention 
has also been paid to the enzybiotic potential of purified 
VAPGHs derived from phages excluded from applications in 
therapy due to their temperate nature [97]. Moreover, the 
unique properties of these enzymes, such as (i) high thermo-
stability; (ii) a modular design and (iii) specificity, further 
actively support their enzybiotic applications. The high tol-
erance to heat and ionic strength make the VAPGHs attrac-
tive antimicrobials to be exploited in food technology, alone 
or in combination with other sanitization procedures. For 
example, they could be used as antimicrobial additives for 
controlling undesirable bacteria in foods that need to be heat 
treated, such as pasteurized milk or other dairy products. 
Rodriguez-Rubio and colleagues have demonstrated that the 
PG hydrolase HydH5 encoded by S. aureus phage phiPLA88 
and its derivative fusions preventing the growth of S. aureus 
both in pasteurized and in raw (whole and skimmed) milk 
[98]. Due to that they could be considered as a promising 
agent to control S. aureus causing bovine mastitis. In turn, 
the modular organization of the VAPGHs enables scientists 
to design and construct functional chimeric proteins consist-
ing of multiple domains of unique origin. Using a strategy of 
domain swapping or random mutagenesis can modify prop-
erties of enzymes related to solubility, thermostability, bind-
ing specificity and catalytic efficiency in order to obtain the 
optimal chimeric protein for specific applications. A study 
carried out by Rodriguez-Rubio et al. [99] have revealed that 
different recombinant fusion proteins between the HydH5 
and the SH3b staphylococcal cell wall-binding domain of 
lysostaphin show a significant increase in lytic activity com-
pared to the parental protein (HydH5) and lyse both S. 
aureus and S. epidermidis, including the methicillin-resistant 
strains (MRS). Additionally, the synergistic effect of these 
constructs and endolysin LysH5, encoded by the same 
phage, has been demonstrated. Also, Paul and co-workers 
[84] have been able to improve the staphylococcal lytic ac-
tivity of TAME, encoded by phage K, via fusion with the 
lysostaphin SH3 domain, creating the chimeric protein P128, 
which was shown to have bactericidal activity against 
MRSA clinical isolates both in vitro and in vivo, using a rat 
nasal colonization model. Another example of a particular 
enzybiotic against S. aureus is a chimeric protein (P16-17) 
composed of the inferred N-terminal endopeptidase domain 
and the C-terminal cell wall targeting domain of phage P68 
endolysin (Lys16) and the VAPGH (P17), respectively 
[100]. 

3.2. Endosialidases 

The endosialidases, also termed endo-N-acetylneuramini- 
dases (endoNs, EC 3.2.1.129, a group of glycosyl hydro-
lases) are found as specialized tailspike proteins of phages 
infecting the pathogenic bacterium E. coli K1 [101, 102]. 

Crucially, as we know to date, these are only enzymes spe-
cifically recognizing and hydrolysing an internal α-2,8-
linkages in polysialic acid (polySia), being a linear carbohy-
drate polymer composed of N-acetylneuraminic acid units 
[103, 104]. PolySia is the central component of capsular 
polysaccharide of both aforementioned neuroinvasive E. coli  

K1 and other bacterial pathogens such as Neisseria men-
ingitidis serogroup B, Moraxella nonliquefaciens, Pas-
teurella haemolytica A2 and Haemophilus influenzae type b 
cause meningitis and septicaemia [105-108]. Due to its mim-
icry to the host structure, the polysaccharide in the capsular 
material allows the bacteria to avoid the host immune de-
fence, which certainly enhances their pathogenicity [109]. 
Besides the fact that polySia is both a virulence factor and a 
protective antigen of neurotropic bacterial pathogens, it is 
also a component of normal human tissue [110, 111]. Almost 
30 E. coli K1-specific phages, that contain enzyme with 
polySia-depolymerizing activity have been identified [112-
120] and endoN genes as functional proteins from at least 
five phages (K1A, K1E, K1F, 63D, K1-5) have been cloned 
and expressed to date [119, 121-125]. All these phages have 
been classified as linear dsDNA viruses and morphologically 
most of them belong to the Podoviridae family, although 
representatives of Myoviridae [114] and Siphoviridae [116, 
120] have also been reported. Apart from lytic phages, sev-
eral temperate phages with endoN genes have been described 
[119, 126-131]. A comprehensive review concerning the 
structure and the biochemical properties of endoNs as well as 
the significance of these enzymes in medical and biochemi-
cal applications (briefly discussed below) has been published 
by Jakobsson and co-workers [132].  

