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ABSTRACT
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an
important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in
cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries
as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors
have been developed by different screening methods to date. This review has focused on the tyrosinase
inhibitors discovered from all sources and biochemically characterised in the last four decades.
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Introduction

Browning of fruits, fungi and vegetables and hyperpigmentation
in human skin are two common undesirable phenomena.
Tyrosinase is the main enzyme recognised as responsible for this
enzymatic browning and melanogenesis in mammals1,2. This
encouraged researchers and scientists to focus on the identifica-
tion, isolation, synthesis and characterisation of new potent tyro-
sinase inhibitors for various application in the food3, cosmetics4

and medicinal industries. However, very few inhibitors are
qualified for clinical use and skin-whitening agents. Moreover, as
the clinical and industrial demands for tyrosinase inhibitors
increase, in vitro assays and improved screening techniques are
also undergoing rapid development for in vitro high-throughput
screening tyrosinase inhibitors and putative skin-whitening
agents5. In other words, sensitive and correct assay methods for
screening and development of effective tyrosinase inhibitors are
of great importance. For this purpose, several spectrophotomet-
ric6–10, chromatographic11–17, electrophoretic18–22, radiometric23,24

and electrochemical25–27 assays have been applied and developed
by researchers so far. Recently, a novel fluorescent biosensor28

and tyrosinase-based thin-layer chromatography-autography have
been suggested for tyrosinase inhibitor screening29.

Additionally, further improvements of in vitro detection meth-
ods for rapidly screening tyrosinase inhibitors may be achieved
through using virtual screening30 and construction of quantitative
structure–activity relationship (QSAR) models of inhibitors31,32.
Thus, a combination of bioinformatics simulation and biological in
vitro analysis will be useful to understand the functional mecha-
nisms of the tested compounds9,21,27,33–48. Lately, Gao et al. have
performed a virtual screening from Traditional Chinese medicine
(TCM) and predicted tyrosinase inhibition by 3D QSAR pharmaco-
phore models49. For more information about successful utilisation

of computational tools like QSAR-based and ligand-based virtual
screening, a review published by Khan in 2012 organised and
summarised novel and potent inhibitors of the enzyme50.
Furthermore, with regard to tyrosinase inhibition importance,
several other reviews have presented the organisation of tyrosin-
ase inhibitors from natural, semi- and full synthetic sources1,51–62.

The present review also focuses on the tyrosinase inhibitors
discovered from all sources, including synthetic compounds,
extracts and active ingredients of natural products, virtual screen-
ing and structure-based molecular docking studies published in
the last four decades. We hope that the knowledge offered in this
review serves as an updated comprehensive database contributing
to the development of new safe and efficient anti-tyrosinase
agents for the prevention of browning in plant-derived foods,
seafood and hyperpigmentation treatments.

The role of tyrosinase in the melanin biosynthesis

Melanins, the main pigment primarily responsible in the skin, hair
and eyes pigmentation of human, are produced by melanocytes
through melanogenesis. Melanogenesis and skin pigmentation
are the most important photoprotective factor in response to
ultraviolet radiation damaging from the sun and skin photo-
carcinogenesis. The abnormal loss of melanin and depigmentation
can be a serious facial esthetic and dermatological problem
among human63. On the contrary, the increased melanin synthesis
and accumulation of these pigments occur in many types of skin
disorders, including Acanthosis nigricans, Cervical Poikiloderma,
melasma, Periorbital hyperpigmentation, Lentigines, neuro-
degeneration associated with Parkinson’s disease and skin
cancer risk64–66. Although melanogenesis is a complicated process
represented by numerous enzymatic and chemical reactions, the
enzymes such as tyrosinase and other tyrosinase-related proteins
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(TYRP1 and TYRP2) have a critical role in melanin synthesis.
Tyrosinase is a multifunctional copper-containing metalloenzyme
with dinuclear copper ions, which plays as a rate-limiting enzyme
in the synthesis of melanin (Figure 1)52,67. Also, tyrosinase
constitutes the primary cause for undesired browning of fruits and
vegetables as well as diseases resulting from overproduction of
melanin. Therefore, controlling the activity of enzyme by tyrosin-
ase inhibitors is an essential endeavor for treating hypopigmen-
tary disorders of mammals and enzymatic browning of fruits and
fungi. To date, numerous effective inhibitors are identified and
developed for using in the medical and cosmetic products, as
well as food bioprocessing and agricultural industries and environ-
mental industries. However, in medicine, tyrosinase inhibitors are
a class of important clinical antimelanoma drugs but only a few
compounds are known to serve as effective and safe tyrosinase
inhibitors.

Mushroom tyrosinase properties

Tyrosinases have been isolated and purified from different sources
such as some plants, animals and microorganisms. Although many
of them (such as human) have been sequenced, only few of them
have been characterised. Recently, a novel tyrosinase produced by
Sahara soil actinobacteria have been isolated and biochemically
charactrised with the aim to identify novel enzymes with exclusive
features for biotechnological applications68–80. However, among
different sources of tyrosinase, mushroom tyrosinase from
Agaricus bisporus is a major and cheap source of tyrosinase with
high similarity and homology compared to human tyrosinase78.
Because of these good properties, the structural, functional and
biochemical characteristics of mushroom tyrosinase have been
studied extensively as a model system for screening of tyrosinase
inhibitors and melanogenic studies, enzyme-catalysed reactions
and enzyme-inhibitor structural studies so far78,81–90. Tyrosinase
from Agaricus bisporus is a 120 kDa tetramer with two different

subunits, heavy and light91, which was the first isolated by
Bourquelot and Bertrand92 in 1895. It has three domains and two
copper binding sites which bind to six histidine residues and
interact with molecular oxygen in the tyrosinase active site. Also,
a disulfide linkage stabilise its structure93. Recently, a 50 kDa
tyrosinase isoform from Agaricus bisporus (H-subunit) have been
purified with a high specific tyrosinase activity of more than
38,000U/mg94.

Reaction mechanism

Tyrosinase (EC 1.14.18.1) has two activities in its catalytic cycle,
see Figure 295,96, a monophenolase activity where it hydroxylates
monophenols (e.g L-tyrosine) to o-diphenols (e.g. L-dopa) and a
diphenolase activity where tyrosinase oxidises o-diphenols to o-
quinones (o-dopaquinone). At the same time of these enzymatic
reactions, there are different chemical reactions coupled where
two molecules of o-dopaquinone react their-selves generating an
o-diphenol molecule (L-dopa) and a dopachrome molecule.

Diphenolase activity can be independently studied, when
tyrosinase reacts with an o-diphenol (see Figure 2). The form met-
tyrosinase (Em) binds the o-diphenol (D) originating the complex
EmD. This complex oxidises the o-diphenols transforming it to
o-quinone and the enzyme is converted into the form deoxy-
tyrosinase (Ed). Ed has a very big affinity for the molecular oxygen
originating the form oxy-tyrosinase (Eox), which binds another
o-diphenol molecule and originating the complex EoxD. After
that, the o-diphenol is oxidised again to o-quinone and the form
Em is formed again completing the catalytic cycle. However,
after these enzymatic reactions, two o-quinone molecules (e.g.
o-dopaquinone) react generating dopachrome and regenerating a
molecule of o-diphenol.

As mentioned before, we can independently study the
diphenolase activity. However, it is not applicable for the mono-
phenolase activity, see Figure 2, because the chemical reactions of
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Figure 1. Scheme of the biosynthetic pathway of eumelanins and pheomelanins. The activities of tyrosinase are indicated in the scheme. Moreover, the enzyme can
oxidize DHICA to its o-quinone directly, or it can oxidize DHICA and DHI indirectly via the formation of o-dopaquinone. TRP2 (dopachrome tautomerase) or Cu2þ can
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diphenolase activity have to occur at the same time of monophe-
nolase activity. Tyrosinase shows the monophenolase activity with
a lag period. This period is the time that the enzyme requires to
accumulate a quantity of o-diphenol in reaction medium and is
proportional to the quantity of monophenol used. Figure 2 shows
the new complexes appeared in the monophenolase activity: EoxM
(oxy-tyrosinase bound to monophenol) and EmM (met-tyrosinase
bound to monophenols). EoxM is active and is transformed into
EmD, which is an intermediate of the catalytic cycle95. o-Quinones
formed by these two oxidation cycle spontaneously react with
each other to form oligomers97.

Tyrosinase inhibition

Due to the critical role of tyrosinase in the melanogenesis and
browning process, several investigations have been reported for
the identification of tyrosinase inhibitor from both natural (fungi,
bacteria, plants) and synthetic sources so far. General speaking,
tyrosinase inhibitors are examined in the presence of a monophe-
nolic substrate such as tyrosine or a diphenolic substrate such as
L-dopa, and activity is assessed based on dopachrome formation.

Inhibition mechanism

Among different types of compounds such as specific tyrosinase
inactivators and inhibitors, o-dopaquinone scavengers, alternative
enzyme substrates, nonspecific enzyme inactivators and denatur-
ants, only specific tyrosinase inactivators and reversible inhibitors
actually bind to the enzyme as true inhibitors and really inhibit
its activity:

a. Specific tyrosinase inactivators. They are called suicide
inactivators or mechanism-based inhibitors. This group of
compounds can be considered very interested from a
pharmacological point of view, in hyperpigmentation
processes (Figure 3)98.

To explain the suicide inactivation of tyrosinase, mainly two
mechanisms have been proposed98,99. Accordingly, Haghbeen
et al. have suggested that the conformational changes, triggered
by the substrate then mediated by the solvent molecules, in the
tertiary and quaternary structures of tyrosinase, might be the real
reason for the suicide inactivation100. On the other hand, however,
based on reports, it was found that acetylation of tyrosine resi-
dues with N-acetylimidazole protects mushroom tyrosinase from
the suicide inactivation in the presence of its catecholic substrate,

4-[(4-methylbenzo) azo]-1,2-benzenediol without any major impact
on the secondary structure of enzyme101.

The studies about the kinetics of suicide inactivation of tyrosin-
ase have been carried out with several o-diphenolic substrates102,
ascorbic acid103, L- and D-dopa104 and with different aminophenols
and o-diamines105. The authors have established that the suicide
inactivation could occur after the transference of a proton to the
peroxide group on the active site of oxy-tyrosinase98,106, also it
has been proposed that the monophenols do not inactivate the
enzyme107,108.

The chemical structure of the different substrates is diverse,
but the process always requires a step of oxidation/reduction:
o-diphenols102,104, ascorbic acid103, aminophenols and
o-diamines105, hydroxyhydroquinone109, tetrahydrobiopterines110,
tetrahydrofolic acid111 and NADH112.

b. Generally, the mode of inhibition by “true inhibitors” is one
of these four types: competitive, uncompetitive, mixed type
(competitive/uncompetitive), and noncompetitive. A com-
petitive inhibitor can bind to a free enzyme and prevents
substrate binding to the enzyme active site. Regarding the
property that tyrosinase is a metalloenzyme, copper chelators
such as many aromatic acids, phenolic and poly-phenolic
compounds, a few non-aromatic compounds, can inhibit
tyrosinase competitively by mimicking the substrate of
tyrosinase52,60. Recently, it was found that D-tyrosine nega-
tively regulates melanin synthesis by inhibiting tyrosinase
activity, competitively113. In addition, L-tyrosine has been
shown as an inhibitor114.

In contrast, an uncompetitive inhibitor can bind only to the
enzyme-substrate complex and a mixed (competitive and uncom-
petitive mixed) inhibitor can bind to both forms of free enzyme
and enzyme-substrate complex. Finally, noncompetitive inhibitors
bind to a free enzyme and an enzyme–substrate complex with
the same equilibrium constant115. Non-competitive and mixed-
inhibition are frequent modes observed in the kinetics studies on
mushroom tyrosinase activities. Phthalic acid and cinnamic acid
hydroxypyridinone derivatives116 are two examples of mixed
type inhibitors of mono-phenolase activity117. Also, some com-
pounds such as phthalic acid46 and terephthalic acid118, D-(�)-
arabinose119, brazilein120, thymol analogs121 were demonstrated as
mixed-type effector examples of di-phenolase activity. Furthermore,
other compounds such as bi-pyridine derivatives122, two thiadiazole
derivatives44 barbarin123, chlorocinnamic acids124, propanoic acid125,
some N-(mono- or dihydroxybenzyl)-N-nitrosohydroxylamines126

Figure 2. Monophenolase and diphenolase activities of Tyrosinase. EmM, met-tyrosinase/monophenol complex; M, monophenol; D, o-diphenol; Em,
met-tyrosinase; EmD, met-tyrosinase/o-diphenol complex; Ed, deoxy-tyrosinase; O2, molecular oxygen; Eox, oxy-tyrosinase; EoxD, oxy-tyrosinase/o-diphenol complex; EoxM,
oxy-tyrosinase/monophenol complex; Q, o-quinone; Cr, Dopachrome.
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and p-alkylbenzaldehydes127 inhibited catecholase activity of
mushroom tyrosinase uncompetitively. Some derivatives of
thiazoles are examples for noncompetitive tyrosinase inhibition128.

In addition to determining the inhibition mechanism, inhibitory
strength which is expressed as the IC50 value (the concentration
of inhibitor at which 50% of your target is inhibited) should be
calculated in the enzyme kinetics studies and inhibitor screening
to compare the inhibitory strength of an inhibitor with others.
However, the IC50 values may be incomparable due to the varied
assay conditions (different substrate concentrations, incubation
time, and different sources of tyrosinase) but a positive control
can be used for this purpose52. Although, some researchers have
not calculated IC50 and have not applied a positive control in their
studies but, fortunately, in most studies conducted for screening
new tyrosinase inhibitors, the popular whitening agents, such
as kojic acid, arbutin or hydroquinone, were used as a positive
control129 at the same time. However, among different types of
mushroom tyrosinase inhibitors, some inhibitors such as
hydroquinone49 arbutin, kojic acid15,49 , azelaic acid, L-ascorbic
acid, ellagic acid and tranexamic acid have been reported as
skin-whitening agents in the cosmetic industry but there are a
few reports failed to confirm their effect as an agent to lighten
skin in clinical trials despite the safety of this compound5.

Recently, Mann et al., have compared the inhibitory effects of
hydroquinone, arbutin and kojic acid by human tyrosinase and
mushroom tyrosinase. They have found hydroquinone and arbutin
and kojic acid (IC50> 500 mmol/L) weekly inhibits human tyrosin-
ase. In contrast, a resorcinyl-thiazole derivative, thiamidol, is a
most potent inhibitor of human tyrosinase (IC50 of 1.1mmol/L) but
inhibits mushroom tyrosinase weakly (IC50¼ 108mmol/L)130. Also,
deoxyarbutin, a novel reversible tyrosinase inhibitor with effective
in vivo skin lightening potency, have been reported due to its
increased skin penetration and binding affinity to human tyrosin-
ase131. In another research, Sugimoto et al. have investigated a
comparison of inhibitory effects of alpha-arbutin and arbutin with
human tyrosinase and they have found a-arbutin is stronger
than arbutin132.

Natural tyrosinase inhibitor sources

Natural sources including plants, bacteria and fungi have recently
become of increasing interest for their antityrosinase activity by
producing bioactive compounds. A number of researchers
prefer to identify inhibitors from natural sources due to their less
toxicity and better bioavalibility, especially for food, cosmetic and
medicinal applications.

Figure 3. Detail of the structural mechanism proposed to explain the suicide inactivation of tyrosinase during its action on o-diphenols. Em, met-tyrosinase; Eox,
oxy-tyrosinase; EoxD, oxy-tyrosinase/o-diphenol complex; (Eox-D)1, oxy-tyrosinase/o-diphenol complex axially bound to a Cu atom; (Eox-D)2, oxy-tyrosinase/o-diphenol
complex axially bound to the two Cu atoms; (Eox-D)3, oxy-tyrosinase/o-diphenol complex axially bound to one Cu atom and the deprotonated hydroxyl group of
C-3; Ei, inactive form of tyrosinase. A general view of this scheme is shown in Ref 98.
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Plants