Although endoN alone is not sufficient to destroy the 
bacterial outer membrane and kill the bacteria, its unique 
ability to degrade bacterial capsular material can be applied 
to decrease pathogen virulence. Even treating the life-
threatening systemic infections caused by neurotropic strains 
of encapsulated bacteria could be possible by processes that 
do not involve direct bacterial lysis, but rapid degradation of 
capsular polysaccharide only. The loss of K1 antigen, which 
is the primary virulence factor of these pathogens, essential 
for bacterial dissemination and survival within the host, sen-
sitizes the modified phenotype of bacterial cells to either 
conventional antibiotics or a component of the host’s im-
mune system such as the bactericidal action of complement 
or phagocytosis by macrophages [133]. Therapeutic efficacy 
of the enzyme-mediated “capsule-stripping” phenomenon 
has been confirmed in an animal model. It has been shown 
that intraperitoneal administration of endoN E to infected 
neonatal rats in the initial stage of the infection’s develop-
ment selectively removes the capsular polysaccharide from 
the E. coli surface and interrupts the transit of bacterial cells 
from gut to brain via the blood circulation, preventing bac-
teraemia and death from systemic infection [133, 134]. Addi-
tionally, it was observed that the reduction of K1 antigen did 
not affect the viability of bacteria at the site of infection. 
Thus, the success of endoNs seems to be related to their abil-
ity to the attenuate E. coli K1 virulence by degradation of the 
polySia capsule, and consequently to restrict the inflamma-
tory processes and tissue damage occurring in response to 
bacterial invasion. Thereby the endoNs, without help from 
membrane-disrupting agents or accessory proteins, can sig-
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nificantly reduce the mortality and morbidity associated with 
E. coli systemic infection [135]. PolySia is found not only in 
a capsular material of some bacteria but being a post-
translational modification of the neural cell adhesion mole-
cules (NCAM) serving also as a modulator in the process of 
neuronal development [136, 137]. The unique ability of 
phage-borne endoNs to specifically degrade polySia, as well 
as the stability and activity even at physiological pH and ion 
conditions, has promoted their application in polySia re-
search, covering neurobiology and oncology [138-141]. Fur-
thermore, these enzymes can be utilized for artificial poly-
Sia-based hydrogel degradation and other derivatives at 
strictly-defined time points, serving as a scaffold biomaterial 
for engineered nerve grafts tissue [142]. Besides the versatile 
applications of active endoNs described above, these en-
zymes may also be applied in catalytically inactive variants, 
which can still recognize accurately and to bind to polySia 
substrate without its enzymatic degradation. Potentially, such 
engineered non-catalytic endoNs could be used as an equiva-
lent of the antibody and could become an accurate tool ap-
plied both in immunohistological studies and in microbial 
diagnosis. As a detection reagent in identification of polySia-
containing bacteria or eukaryotic cells, inactivated enzymes 
have many advantages in comparison to antibodies, such as 
simple and reproducible production based on recombinant 
techniques (no necessity of animals use), and the lack of 
cross-reactions with antibody-binding proteins located on 
tissue cells. Their widespread utility could also be supported 
by elimination of the additional difficulty involved with ob-
taining antibodies, in this particular case, related to the poor 
immunogenicity of polySia [143].  