It is well known that phenolic compounds are the largest group
of phytochemicals found in plants, which are mainly the factors
responsible for the activities in plant extracts52. Tyrosinase
inhibitory activity of many plant extracts was carried out to find
new sources of anti-tyrosinase compounds. For example, anti-
tyrosinase activities of the following plants have been reported by
various researchers: Asphodelus microcarpus133, Morus nigra L134,
Greyia radlkoferi Szyszyl45, Limonium tetragonum135, Arctostaphylos
uva-ursi136, Pleurotus ferulae137, Agastache rugosa Kuntze fermented
with Lactobacillus rhamnosus and Lactobacillus paracasei138,
Artemisia aucheri Boiss139, Cassia tora140, S. brevibracteata subsp141,
Rhodiola crenulata, Alpinia officinarum Hance and Zanthoxylum
bungeanum Maxim142, Mangifera indica143, Podocarpus falcatus144,
Momordica charantia142, Cymbopogon citrates145, Greyia flanaganii
(IC50¼ 32.62 mg/ml)146, Vitis vinifera Leaf extracts (IC50¼ 3.84mg/
mL)147 and Inula britannica L.146. Also, tyrosinase inhibitory activity
of 91 native plants from central Argentina was carried out by
Chiari et al.138,147. Their results approved the inhibitory activity
of these extracts against tyrosinase: Achyrocline satureioides,
Artemisia verlotiorum, Cotoneaster glaucophylla, Dalea elegans,
Flourensia campestris, Jodina rhombifolia, Kageneckia lanceolata,
Lepechinia floribunda, Lepe-chinia meyenii, Lithrea molleoides,
Porlieria microphylla, Pterocaulon alopecuroides, Ruprechtia ape-
tala, Senna aphylla, Sida rhombifolia, Solanum argentinum,
Tagetes minuta, and Thalictrum decipiens. Besides, plants from
the Moraceae family including genera Morus species, Artocarpus,
Maclura (Cudrania), Broussonetia, Milicia (Chlorophora), and Ficus
have shown in vitro tyrosinase inhibition148. Also, ethanolic and
methanolic extracts of some other plants such as Ardisia elliptica
Thunb149, Phyllanthus acidus (L.) Skeels, Rhinacanthus nasutus L.
Kurz (IC50 value of 271.50 mg/ml), Arbutus andrachne L.
(IC50¼ 1mg/mL)150, Withania somnifera L. Dunal and Solanum
nigrum L. berries151, Pulmonaria officinalis and Centarium umbel-
latum152 and Camel’s foot creeper leaves (Bauhinia vahlii)153 sig-
nificantly inhibited tyrosinase activity, too. Quispe et al. have
screened tyrosinase inhibitory properties of Peruvian medicinal
plants. Among these plant extracts, Hypericum laricifolium Juss,
Taraxacum officinale F.H.Wigg. (IC50 value of 290.4 mg/ml), and
Muehlenbeckia vulcanica Meisn (IC50 value of 280.1 mg/ml)
showed the greatest anti-tyrosinase activity154. Furthermore,
tyrosinase inhibitory activity of mangrove plants in
Micronesia155, Korean indigenous plants156, plants from Brazilian
Cerrado157, five traditional medicinal plants from Iran158, ethanol
extracts from medicinal and edible plants cultivated in
Okinawa159, seashore plants160, some tropical plants161 and
Bangladeshi indigenous medicinal plants162, have been investi-
gated by various researchers. Bonesi et al. have reported recent
trends in the discovery of tyrosinase inhibitors from plant
sources163.

Fungi and bacteria

Fungi from different genera such as Aspergillus sp.164, Trichoderma
sp.165, Paecilomyces sp.166, Phellinus linteus167, Daedalea dickinsii168,
Dictyophora indusiata169 along with a liquid culture of Neolentinus
lepideus170 have been reported as a source of novel tyrosinase
inhibitor by producing bioactive compounds. Also, there have
been several reports on tyrosinase inhibitors from some marine
fungi species such as Myrothecium sp. isolated from algae171 and
Pestalotiopsis sp. Z233172. Also, there are several reports on
tyrosinase inhibition by bacterial species and their metabolites.

Among them, Streptomyces sp., such as S. hiroshimensis TI-C3
isolated from soil173, an actinobacterium named Streptomyces
swartbergensis sp. Nov.174 and Streptomyces roseolilacinus NBRC
12815175 are potential bacterial sources of tyrosine inhibitors.
Moreover, some tyrosinase inhibitors have been reported from a
gram-negative marine bacterium Thalassotalea sp. Pp2-459176 and
a toxic strain of the cyanobacterium, Oscillatoria agardhii177.
Interestingly, some probiotics such as Lactobacillus sp.178 which
are used in the fermentation process have been investigated as
natural tyrosinase inhibitor sources. Based on the studies, it has
been confirmed that the physiological activities of fermented
extracts are considerably higher than those of unfermented
extracts and their cytotoxic activity is lower as compared to unfer-
mented extracts179. Recently, tyrosinase inhibitory four different
lactic acid bacteria (LAB) strains isolated from dairy cow feces
have been proved by Ji et al.180.

Finally, in an updated review by Fernandes from reported
findings, tyrosinase inhibitors produced by microorganisms have
been summarised61. This review shows that diverse tyrosinase
inhibitors isolated from plant sources and fungi are mostly phen-
olic compounds, steroids, and alkaloids structurally comparable
with each other. In contrast, tyrosinase inhibitors from bacteria
comprise a smaller group of alkaloids, macrolides, and polyphe-
nols, which competitively inhibit the enzyme61.

Inhibitors from natural, semisynthetic and
synthetic sources

Simple phenols

Phenolic compounds which are characterised by having at least
one aromatic ring and one (or more) hydroxyl group can be
classified based on the number and arrangement of their carbon
atoms. These compounds are commonly found to be conjugated
to sugars and organic acids. Phenolics range from simple to large
and complex tannins and derived polyphenols due to their
molecular-weight and number of aromatic-rings180.

The simple phenols such as hydroquinone181,182 and its
derivatives183,184, deoxyarbutin185,186 and its derivatives187, 4–(6-
Hydroxy-2-naphthyl)-1,3-bezendiol, resorcinol (or resorcin)188 and
4-n-butylresorcinol189, vanillin190 and its derivatives191,192 have
been reported in the scientific literature as possible phenolic
inhibitors of the tyrosinase (Figure 4). Chen et al. have found the
alkylhydroquinone 10’(Z)-heptadecenylhydroquinone, isolated
from the sap of the lacquer tree Rhus succedanea, can inhibit the

Figure 4. Chemical structures of some simple phenolic compounds.
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activity of tyrosinase and suppress melanin production in animal
cells. The IC50 of this compound (37 mM) is less than hydroquinone
(70mM) as a known inhibitor of tyrosinase. They have suggested
that the potent inhibitory effect of this derivative on tyrosinase
activity is likely due to its heptadecenyl chain, which facilitates the
oxidation of the hydroquinone ring183,184.

Isotachioside, a methoxy-hydroquinone-1-O-beta-D-glucopyra-
noside isolated from Isotachis japonica and Protea neriifolia and its
glycoside derivatives (glucoside, xyloside, cellobioside, and malto-
side) are categorised as analogs of arbutin. However, isotachioside
and arbutin could not be determined as potent inhibitor. But, glu-
coside, xyloside, cellobioside and maltoside derivatives, missing
methyl and benzoyl groups, acted as tyrosinase inhibitors with
IC50s of 417, 852, 623 and 657 mM, respectively. Among these
novel inhibitors, glucoside derivative (IC50¼ 417 mM) was the most
potent, indicating that the structural combination of resorcinol
and glucose was significant for inducing the inhibitory effect193.

Hydroquinone and some of its known derivatives, including a
and b-arbutin, are described as both a tyrosinase inhibitor and a
substrate194,195. Deoxyarbutin and its second-generation deriva-
tives have been proposed as promising agents to ameliorate
hyperpigmented lesions or lighten skin due to less toxicity at their
effective inhibitory dose185,186.

Monophenolic compounds such as L-tyrosine, L-a-methyl-
tyrosine and tyramine are substrates of tyrosinase. o-Quinone
evolves in the medium of reaction accumulating o-diphenol
and this accumulation provokes that met-tyrosinase (Em) is
transformed into oxy-tyrosinase (Eox), which is the active form of
the tyrosinase for monophenols and o-diphenols. Therefore,
tyrosinase is active with monophenols such as: umbelliferone196,
hydroquinone197,198 p-hydroxybenzyl alcohol199, 4-hexylresorcinol200,
oxyresveratrol201, 4-n-butylresorcinol202, resorcinols203, a and
b-arbutin195 and p-coumaric acid204,205 when we add the follow-
ing reagents to medium of reaction: hydrogen peroxide (trans-
forms Em to Eox), an o-diphenol or a reducing agent such as
ascorbic acid transforming Em to Ed which, with molecular oxygen,
is transformed into Eox. A particular case is deoxyarbutin, which
acts as a substrate of tyrosinase even if any reagent is not added
to the medium of reaction206. Taking into consideration all the
previous comments, several methods have been developed to
discriminate between true inhibitors and alternative substrates of
the enzyme98,207.