3.3. Endorhamnosidases 

Endorhamnosidases (EC 3.2.1.-) are used by some 
phages for explicit recognition and depolymerization of re-
petitive carbohydrate structures of O-antigen in the LPS 
molecule. They catalyse the cleavage of the α–(1→3) O–
glycosidic bond between L–rhamnose and D–galactose, 
yielding mainly octasaccharide fragments of two repeating 
units with rhamnose of the reducing end [144, 145]. They 
have been classified as glycoside hydrolase family 90 [146]. 
Their enzymatic activity is mediated by tailspikes of phages 
(e.g. P22, 9NA, ε15, ε34, Det7) specifically infecting Salmo-
nella strains [66, 147-150] and other phages, e.g. Shigella 
phage Sf6 [151] or coliphage Ω8 [152, 153]. The reason, for 
which the phages recognize and hydrolyse the long O-
antigen chains of the LPS, is not unequivocal. Enzymatic 
cleavage of this polysaccharide might facilitate access to the 
membrane and the appropriate receptor [150, 154]. On the 
other hand, Andres et al. [65, 66] have proved that the inter-
action of the tailspike protein of both the well-known short-
tailed podovirus P22 and the long-tailed siphovirus 9NA 
with the LPS give a signal to modulate DNA egress from the 
phage capsid and start the infection process. Despite the dif-
ferences in their tail structure, phages hydrolysing the O-
antigen do not use the further secondary receptor (i.e. pro-
tein) on Salmonella surface for irreversible attachment. Also, 
it cannot be excluded that some unknown protein receptors 
are involved in the process. In addition to the role in the 
early event of the infection cycle, the endorhamnosidase 
activity associated with tailspikes may facilitate the release 

of phage progeny from sticking cellular debris generated 
during host lysis [65, 66]. 

3.4. Alginate Lyases 

Alginate lyases, characterized as either mannuronate (EC 
4.2.2.3) or guluronate lyases (EC 4.2.2.11), catalyse de-
polymerization of alginate, a linear copolymer of (1,4)-
linked α-L-guluronic acid residues and its C5 epimer β-D-
mannuronic acid, arranged in blocks of polymannuronate 
(M), polyguluronate (G) or heteropolymeric M/G random 
sequences [155]. Alginate can be formed by some bacteria 
including Pseudomonas and Azotobacter genera, as well as 
by brown seaweed [156, 157]. The bacterial polysaccharide, 
as opposed to alginate synthesized by algae, mainly consists 
of polymannuronate with O-acetyl groups at the C-2 and/or 
C-3 positions of mannuronate [158], making this compound 
less sensitive to the endogenous lyase degradation [159, 
160]. Alginate is one of the three major Pseudomonas 
exopolysaccharides, and it is only produced by mucoid 
strains that establish chronic infections in patients with cystic 
fibrosis (CF). The ability to synthesize the alginate, the addi-
tionally a crucial component of mucoid biofilm structure, 
protects the pathogen from the host defence mechanisms and 
antibacterial agents. It is known that organisms living in 
biofilm are 10-1000-fold more resistance to antibiotics than 
corresponding planktonic cells. On the other hand, this 
exopolysaccharide can also constitute an attractive target for 
alternative therapies. The concept of using phage alginate-
degrading enzymes as antimicrobials to prevent and control 
biofilm-associated infections, including Pseudomonas lung 
infections in CF patients, was initiated in the late 1960s. It-
still remains one of the most important purposes of research 
on them. These enzymes allow the phages to invade the bac-
terial cells entangled in the polysaccharide backbone and kill 
them mainly by dissolution or disruption of the EPS layer in 
the biofilm structure. Moreover, the released bacterial cells, 
following the dispersion of the EPS from the biofilm, can 
again be accessible for antimicrobials or host immune sys-
tem components [161-163]. As shown in one of the prelimi-
nary reports, depolymerases purified from crude lysates pro-
duced by the propagation of P. aeruginosa specific phages 
were responsible for reduction in the viscosity of the ex-
tracellular slime polysaccharides and increased levels of 
hexosamines, hexoses, and reducing substances [164]. Al-
though the exact structure of this enzyme has not been eluci-
dated, its enzymatic activity, located in an 180 kDa compo-
nent, indicates the adsorption apparatus composed of six 
drop-like tail spikes [62, 165]. In turn, Hanlon et al. [166] 
have showed that P. aeruginosa phage penetration through 
purified CF alginate can done easier following the decrease 
of viscosity and the molecular weight of alginate brought 
about by enzymatic degradation. More recently, several 
Pseudomonas phages, which are able to degrade four struc-
turally different pseudomonal alginates, have also been iden-
tified [167]. The majority of phage alginases studied to date 
have molecular masses in the range from 30 to 42 kDa and 
optimal pH for their endolytic activity between 7.5 and 8.5 
[155, 167]. Considering the anti-biofilm effects of alginate 
lyases, one also cannot exclude enzyme-mediated changes in 
cell physiology. Recently, a novel potential mechanism un-
derlying anti-biofilm effects of alginate lyases has been sug-
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gested, in which the synergistic action of the antibiotic and 
enzyme without catalytic activity, allows for removing the 
infection [168]. Researchers suggest that in response to the 
intact protein treatment (e.g. BSA), the bacterial cells secrete 
proteases that destabilize the crucial component of the 
biofilm matrix and contribute to biofilm disruption. Subse-
quently changes in the metabolism of bacterial cell induced 
by the released amino acids may lead to improving its sus-
ceptibility to antibiotics. 

3.5. Hyaluronate Lyases 

Hyaluronan (hyaluronic acid, HA), a polysaccharide 
composed of a linear repetition of β-1-4 linked N-
acetylglucosamine and D-glucuronic acid subunits, is a sole 
or dominant component of the capsular material of certain 
bacterial strains as well as an important part of the extracel-
lular matrix of body tissues [169, 170]. The enzymatic activ-
ity of this polysaccharide has been associated with a variety 
of organisms, including mammals, insects, leeches, bacteria 
and phages [171]. In contrast to the hyaluronidases of eu-
karyotic origin that act hydrolytically, breaking the glycosi-
dic β-1,4 bound, both bacterial and phage-encoded enzymes 
(better known as hyaluronate lyases (HyaLs), EC 4.2.2.1) cut 
the same linkage via a β-elimination mechanism [172]. Bac-
terial and phage-derived lyases have very little amino acid 
sequence homology, and they also differ in structure and 
substrate specificity. The former are monomeric proteins 
with their N-terminal domain being the catalytic domain 
[173] while the latter is oligomeric [174] with the active site 
located at the C-terminal domain [175]. Moreover, unlike 
most bacterial lyases, acting non-specifically on both 
hyaluronate and chondroitin sulfates, the phage enzymes 
recognize HA as its only substrate [176]. Another unique 
feature of phage HyaLs is their molecular mass ranging from 
36 to 40 kDa, the lowest among these enzymes of different 
origin identified so far [177]. All identified phage HyaLs 
have been classified in the PL16 family within the Carbohy-
drate Active enZYmes (CAZy) database [178] based on rec-
ognizable sequence homologies. Contrarily, the streptococcal 
proteins belong to a different polysaccharide lyase group, the 
PL8 family. To date, at least several phage HyaLs have been 
identified which demonstrate activity against streptococci 
including hylP from phages H4489A [176, 179], HylP1 
(phage 370.1) [174], HylP2 (phage 10403) [177, 180], HylP3 
[181] and SEQ2045 [182]. They are mainly found in phages 
invading two species of group A streptococci: S. pyogenes 
and S. equi. Most genes encoding these enzymes are carried 
within the prophages, that are integrated into bacterial chro-
mosomes. A possible function of the phage HyaLs involves 
the local degradation of the HA layer and capsule viscosity 
reduction, after attachment of the phage particle to the cell, 
so that the phages can gain access to the appropriate recep-
tors hidden inside and infect the encapsulated cells [177, 
179, 183]. Although the phage HyaLs may be tightly bound 
to, or constitute an integral component of, the virion, most of 
the HyaLs produced by infected strains appear to be free and 
not associated with phage particles [184]. This proves that 
after induction of the lytic cycle, temperate phages may mul-
tiply and produce of progeny virions and free enzyme. Thus, 
it is not inconceivable that beyond the direct role of HyaLs 
associated with overcoming the capsule, they may also help 

in spreading the infecting bacteria from their initial site of 
infection, in essence acting as a virulence factor for the host 
bacterium. In addition, due to the possibility of the phage 
HyaLs to degrade the HA of human connective tissue, these 
enzymes may also promote spread of phage gene encoding 
erythrogenic toxin, that causes the visible rash in scarlet fe-
ver [185]. On the other hand, owing to the defined specificity 
of these enzymes, they could be applied in structural studies 
of connective tissue glycosaminoglycans. 