Polyphenols

Plants produce a large diverse class of polyphenols including
phenolic acids, flavonoids, stillbenes and lignans208,209. A
large number of these compounds have been reported as a
weak or potent inhibitor of tyrosinase from natural210–215 and
synthetic216–219 sources.

Flavonoids
Among polyphenolic compounds, some of the flavonoid derivatives
mostly found in herbal plants, fruits and synthetic sources have
been raveled to be the potent inhibitors of tyrosinase133,211,220–225.
There is a significant correlation between the inhibitory potency of
flavonoids on mushroom tyrosinase and melanin synthesis in mela-
nocytes226. In searching effective tyrosinase inhibitors from natural
products, many flavonoid compounds have been isolated and eval-
uated for their inhibitory activity on mushroom tyrosinase from dif-
ferent natural sources such as Trifolium nigrescens Subsp.
Petrisavi227, mung bean (Vigna radiatae L.)228, calamondin peel229,

Morus yunnanensis230, Bhagwa and Arakta cultivar231, Tibouchina
semidecandra L232, Maackia faurie232, Pleurotus ostreatus233, Potentilla
bifurca234, Alpinia officinarum235, roots of Morus lhou236, Garcinia
subelliptica160, Artocapus altilis190, Myrsine africana237, Pulsatilla cer-
nua238, Salvia miltiorrhiza-Carthamus tinctorius (Danshen-Honghua,
DH) herbal pair239 and other various medicinal plants240.

Generally, major flavonoids (Figure 5) are classified into several
main classes: flavones, flavonols, isoflavones, flavanones, flavanoles
and anthocyanidins. Minor flavonoids included: dihydroflavones,
flavan-3,4-diols, coumarins, chalcones, dihydrochalcones and
aurones241. Also, prenylated and vinylated flavonoids, such as
flavonoid Glycosides, are other subclasses of flavonoids. Some fla-
vonoid glycosides such as myricetin 3-galactoside and quercetin
3-O-b-galactopyronaside from Limonium tetragonum133 and 3’,5’-
di-C-b glucopyranosylphloretin from unripe calamondin peel
(IC50¼ 0.87mg/ml)229, have been investigated for their inhibitory
activities on tyrosinase. Moreover, the inhibitory activities of some
other prenylated and vinylated flavonoids, such as kuwanon C,
papyriflavonol A, sanggenon D and sophoflavescenol, and sangge-
non D (IC50¼ 7.3mM) against tyrosinase, have been approved by
Lee et al.242. However, according to their findings, the prenylation
with isoprenyl group or the vinylation of some flavonoid mole-
cules does not enhance their tyrosinase inhibitory activity242.
Interestingly, it has even demonstrated that deglycosylation of
some flavonoid glycosides by far-infrared irradiation can be
improved tyrosinase inhibitory activity243. In a survey from
reported findings (2008–2013), Orhan et al. reviewed many
examples of tyrosinase inhibitors with flavonoid structure220. In
the following, some tyrosinase inhibitors from various flavonoid
classes have been mentioned and discussed.

Flavones and dihydroflavones. The most common flavones are
luteolin, apigenin, baicalein, chrysin and their glycosides (e.g.
apigetrin, vitexin, and baicalin)209. Furthermore, nobiletin and
tangeretin are the polymethoxylated flavones244. Nguyen et al. have
investigated the presence of apigenin and nobiletin from the metha-
nolic extract of the heartwood of Artocapus altilis with 11 other phen-
olic compounds for their inhibitory activities on tyrosinase190. In
another research, Shang et al. have found a derivative of flavone,
namely 7,8,4�-trihydroxyflavone which inhibits diphenolase activity of
tyrosinase with an IC50 value of 10.31±0.41mM and a noncompetitive
manner with a Ki of 9.50±0.40mM. The quenching anlaysis of tyrosin-
ase by this compound showed a static mechanism and a single bind-
ing site with a binding constant of 7.50±1.20� 104 M�1 at 298 K.
Based on the thermodynamics parameters, the binding process
involved hydrogen bonds and van der Waals forces. Also, docking
simulation illustrated hydrogen bonds between this compound and
the residues His244 and Met280 of active site245.

In addition, several hydroxyflavones including baicalein, 6-
hydroxyapigenin, 6-hydroxygalangin and 6-hydroxy-kaempferol246

and tricin (5,7,40-trihydroxy-30,50-dimethoxyflavone)247 have been
demonstrated as inhibitors of diphenolase activity of tyrosinase.
The mechanism of inhibition by baicalein (IC50¼ 0.11 mM)
indicated a mix-type (Ki of 0.17 mM, a¼ 0.56). A single binding
site with a binding constant of 2.78� 105 M � 1 was obtained
from the quenching fluorescence analysis for this compound.
Thermodynamic parameters suggested spontaneous binding
through hydrogen bonding and van der Waals forces.
Furthermore, circular dichroism spectra indicated a reduction in
the content of a-helix from 32.67% to 29.00% due to this binding.
Docking simulations also indicated that baicalein mainly bound
tyrosinase via its Met280 residue248. While, tricin was found as
a noncompetitive inhibitor of tyrosinase with good efficacy
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compared to its control. Based on circular dichroism spectra,
the interactions between tricin and tyrosinase did not change the
secondary structure. Fluorescence quenching revealed that the
interaction of tricin with residues in the hydrophobic pocket of
tyrosinase is stabilised by hydrophobic interactions and hydrogen
bonding. Also, docking results implied that the stereospecific
effects of tricin on substrates or products and flexible conform-
ation alterations of tyrosinase produced by weak interactions
between tricin and this enzyme are the possible inhibitory mecha-
nisms of this compound247.

Another flavone named morusone from the twigs of Morus
alba L. (IC50¼ 290.00 ± 7.90mM)249, a new bioflavone 4’’’,5,500,7,700-
pentahydroxy-3’,3’’’-dimethoxy-3-O-b-d-glucosyl-300,4’-O-biflavone
from Trifolium nigrescens Subsp. Petrisavi227, along with
apigenin, flavone glucoside vitexin (IC50¼ 6.3mg/ml) and a C-
glycosylflavone isovitexin (IC50¼ 5.6mg/ml) from Vigna radiatae
L. extracts exhibited significant tyrosinase inhibition activities228.
Also, inhibitory effects of five flavones including mormin
(IC50¼ 0.088mM), cyclomorusin (IC50¼ 0.092mM), morusin
(IC50¼ 0.250mM), kuwanon C (IC50¼ 0.135mM) and norartocar-
petin (IC50¼ 1.2 mM) isolated from the stem barks of Morus lhou
(S.) Koidz, have been investigated by Ryu et al. The mechanism
of inhibition indicated that mormin, cyclomorusin, kuwanon C
and norartocarpetin inhibited tyrosinase competitively250.

Flavonoles. Myricetin, kaempferol, quercetin, morin, isorhamnetin,
galangin and their glycosides (e.g. rutin, quercitrin, and astragalin)
are the predominant flavonols most commonly found as
O-glycosides209. So far, several flavonols such as kaempferol from
Hypericum laricifolium Juss154 and Crocus sativus L.251, quercetin
from Olea europaea L.252, quercetin-4’-O-beta-D-glucoside from
Potentilla bifurca253, quercetin-3-O-(6-O-malonyl)-b-D-glucopyrano-
side and kaempferol-3-O-(6-O-malonyl)-b-D-glucopyranoside from
mulberry leaves253, galangin from Alpinia officinarum235, morin254

and (±) 2,3-cis-dihydromorin (IC50¼ 31.1 mM), 2,3-trans-
dihydromorin (IC50¼ 21.1 mM) from Cudrania cochinchinensis255,
were identified as tyrosinase inhibitors.