4. PHAGE-DERIVED PROTEINS INVOLVED IN 
PROGENY RELEASE 

Bacterial viruses possess diverse strategies to release of 
progeny from infected bacteria. They achieve this goal by: 
(i) constant phage budding without or with very gradual kill-
ing of the host; (ii) extrusion, a process that leaves the cells 
fully viable; (iii) PG synthesis blocking “slow” lysis; or (iv) 
an abrupt disintegration of the host achieved by phage lytic 
enzymes. The budding (gemmation) process is the distin-
guishing feature for pleomorphic phages, represented by the 
non-capsid Plasmaviridae family propagating on Mollicutes 
lacking the cell wall structure. During the budding action, the 
phage particles become covered by bacterial lipoprotein 
membrane and the releasing pattern depends on the type of 
the bacterial envelope. To our knowledge examples of 
phages able to liberate virions by gemmation are enveloped, 
quasi-spherical, dsDNA and Acholeplasma-specific phages: 
L2 (MV-L2) or L172 [186-192]. A budding-like mechanism, 
but in contrast to typical gemmation, terminating with the 
slow death of the host, is utilized by short-tailed dsDNA, 
phages L3, SpV3 and ai isolated from Acholeplasma laid-
lawii, Spiroplasma mirum and Spiroplasma citri, respec-
tively. Although these phages can produce clear plaques, 
their progeny is not released by typical cell lysis. Mature L3, 
SpV3 and ai viruses accumulate in infected cells and are 
released continuously over many hours as extracellular 
membrane vesicles enclose one or more progeny virions. The 
escape of large quantities of phage particles, in a short pe-
riod, leads to destruction of host cell integrity. Furthermore, 
the vesicles containing viral particles may finally break 
down and liberate non-enveloped virions [186, 188, 193]. 
The second type of release mechanism presented by extru-
sion is complicated, closely associated with the assembly 
process and characteristic for ssDNA filamentous phages 
[194]. The intracellular DNA-binding proteins produced by 
these viruses bind to each copy of the replicating phage sin-
gle-stranded DNA. At this time, structural and morphoge-
netic phage proteins localize in the membrane of the infected 
cell, forming a channel and coat, where the genetic informa-
tion is extruded creating the mature virion. [195-198]. The 
third strategy, based on PG biosynthesis inhibition, is ex-
ploited by small-genome ssDNA and RNA phages. These 
viruses encode low-molecular-mass hydrophobic proteins 
that act in a manner reminiscent of cell wall antibiotics 
blocking the murein synthesis pathway, which is sufficient to 
trigger lysis of the host. The mechanism employing a single 
lysis protein has been well studied in the example of protein 
E encoded by E. coli phage phi X174 (ssDNA). Protein E 
functions as an inhibitor of phospho-MurNAc-pentapeptide 
translocase (MraY) which is involved in the biosynthesis of 
bacterial mureine [199-201]. Other examples are ssRNA 



Bacteriophages and Phage-Derived Proteins – Application Approaches Current Medicinal Chemistry, 2015, Vol. 22, No. 14    1765 

coliphages Qβ and MS2 encoding protein A2, that blocks cell 
wall biosynthesis by inhibiting UDP-N-acetylglucosamine 
enolpyruvyl transferase (MurA), an enzyme catalysing the 
first stage in PG synthesis [202] and protein L lacking mura-
lytic activity with an unknown mechanism of induced lysis, 
respectively [203-206]. The fourth mechanism, involving the 
use of lytic enzymes for fast destruction of the host enve-
lopes and progeny release, greatly predominates among all 
described phages and is of particular importance for practical 
reasons. The mechanism of lysis in this scenario is employed 
by tailed dsDNA bacteriophages which constitute the vast 
majority of viruses replicating in bacteria, meaning more 
than 90% of all phages with completely sequenced genomes 
and published in NCBI databases. During the release proc-
ess, progeny virions have several barriers, represented by 
cell envelopes, to overcome. These are in sequence: the inner 
cell membrane (IM), the PG layer, and additionally an outer 
cell membrane (OM) in the case of Gram-negative bacteria 
(Fig. 1). The dsDNA bacteriophages encode at least two en-
zymes, holin, and endolysin, to cause destruction of the inner 
membrane and murein, respectively. The third type of pro-
tein, spanin, responsible for crossing the outer membrane, is 
characteristic of highly specialized, Gram-negative specific 
phages. Holins determine the exact time of bacterial lysis by 
controlling the access of phage muramidases to the PG layer. 
In view of this, holins are considered as the simplest biologi-
cal timing system [205, 207, 208]. These proteins are very 
diverse, but they also share common features: (i) they are 
encoded by short genes, usually up to 110 codons, (ii) their 
genes are mostly adjacent to the endolysin gene creating the 
so-called two-component lysis cassette; (iii) they possess 
hydrophilic, positively charged C-terminal domain; and (iv) 
they consist of a minimum of one and a maximum of three 
hydrophobic transmembrane domains (TMDs) [209-212]. 
Depending on the number of TMDs, holins can be divided 
into three classes. Proteins grouped in the first class possess 
three TMDs, and examples of these are HolSMP protein, 
encoded by Streptococcus suis phage SMP, P68 hol15 de-
rived from Staphylococcus aureus phage P68 [213] and S 
protein encoded by Enterobacteria phage λ [214]. Class II 
holins, characterized by two TMDs, include pinholin S en-
coded by coliphage 21 (for pinholins see below) [215] and 
Hol3626 protein from Clostridium perfringens bacteriophage 
Φ3626 [216]. Class III holins, with just one TMD, are pro-
duced by coliphage T4 (T protein) and Clostridium perfrin-
gens bacteriophages ϕCP39-O (39-O_gp28) and ϕCP26F 