Based on kinetics studies, morin reversibly inhibited tyrosinase
through a multi-phase kinetic process and bind to tyrosinase at a
single binding site mainly by hydrogen bonds and van der Waals

forces. It inhibited tyrosinase reversibly in a competitive manner
with Ki¼ 4.03 ± 0.26mM and the binding of morin to tyrosinase-
induced rearrangement and conformational changes of the
enzyme254. Furthermore, it was reported that three flavonols
including galangin235, kaempferol251 and quercetin inhibit the
oxidation of L-DOPA catalysed by mushroom tyrosinase and pre-
sumably this inhibitory activity comes from their copper chelating
ability. While their corresponding flavones, chrysin, apigenin and
luteolin, are not identified as copper chelator, Kubo et al. believed
that the chelation mechanism by flavonols may be attributed to
the free 3-hydroxyl group251. Interestingly, quercetin behaves as a
cofactor and does not inhibit monophenolase activity. In contrast,
galangin inhibits monophenolase activity and does not act as a
cofactor, and kaempferol neither acts as a cofactor nor inhibits
monophenolase activity. However, inhibiting of diphenolase activ-
ity by chelating copper in the enzyme is the common feature of
these three flavonols160.

Recently, 8-prenylkaempferol as a competitive tyrosinase inhibi-
tor along with Kushenol A (noncompetitive) isolated from Sophora
flavescens256, have been investigated with IC50 values less than
10 mM. Finally, based on the literature review, many flavonol inhib-
itors are usually competitive inhibitors due to the 3-hydroxy-4-
keto moiety of the flavonol structure, which chelates the copper
in the active site 251. Also, among all these compounds, quercetin-
4’-O-beta-D-glucoside with a IC50 value of 1.9mM is revealed stron-
ger tyrosinase inhibition than their positive control, kojic acid236.
While the other flavonol inhibitors listed above are very weak
inhibitors and have little potential as skin whitening or food
antibrowning.

Isoflavones. Isoflavones such as daidzein, genistein, glycitein, for-
mononetin, and their glycosides (e.g. genistin, daidzin) mostly are
detected in the medicinal herbs209. Park et al. have investigated
tyrosinase inhibition activities of some natural o-dihydroxyisofla-
vone derivatives with variable hydroxyl substituent at the aromatic
ring of isoflavone isolated from five-year-old Korean fermented
soybean paste. They have demonstrated that two derivatives
7,8,4’-trihydroxyisoflavone and 7,3’,4’-trihydroxyisoflavone inhibit
tyrosinase by IC50 value of 11.21 ± 0.8mM and 5.23 ± 0.6mM,
respectively, whereas very low inhibition activity was obtained for

Figure 5. Structure of the main classes of flavonoids.

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 285



6,7,4’-trihydroxyisoflavone, daidzein, glycitein and genistein257.
Also, 6,7,4’-trihydroxyisoflavone was identified as a potent
competitive inhibitor of monophenolase activity of tyrosinase by
Chang et al., with an IC50 value of 9.2 mM, which is six times
potent than kojic acid258. But, its analogs, glycitein, daidzein, and
genistein showed little anti-tyrosinase activity. Therefore, they
have suggested that C-6 and C-7 hydroxyl groups of the isofla-
vone skeleton might play an important role in the tyrosinase
inhibitory activity. Furthermore, two other isoflavone metabolites,
7,8,4’-trihydroxyisoflavone and 5,7,8,4’-tetrahydroxyisoflavone
isolated from soygerm koji, were investigated by Chang et al.259.
These compounds inhibited both monophenolase and dipheno-
lase activities with an irreversible inhibition manner. Interestingly,
by using HPLC analysis and kinetic studies, they have found that
7,8,4’-trihydroxyisoflavone and 5,7,8,4’-tetrahydroxyisoflavone are
potent suicide substrates of mushroom tyrosinase. It may be
concluded that the hydroxyl groups at both the C7 and C8
positions could completely change the inhibitory mechanism of
the isoflavones from the reversible competitive to the irreversible
suicide form52.

Recently, a noncompetitive inhibitor, glabridin (IC50¼ 0.43mM),
isolated from the root of Glycyrrhiza glabra Linn, has exhibited
excellent inhibitory effects on tyrosinase. The quenching analysis
of tyrosinase by glabridin showed a static mechanism260. Notably,
a drug delivery system by using glabridin microsponge-loaded gel
as a new approach for hyperpigmentation disorders have been
proposed by Deshmukh et al.261. In another research,
Jirawattanapong et al. have identified a synthetic glabridin,
3’’,4’’-dihydroglabridin, with higher activity than glabridin
(IC50¼ 11.40 mM) against tyrosinase. They have suggested the
more effective interaction with the enzyme may be due to more
conformational flexibly of this compound that has occurred by
the 4-substituted resorcinol skeleton and the lacking of double
bond between carbon atom 3’’ and 4’’ in its structure262. Also,
Nerya et al. have reported that another isoflavone, glabrene, in
the licorice extract can inhibit both monophenolase and dipheno-
lase tyrosinase activities263. In the study reported by Heo et al.,
two new isoflavones desmodianone H and uncinanone B have
been identified as novel tyrosinase inhibitors. However, uncina-
none B has higher anti-tyrosinase rate than desmodianone H264.
Glyasperin C from Glycyrrhiza glabra is another kind of isoflavone
identified as tyrosinase inhibitor265. Furthermore, some other
isoflavones, formononetin, genistein, daidzein, texasin, tectorige-
nin, odoratin and mirkoin isolated from the stems of Maackia faur-
iei, have been investigated by Kim et al. for their tyrosinase
inhibition activity. Based on their results, among these falvonoids,
mirkoin (IC50¼ 5 mM) revealed stronger tyrosinase inhibition than
the positive control, kojic acid and inhibited tyrosinase reversibly
in a competitive mode232. Recently, two isoflavonoids lupinalbin
(IC50¼ 39.7 ± 1.5mM), and 20-hydroxygenistein-7-O-gentibioside
(IC50¼ 50.0 ± 3.7mM) from Apios americana were identified as
competitive inhibitors, with Ki values of 10.3 ± 0.8mM and
44.2 ± 1.7mM, respectively266.

Flavanones. Flavanones such as naringenin, hesperetin, eriodictyol
and their glycosides (e.g. naringin, hesperidin, and liquiritin) and
flavanonols (taxifolin) are mainly found in citrus fruits and the
medicinal herbs209. A copper chelator flavanone named hesperetin
inhibits tyrosinase reversibly and competitively. Based on the ANS-
binding fluorescence analysis, hesperetin disrupted of tyrosinase
structure by hydrophobic interactions. In addition, hesperetin
chelates a copper ion coordinating with 3 histidine residues
(HIS61, HIS85, and HIS259) within the active site pocket of the

enzyme due to docking simulation results267. In another study,
Chiari et al. have illustrated tyrosinase inhibitory activity of a
6-isoprenoid-substituted flavanone isolated from Dalea elegans268.
Also, Steppogenin is a natural flavanone with a strong tyrosinase
inhibitory activity (IC50¼ 0.98 ± 0.01mM), from Morus alba L249.
Recently, a new isoprenylated sanggenon-type flavanone, nigrasin
K, along with some other analogs including sanggenon M, C and
O, chalcomoracin, sorocein H and kuwanon J isolated from the
twigs of Morus nigra have been identified as potent tyrosinase
inhibitors by Hu et al.269. Among these natural inhibitors, sangge-
non D revealed stronger tyrosinase inhibition than the positive
control, kojic acid or arbutin.

Flavanoles and flavan-3,4-diols. Flavan-3-ols are the most complex
subclass of flavonoids ranging from the simple monomers (þ)-
catechin and its isomer (�)-epicatechin to the oligomeric and
polymeric proanthocyanidins, which are also known as condensed
tannins. Flavanols, such as catechin, epicatechin, epi-gallocatechin,
epicatechin gallate (ECG), epigallocatechin gallate (EGCG) and
proanthocyanidins are widespread in the medicinal herbs and
higher plants231,270. Alphitonia neocaledonica (Rhamnaceae) is an
endemic tree of New Caledonia, which has been identified as an
anti-tyrosinase source due to the presence of tannins and galloca-
techin228. Moreover, a catechin compound isolated from the etha-
nol extract of Distylium racemosum branches, with IC50 value of
30.2 mg/mL, showed higher tyrosinase inhibition activity than
arbutin as a positive control271. Also, a proanthocyanidins from
Clausena lansium demonstrated potent mushroom tyrosinase
inhibition in a mixed competitive manner and illustrated strong
inhibition of the melanogenic activity of B16 cells. The IC50 values
for the monophenolase and diphenolase activities were 23.6 ± 1.2
and 7.0 ± 0.2mg/mL, respectively. Furthermore, from the inhibition
mechanism of this compound, it can be concluded that a chela-
tion between the hydroxyl group on the B ring of the proantho-
cyanidins and dicopper ions of the enzyme has been occurred39.

Another investigation revealed that procyanidin-type proantho-
cyanidins, purified from cherimoya (Annona squamosa) pericarp
could powerfully inhibit the activities of monophenolase and
diphenolase of tyrosinase, competitively272. In addition, Kim et al.
have demonstrated that (þ)-catechin-aldehyde polycondensates
inhibit the L-tyrosine hydroxylation and L-DOPA oxidation by
chelation to the active site of tyrosinase273. Recently, another
tyrosinase inhibitor from this class, condensed tannins (mixtures
of procyanidins, propelargonidins, prodelphinidins) and their acyl
derivatives (galloyl and p-hydroxybenzoate) from Longan Bark
indicated the reversible and mixed (competitive is dominant)
inhibition of tyrosinase274.

Anthocyanidins. Anthocyanins, including anthocyanidins (e.g.
cyanidin, delphinidin, malvidin, peonidin, pelargonidin, etc.) and
their glycosides, are widely distributed in the medicinal
herbs217. It seems that there is a significant relationship between
anthocyanin content with anti-human and anti-mushroom
tyrosinase activities275.

Curcuminoids. Two phenolic compounds, namely curcumin and
desmethoxycurcumin have been isolated from the methanolic
extract of the heartwood of Artocapus altilis and showed more
potent tyrosinase inhibitory activities than the positive control
kojic acid190. Also, a curcumin included in Chouji and Yakuchi
extracts inhibited the enzyme competitively192. In addition,
some synthetic curcumin derivative compounds217,276 and its
analogs possessing m-diphenols and o-diphenols have been
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investigated as potent inhibitors of mushroom tyrosinase216.
Based on the results, 4-hydroxyl groups in curcumin analogs
containing 4-hydroxyl-substituted phenolic rings with C-2/C-4-
or C-3/C-4-dihydroxyl-substituted diphenolic rings make them
more active than kojic acid217.

Coumarins. In search of tyrosinase inhibitors, the inhibitory effects
of several coumarin derivatives (Figure 6)277–279 such as 3-aryl
and 3-heteroarylcoumarins280, esculetin281, coumarinolignoid
8’-epi-cleomiscosin282, umbelliferone and their analogs283, phenyl
coumarins284, hydroxycoumarins285,286, thiophosphonic acid
diamides, diazaphosphinanes coumarin derivatives287, cardol-
coumarin derivatives288 and coumarin-resveratrol hybrids289, were
evaluated on tyrosinase activity.

Interestingly, among hydroxycoumarins, the 3-hydroxycou-
marin286 and 7-hydroxycoumarin showed potent activity for the
tyrosinase inhibition278, while the 4-hydroxycoumarin is not
an inhibitor286. Also, 2-(1-(coumarin-3-yl)-ethylidene)

hydrazinecarbothioamide and 2-(1-(6-chlorocoumarin-3-yl)
ethylidene)-hydrazinecarbothioamide demonstrated an irreversible
inhibition of tyrosinase277. Recently, in the screening of natural
products for the development of cosmetic ingredients, two major
compounds, trans-N-coumaroyltyramine (IC50¼ 40.6 mM) and cis-N-
coumaroyltyramine (IC50¼ 36.4 mM) from Humulus japonicus
showed potent tyrosinase inhibition290.

Chalcones and dihydrochalcones. Chalcones (butein, phloretin,
sappan-chalcone, carthamin, etc.), or 1,3-diphenyl-2-propen-1-
ones, are one of the most important classes of flavonoids.
Chalcone-containing plants have been used for a long time in
traditional medicine209. Based on the reports, some natural and
synthetic chalcones and their derivatives are identified as new
potent depigmentation agents and tyrosinase inhibitors (Figure 7).
So far, natural chalcones isoliquiritigenin (20,40,4-trihydroxychal-
cone) and glabrene from licorice roots283, 2,4,2’,4’-hydroxycalcone
and three of its analogs with 3’-substituted resorcinol moieties

Figure 6. Inhibitory effects of the coumarins derivatives against mushroom tyrosinase activity: 3-aryl and 3-heteroarylcoumarins (1–10, 23–24), 3-hydroxycoumarin
(11), 4-hydroxycoumarin (12), 6-hydroxycoumarin (13), 7-hydroxycoumarin (14), umbelliferone analogs (15–16), Esculetin (17) umbelliferone (18), 3-phenyl coumarins
with bromo substituent (19), thiophosphonic acid diamides (20–22).
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from Morus australis (Figure 6, 19–22)291, 2,4,2’,4’-tetrahydroxy-3-(3-
methyl-2-butenyl)-chalcone from Morus nigra292, vulpinoideol B from
Carex vulpinoidea seeds293, dihydrochalcones from Flemingia philippi-
nensis210, 2,4,20,40-tetrahydroxychalcone (IC50¼ 0.07±0.02mM) and
morachalcone A (IC50¼ 0.08±0.02mM) from Morus alba L.249 and

bavachinin from Psoralea corylifolia21 have been presented as tyrosin-
ase inhibitors.

Also, tyrosinase inhibitory effects of several synthetic
chalcones and their derivatives were evaluated by various
researchers. Oxindole-based chalcones294, 1-(2-cyclohexylmethoxy-

Figure 7. Tyrosinase Inhibition Activity of chalcone derivatives inhibitors: Oxindole-based chalcone (1–8), chalcones isolated from Morus australis (9–12) azachalcones
(13–14), oxime based chalcone series (15,16) 2,3-dihydro-1H-inden-1-one chalcone-like derivatives (17,18), Dihydrochalcones from Flemingia philippinensis (19–21).
chalcone (22).
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6-hydroxy-phenyl)-3-(4-hydroxymethyl-phenyl) propenone deriva
tive295, isoxazole chalcone derivatives296, some azachalcones and
their oximes297,298, 2,4,2’,4’-tetrahydroxychalcone and its two
derivatives (1,3,5-tris-(2,4-dihydroxy-phenyl) pentane-1,5-dione and
7,2’,4’-trihydroxyflavanone)299, 2’,4’,6’-trihydroxychalcones300, naphthyl
chalcones301 and chalcone thiosemicarbazide derivatives302 have

been identified as a new class of tyrosinase inhibitors. Interestingly,
the most important factors in the efficacy of a chalcone are the loca-
tion of the hydroxyl groups on both aromatic rings and the number
of these hydroxyls and the presence of a catechol moiety don’t cor-
relate with increasing tyrosinase inhibition potency303.

Aurones. Okombi et al. have identified Z-benzylidenebenzofuran-
3(2H)-one and analogs as human tyrosinase inhibitors. However,
they found that aurones are weak inhibitors, but their derivatives
with two or three hydroxyl groups preferably at 4,6 and 4’
positions make them significant tyrosinase inhibitors. For example,
the most potent aurone, 4,6,4’-trihydroxyaurone induces 75%
inhibition at 0.1mM concentration and is highly effective
compared to kojic acid304. In addition to synthetic compounds,
several natural compounds such as (2’R)-2’,3’-dihydro-2’-
(1-hydroxy-1-methylethyl)-2,6’-bibenzofuran-6,4’-diol305 and
2-arylbenzofurans isolated from Morus notabilis306 and Morus
yunnanensis230, benzofuran flavonoids such as mulberrofuran G
(MG) and albanol B (AB) isolated from Morus sp307 and macrourins
E isolated from Morus macroura (IC50¼ 0.39mM) are potent
tyrosinase inhibitors among aurones308.

Phenolic acids
Phenolic acids are divided into hydroxybenzoates and hydoxycin-
namates. The most common hydroxycinnamates are p-coumaric,
caffeic and ferulic acids. So far, p-hydroxybenzoic acid, chlorogenic
acid (the ester of caffeic acid), vanilic acid (4-hydroxy-3-methoxy-
benzoic acid) and protocatechuic acid (a dihydroxybenzoic acid)
from Hypericum laricifolium Juss154, protocatechualdehyde
(IC50¼ 0.40 mg/mL) from Phellinus linteus175, benzoic acid propyl
gallate309, orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid) and
orsellinates (2,4-dihydroxy-6-methyl benzoates)310, p-coumaric acid
from ginseng leaves311, m-coumaric acid312, p-coumarate313 and its
derivatives from leaves of Breynia officinalis184 caffeic acid and its
n-nonyl ester314, ferulic acid from Spiranthes sinensis224, 4-Hydroxy
cinnamic acid315, synthetic hydroxycinnamoyl phenylalanyl/prolyl
hydroxamic acid derivatives316, and seven hydroxycinnamoyl
derivatives in green coffee beans317 have been investigated for
their tyrosinase inhibition activity. Among these, propyl gallate is
a reversible and mixed-type inhibitor on diphenolase activity of
tyrosinase with KIS¼ 2.135mM and Ki¼ 0.661mM309. Furthermore,
n-butyl, iso-propyl, sec-butyl, n-pentyl, n-hexyl and n-octyl orselli-
nates (uncompetitive, with an inhibition constant of 0.99mM)
behaved as inhibitors at 0.50mM, whereas methyl, ethyl, n-propyl,
tert-butyl, and n-cetyl orsellinates acted as tyrosinase activators.
Thus, tyrosinase inhibition increased with chain elongation,
suggesting that the enzyme site can accept an eight-carbon
alkyl chain310.