(phi26F_gp23) [211, 213, 217]. The most likely and primary 
principle of the enzymes’ initiation of the phage lytic ma-
chinery has been described by Krupovic [218] and Wang 
[208]. Phage holins are able to accumulate in the inner mem-
brane until achieving the critical concentration and may cre-
ate: (i) large channels forming a passage for endolysin to 
reach the murein layer, or (ii) small pores essential for 
endolysin activation [215, 219-222]. Large channel forming 
holins change conformation leading to oligomerization and 
finally to gap formation in the inner membrane. The holins, 
acting in this manner, form a nonspecific tunnel to transport 
endolysin or an endolysin complex in a maximum size of 
500 kDa [208, 218] Small pore-forming holins, inappropri-
ately named pinholins, cooperate with endolysins by forma-
tion of symmetric protein heptamers with the central channel 
of about 15 Å in diameter. This pore is too narrow to transfer 

endolysin molecule but broad enough to allow movement of 
ions, a process crucial for cell membrane depolarization. 
Local depolarization is prerequisite for SAR (signal arrest 
release) or SP (signal peptide) endolysin activation [215, 
219, 220]. Endolysins, also termed lysins are phage enzymes 
employed in fast enzymatic degradation of PG. Among cer-
tain endolysins signal arrest release (SAR) or simple signal 
peptide (SP) domains mediate the transport utilizing bacterial 
sec system and associate an inactive endolysin with the inner 
cell membrane, finally participating in lysin activation [223-
225]. Endolysins with the SAR element, as described in the 
example of coliphage 21, are synthesized, transported and 
anchored to the inner membrane in inactive form [222, 226]. 
Based on the type of holin (canonical or pinholin) and type 
of endolysins (with or without the SAR/SP signal), lysis sys-
tems are divided into two general types: the canonical holin-
endolysin system and the pinholin-SAR/SP endolysin lysis 
system (Fig. 1). 