In addition to these compounds, 3-phenylbenzoic acid (3-PBA)
was revealed to be the most potent inhibitor against monopheno-
lase (noncompetitive, IC50¼ 6.97 mM) and diphenolase (mixed type
inhibition, IC50¼ 36.3 mM) activity of mushroom tyrosinase. Also,
Oyama et al. have found that some modification such as esterifica-
tion can abrogate this inhibitory activity of tyrosinase318.

Stillbenes
Resveratrol is the most common stilbene. Several stillbenes
derivatives from natural and synthetic sources (Figure 8) have
been investigated for their tyrosinase inhibition activity including:
resveratrol from Morus alba319, Pleurotus ferulae135, vitis viniferae
caulis320, Carignan grape juice321 Artocarpus gomezianus322 and
Streptomyces avermitilis MA4680323 and also, its derivatives from
Dipterocarpaceae plants324 and synthetic sources325, oxyresvera-
trol326 from Morus australis327, Morus alba L (IC50¼ 0.10 ± 0.01
mM)249 and Cudrania cochinchinensis (IC50¼ 2.33mM)255, azo-
resveratrol and its derivatives such as (E)-2-((2,4-dihydroxyphenyl)
diazenyl) phenyl 4 methylbenzenesulfonate328 and azo-oxyresvera-
trol329, trans-resveratrol from Streptomyces avermitilis MA4680 313,
a resveratrol dimer named gnetin C, from melinjo (Gnetum
gnemon)330. Also, several hydroxystillbene compounds from
synthetic and semisynthetic sources331,332 and from the extract of
Veratrum patulum333, along with synthetic glycosides of resvera-
trol, pterostilbene, and pinostilbene334, synthetic trans-stilbene
derivatives335, azastilbene analogs336, a newly synthesised stillbene
5-(6-hydroxy-2-naphthyl)-1,2,3-benzenetriol337, coumarin-
resveratrol hybrids290, synthetic polyphenolic deoxybenzoins218,
hydroxy substituted 2-phenyl-naphthalenes338 and 4-(6-hydroxy-2-
naphthyl)-1,3-bezendiol339 have been studied for their inhibition
activity against tyrosinase. However, based on the enzymatic
assays, resveratrol did not inhibit the diphenolase activity of
tyrosinase, but L-tyrosine oxidation by tyrosinase was suppressed
in presence of 100mM resveratrol. Interestingly, after the 30min of
preincubation of tyrosinase and resveratrol, both monophenolase
and diphenolase activities of tyrosinase were significantly
suppressed. Furthermore, this effect was reduced with the add-
ition of L-cysteine, which indicated suicide inhibition mechanism
of resveratrol340. Also, oxyresveratrol201 is identified as a tyrosinase
substrate like hydroquinone, arbutin, caffeic acid and some other
inhibitors. In addition to these studies on resveratrol, Fachinetti
et al., have demonstrated that the incorporation of resveratrol
into nanostructured lipid carriers allowed an enhanced tyrosinase
inhibitory activity341.

Lignans
Lignans are complex and diverse structures, which are formed
from three primary precursors. So far, lignans and lignan
glycosides isolated from exocarp of Castanea henryi342, Marrubium
velutinum and Marrubium cylleneum343, Pinellia ternate344 and
Crataegus pinnatifida345 have been evaluated for their tyrosinase
inhibitory potentials. However, these compounds mostly displayed
a moderate mushroom tyrosinase inhibitory activity.

Terpenoid derivatives

Carvacrol is a monoterpenoid phenol. To date, some carvacrol
derivatives346 from synthetic sources, bakuchiol, a terpene phenol
from Psoralea corylifolia21, iridoid glucosides (another type of
monoterpenoids) from Wulfenia carinthiaca Jacq347 and two new
bis-iridoids, namely 7-O-caffeoyl-sylvestroside I and 7-O-(p-
coumaroyl)-sylvestroside I isolated from Scabiosa stellata348 have
been investigated for their anti-tyrosinase activities. Among these
terpenoid derivatives, Cheng et al. have demonstrated that baku-
chiol is a potent inhibitor by applying capillary electrophoresis
with reliable online immobilised enzyme microreactor21. Also,
carvacrol derivatives such as 2-[2-methyl-5-(propan-2-yl)phenoxy]-
2-oxoethyl(2E)-3–(2,4-dihydroxyphenyl)prop-2-enoate showed

JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 289



excellent tyrosinase inhibitory activity by a noncompetitive
manner with Ki value 0.05 mM and IC50¼ 0.0167 mM349.

Quinone derivatives

The quinones are a class of small molecules that are
mostly derived from aromatic compounds such as benzene or
naphthalene. Among these compounds, Aloin, an anthraquinone-
C-glycoside from Aloe vera 349, anthraquinones from Polygonum
cuspidatum350 and tanshinone IIA (IC50¼ 1214mM) have been
verified as tyrosinase inhibitors239.

Phenyl derivatives

Several biphenyl derivatives351 (Figure 9) such as 4,4’-dihydroxybi-
phenyl352, biphenyl ester derivatives340, biphenyl construction
from flavan-3-ol substrates353, hydroxylated biphenyls26, function-
alised bis-biphenyl substituted thiazolidinones36, phenylbenzoic
acid derivatives354, phenylethylamide and phenylmethylamide
derivatives355, hydroxy substituted 2-phenyl-naphthalenes318,
4-hydroxyphenyl beta-D-oligoxylosides356, benzenethiol or phenyl-
thiol357, 2-((1Z)-(2–(2,4-dinitrophenyl)hydrazin-1-ylidene)methyl)
phenol358 and 4-[(4-hydroxyphenyl)azo]-benzenesulfonamide359,
have been identified as tyrosinase inhibitors.

Pyridine, Piperidine, pyridinones and hydroxypyridinone
derivatives

Some hydroxypyridinone derivatives360, 3-hydroxypyridine-4-
one derivatives361 hydroxypyridinone-L-phenylalanine362 and

pyridinones363 have been characterised for their antityrosinase
activity (Figure 10). Among these inhibitors, one mixed-type
inhibitor from hydroxypyridinone-L-phenylalanine conjugates
named ((S)-(5-(benzyloxy)-1-octyl-4-oxo-1,4-dihydropyridin-2-yl)
methyl 2-amino-3-phenylpropanoate) showed potent inhibitory
effect with IC50 values of 12.6 and 4.0mM for monophenolase and
diphenolase activities, respectively362.

Thiosemicarbazones, Thiosemicarbazide and other Thio
derivatives

Several kinds of thiosemicarbazone derivatives38,34,364–376 has
been investigated as possible tyrosinase inhibitors (Figure 11).
Furthermore, some benzaldehyde derivatives of thiosemicarba-
zone such as chlorobenzaldehyde thiosemicarbazones363,
p-hydroxy and p-methoxy benzaldehyde thiosemicarbazone362

along with p-methoxybenzaldehyde thiosemicarbazone and 4-
dimethylaminobenzaldehyde-thiosemicarbazone and 4-dimethyla-
minobenzaldehyde-N-phenyl-thiosemicarbazone377 were evaluated
for their inhibitory activities on mushroom tyrosinase.