Based on endolysins origin, these enzymes can be di-
vided into those derived from Gram-positive specific or 
Gram-negative specific phages. Another classification relies 
on cleavage site of endolysins and divides these proteins into 
four general groups: (i) glycosidases (lysozyme and N-
acetyl-β-D-glucosaminidase), cleaving the polysaccharide 
backbone of PG; (ii) lytic transglycosylases destroying link-
ages between N-acetylmuramyl and N-acetylglucosaminyl 
residues of PG but other than muramidase, forming the N-
acetyl-1,6-anhydro-muramyl moiety residue; (iii) N-
acetylmuramoyl-L-alanine amidases cleaving the amide 
bond between N-acetylmuramic acid and the L-alanine of the 
stem peptide; and (iv) endopeptidases capable of cutting ei-
ther the stem peptide or cross bridges of PG (L-alanoyl-D-
glutamate endopeptidases, D-glutamyl-m-DAP endopepti-
dases, interpeptide bridge-specific endopeptidases, D-
alanoyl-m-DAP endopeptidases, glycylglycine endopepti-
dases, D-alanoyl-glycine endopeptidases, D-glutamyl-L-
lysine endopeptidases, D-alanoyl-L-alanine endopeptidases) 
[58, 95, 219, 227-229]. Another, simpler distribution of 
endolysins is based on the gene structure and organization. It 
distinguishes (Fig. 1): (i) globular proteins with a single en-
zymatically active domain (EAD) prevalent among the 
endolysins encoded by Gram-negative specific phages; and 
(ii) modular enzymes composed of an enzymatic domain and 
cell wall-binding domain (CBD), mostly found among 
Gram-positive specific phages. The CBD function include 
the specific recognition of the moieties in the targeted cell 
wall structure with high-affinity binding and endolysin im-
mobilization on bacterial debris to protect uninfected host 
cells against enzymatic degradation leading to lysis. Such 
risk of cell destruction by endolysins does not exist among 
Gram-negative hosts, because of the presence of an extra 
protective outer layer membrane. Most of the studied modu-
lar endolysins are composed of two clearly separated func-
tional domains – N-terminal catalytic and C-terminal binding 
domains – but their location and number may vary. 
Endolysin genes can have up to three domains in different 
combinations of orientation. The composition of modular 
lysin architecture may consist of various configurations: one 
or more EAD domains from the aforementioned, used for PG 
bond hydrolysis and the CBD element [13, 228, 230]. The 
vast majority of endolysins have a molecular mass in the 
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range of 25-40 kDa [13], There is one exception to date, pro-
tein of 114 kDa, a multimeric PlyC endolysin of Streptococ-
cus phage. This large mass is a consequence of complex 
structure, which consists of one substantial catalytic domain 
named PlyCA and eight chains responsible for binding to the 
bacterial cell wall (PlyCB). [231]. Diversity in endolysin 
domain organization, with examples provided, has been de-
scribed in detail by several authors [228, 229, 232]. As soon 
as the barrier set up by the bacterial cell wall is devastated by 
endolysins, phage progeny proliferating in Gram-positive 
bacteria are free to leave and attack other susceptible host 
cells. However, the matter is not so simple in the case of 
Gram-negative bacteria due to the presence of another bar-
rier (OM) that must be crossed. Although the destruction of 
IM and PG layer leads to tearing the OM under favourable 
external conditions (the presence of millimolar concentra-
tions of divalent cations), it can withstand the pressure and 
keep progeny inside or at least extend the time of their re-
lease [233-235]. Therefore, Gram-negative specific phages 
had to develop an additional tool, namely spanins. The 
spanin encoding gene is typically located near the endolysin 
and holin genes, creating a three-component lysis cassette. 
Examples of phages containing holin, endolysin and spanin 
genes in canonical order are well known in E. coli phages λ 
and P2 as well as Pseudomonas phage ϕKMV. However 
canonical order of lysis genes, is not the universal rule and 
Catalao and co-authors have described a large variety of lysis 
genes and their arrangement in phages genomes [219]. The 
best-described spanin mode of action is for λ phage. This 
phage possesses two separately synthesized proteins: (i) Rz 
named i-spanin, a type II integral membrane protein with one 
N-terminal transmembrane domain and a large alpha-helical 
periplasmic domain on the C-terminus; and (ii) Rz1 named 
o-spanin, a small, proline-rich, outer membrane lipoprotein 
with a signal peptidase II cleavage site [219, 235, 236]. 

The active complex of Rz and Rz1 (an i-spanin/o-spanin 
complex) extends across the entire width of the periplasm 
and act as the physical connection between the inner and 
outer membranes. These chains are immobilized by the PG 
layer, making murein a negative regulator of spanin function 
[235, 237]. Removal of PG by endolysins allows for lateral 
oligomerization and conformational changes of spanins, con-
sequently leading to OM destabilization [235, 238]. Spanin 
can also occur as a single protein (unimolecular, u-spanin) 
acting individually. Functional homologs of Rz/Rz1 com-
plex, but existing and acting as a single protein, have also 
been identified in some phages as exemplified gp11 spanin 
encoded by E. coli phage. However, it is believed that the 
still very poorly understood mode of action of all spanins 
looks similar to that described above [235, 236]. With all of 
the mentioned proteins involved in the phage progeny re-
lease strategy, some are particularly interesting and signifi-
cant due to their potential usefulness. Among proteins with 
therapeutic potential the the aforementioned murein synthe-
sis inhibitors seems to be quite promising. Yu et al. [239] 
have demonstrated that a 91-amino acid residue of protein E, 
referred to above, which plays a significant role in host cell 
lysis in φX174 phage propagation, can be used for genera-
tion of so-called bacterial ghosts. These empty bacterial bod-
ies lacking cytoplasm and nucleic acids exhibit excellent 
immunogenicity and provide effective inducible immunopro-

tection, and therefore can be used directly as vaccines [239]. 
Analogously, proteins A2 and L encoded by E. coli specific 
phages Qβ and MS2 can be potentially applied to inactivated 
bacteria preparation. Phage holins can be utilized to create 
empty bacterial ghosts from Gram-positive strains. Capacity, 
to form translucent bacterial ghosts has been reported for 
protein HolNU3-1 from Staphylococcus aureus (MRSA) 
NU3-1 [240]. However, the greatest and also confirmed 
practical significance has been demonstrated by phage 
endolysins. Recently, many reviews concerning endolysins 
application as antimicrobial agents with high application 
potential in the fields of medicine, food safety, veterinary, 
cosmetic and chemical industry, agriculture and biotechnol-
ogy have been published [58, 95, 96, 229, 241-243]. Due to 
confirming the efficacy of phage lysins, the use of endolys-
ins in the treatment of bacterial infections induced in labora-
tory animals deserves particular attention [244-253]. Al-
though the first studies on endolysin bactericidal efficacy 
have been confirmed only for Gram-positive strains, it is 
already known that after modification such as mixture or 
fusion with peptides with OM-disrupting properties, these 
enzymes can be successfully used to fight Gram-negative 
bacteria [220]. Practical use is also attributed to endolysin-
derived CBDs as well as receptor binding protein (RBP), an 
element of tail fibres or spikes, both combined with particu-
lar dye or magnetic beads, which due to their high specificity 
are successfully applied in diagnostics and foodborne patho-
gen detection [15, 22, 95, 254-256]. To summarize, depend-
ing on the strategy chosen by the lytic phage to release its 
progeny, the host remains alive, or it is slowly or rapidly 
lysed. Enzymes involved in cell lysis, such as murein inhibi-
tors, holins, endolysins and spanins, by virtue of the fact that 
they are encoded by natural bacterial enemies, may serve as 
new tools for fighting bacterial infections. 

5. CONCLUSIONS 

Nowadays, fast-developing molecular biology techniques 
and genetic analysis methods allow the development of 
novel and safe antimicrobial agents based on natural bacte-
rial parasites. There is much evidence of efficient application 
of environmental lytic and filamentous bacteriophages in 
treatment of bacterial infection, as well as some new reports 
on the use of temperate phages as inhibitors of pathogen 
virulence. Phages as antimicrobial tools, regardless of the 
life cycle nature and origin (lytic, non-lytic, temperate), prior 
to any clinical trials, must undergo a detailed analysis in 
terms of biology and genetic features to avoid unfavourable 
consequences as increase in bacterial virulence or/and an 
adaptive response to phage infection. The attractive solution 
to utilize safety and well-characterized phage product is the 
construction of genetically engineered phages, which give 
the opportunity to create all required features. Synthetic bi-
ology enables one to produce and design phage-based pro-
teins instead of whole phage particles showing a broader 
antibacterial spectrum, better tissue penetration, lower im-
munogenicity and low probability of bacterial resistance.  

The capabilities of modern synthetic biology and molecu-
lar engineering allow for relatively straightforward manufac-
turing of phage products such as recombinant peptides or 
synthetic analogs. Production and purification of aforemen-
tioned proteins on a large scale, are possible due to the well-
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developed pharmaceutical technologies. The biggest advan-
tage of alternative antibacterials, as phages or phage-based 
products, is the possibility of multi-agent treatment, includ-
ing antibiotics, phages, and phage proteins. The idea, to 
combine biological-chemical treatment may help in phage 
and antibiotic resistance development prevention. The deep-
ening knowledge of phage genetics and biology can lead to 
successful application of phages and phage-derived particles 
in therapy, and has already been existing happening in diag-
nostics, bacterial detection, preservation of food products, 
animal breeding and agriculture. 
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