Based on the findings, the appropriate functionalisation of thio-
semicarbazone may be improved the inhibitory activity of these
inhibitors. Dong et al. believe that the sterically bulky group at
the C-4 position of the thiophene ring contributes to this activity.
For example, the 4-functionalisation thiophene-2-carbaldehyde thi-
osemicarbazone with a methoxyacetyl group368 or introducing
benzene ring to the 4-functionalised ester group367 enhanced
inhibitory activity of thiophene-2-carbaldehyde thiosemicarbazone.
However, 5-functionalisation decreased its inhibitory activity.
Also, Soares et al., have demonstrated thiosemicarbazones

Figure 8. Resveratrol (3,5,4-trihydroxy-trans-stilbene) (1), and its analogs (2–23).
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Thio-1, Thio-2, Thio-3 and Thio-4 substituted with oxygenate
moieties, displayed better inhibitory activity (IC50 0.42, 0.35, 0.36
and 0.44mM, respectively) than Thio-5, Thio-6, Thio-7 and
Thio-834.

In addition to thiosemicarbazone derivatives, thiosemicarbazide
and its derivatives378–381, 5-benzylidene(thio)barbiturate-beta-D-
glycosides382, n-alkyl383, p-phenylene-bis, phenyl384, benzyl,
p-xylidine-bis and p-pyridine dithiocarbamate sodium salts385,
diethyldithiocarbamate, phenylthiourea386 and other thiourea
derivatives (Figure 12) such as methimazole, thiouracil, methyl-
thiouracil, propylthiouracil, ambazone, and thioacetazone387 have
been identified as tyrosinase inhibitors.

Azole and thiazolidine derivatives

So far, several azole derivatives (Figure 13) have been studied for
their tyrosinase inhibitory activity388. The discovered new types of
inhibitors included DL-3(5-benzazolyl) alanines and alpha-methyl-
dopa analogs389, aryl pyrazoles390, heterocyclic hybrids based on
pyrazole and thiazolidinone scaffolds391, 3,5-diaryl-4,5-dihydro-
1H392 and 3,5-diaryl pyrazole derivatives393, pyrazolo[4,3-e]
[1,2,4]triazine sulfonamides and sildenafil394–396, 1,3-oxazine-
tetrazole397, indole-spliced thiadiazole398, benzimidazole-1,2,3-
triazole hybrids399, 1,2,3-triazole-linked coumarinopyrazole
conjugates400, isoxazolone derivatives401 5(4H)-oxazolone
derivative402, imidazolium ionic liquids403, thiazolyl resorcinols404

have demonstrated the inhibitory effect on tyrosinase.
Furthermore, some thiazolidine derivatives have been evaluated
for their tyrosinase inhibitory activity including azo-hydrazone
tautomeric dyes substituted by thiazolidinone moiety405, (Z)-5-
(2,4-dihydroxybenzylidene) thiazolidine-2,4-dione406, 5-(substituted
benzylidene) thiazolidine-2,4-dione derivatives407, (2RS,4R)-2-(2,4-
dihydroxyphenyl)thiazolidine-4-carboxylic acid408, 2-(substituted
phenyl) thiazolidine-4-carboxylic acid derivatives409 and (Z)-5-(3-
hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one410.

Kojic acid analogs

Kojic acid is a well-known tyrosinase inhibitor. When DL-DOPA,
norepinephrine and dopamine are oxidised by tyrosinase, Kojic
acid inhibits effectively the rate of formation of pigmented
product(s) and of oxygen uptake411. Furthermore, several of its
derivatives have demonstrated a potent tyrosinase inhibitory
activity361,412–418. Noh et al. have modified kojic acid with amino
acids and screened their tyrosinase inhibitory activity. Among
them, kojic acid-phenylalanine amide showed a strong non-
competitive inhibition417. Interestingly, some kojic acid derivatives
despite their depigmenting activities did not display tyrosinase
inhibitory activitiy419.

Recently, Xie et al. have reported a kojic acid analog
namely 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercapto]-4-
(2,4-dihydroxylbenzylamino)-1,2,4-triazol as a potent competitive
tyrosinase inhibitor with an IC50 value of 1.35 ± 2.15 mM412.
Tyrosinase inhibitory activity of some kojic acid derivatives is
shown in Figure 14.

Benzaldehyde derivatives

Benzaldehyde420 and its derivatives421, hydroxy- or methoxy-
substituted benzaldoximes and benzaldehyde-O-alkyloximes422,
piperonal or 4-(methylenedioxy) benzaldehyde mesoionic deriva-
tives423, 4-hydroxybenzaldehyde derivatives424, anisaldehyde425

have been investigated for their inhibitory activities against
tyrosinase (Figure 15).

Among these derivatives, 3,4-dihydroxybenzaldehyde-O-
ethyloxime (IC50¼ 0.3 ± 0.1 mM) is of the same magnitude as
one of the best tyrosinase known inhibitors tropolone
(IC50¼ 0.13 ± 0.08 mM)422. However, in benzaldehyde derivatives,
the presence of the aldehyde group and the terminal methoxy
group in C4 was found to play an important role in its inhibitory
effect. But, due to their lower activity levels or serious side effects,
unfortunately, most 4-substituted benzaldehyde derivatives cannot
be considered for practical use421.

Figure 9. Some phenyl derivatives: aryl butane (1–4), biphenyle ester (5–7).
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Figure 11. Inhibitory effects of some thiosemicarbazone derivatives on the tyrosinase monophenolase activity.

Figure 10. Inhibitory effects of some piperidine derivatives on mushroom tyrosinase activity. 4–(4-fluorobenzyl) piperidine derivatives (1–5) indole derivatives (6–13)
amine (14) and N-ethyl (15).
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Carboxylic acids

Inhibitory effects of pyruvic acid, acrylic acid, propanoic acid,
2-oxo-butanoic acid, and 2-oxo-octanoic acid124, (S)- and (R)-6-
hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acids426 have
been investigated on tyrosinase activity.

Based on the findings investigated by Gheibi et al., aliphatic
carboxylic acids have dual effects on the monophenolase and
diphenolase activities of mushroom tyrosinase. They have found
that optimal diphenolase activity of tyrosinase takes place in the
presence of n-alkyl acids (pyruvic acid, acrylic acid, propanoic acid,
2-oxo-butanoic acid, and 2-oxo-octanoic acid). While, the mono-
phenolase activity is inhibited by all types of n-alkyl acids. They
have believed that there is a physical difference in the docking of
mono- and o-diphenols to the tyrosinase active site. On the other
hand, the binding of acids occurs through their carboxylate group

with one copper ion of the binuclear site. So these carboxylic acid
compounds completely block the monophenolase reaction, by
preventing monophenol binding to the oxyform of the enzyme124.

Xanthate derivative

The inhibitory effect of some synthesised xanthates including
C3H7OCS2Na, C4H9OCS2Na, C5H11OCS2Na, C2H5OCS2Na, and
C6H13OCS2Na have been examined for inhibition of both
monophenolase and diphenolase activities of mushroom tyrosinase.
Based on the reports, C3H7OCS2Na and C4H9OCS2Na showed a
mixed inhibition pattern on monophenolase activity but
C5H11OCS2Na and C6H13OCS2Na showed a competitive and
C2H5OCS2Na showed uncompetitive inhibition pattern. For
diphenolase activity, C3H7OCS2Na and C2H5OCS2Na showed mixed

Figure 12. Thiourea derivatives (1–14), methimazole (15), carbimazole (16), thiouracil (17), methylthiouracil (18), propylthiouracil (19), 6–(3-chlorophenylurenyl)
saccharin (20), 6–(3-iodophenylthiourenyl) saccharin (21), 4,5,6,7-tetrahydro- 2-[[(phenylamino)thioxomethyl]amino]-benzo[b]thiophene-3-carboxylic acid derivatives
(22–25), 2–(1,3,4-thiadiazol-2-yl) thio acetic acid derivatives (26–29).
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inhibition but C4H9OCS2Na and C5H11OCS2Na and C6H13OCS2Na
showed competitive inhibition427. According to their results, it
seems that the lengthening of the hydrophobic tail of the xanthates
leads to a decrease of the Ki values for monophenolase inhibition
and an increase of the Ki values for diphenolase inhibition428.

Other tyrosinase inhibitors

Except the inhibitors listed above, other compounds have also
been registered for their tyrosinase inhibitory activity by different
researchers such as: two Keggin-type polyoxometalates containing

Figure 13. Thiadiazole derivatives: 1,3,4-thiadiazole derivatives (1–17) and thiazolidinones derivative (18–29).
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glycine as potent inorganic reversible inhibitors429, cadmium ions
with an IC50 of 2.92 ± 0.16mM48 and rifampicin with an
IC50¼ 90 ± 0.6mM9 as reversible and noncompetitive inhibitors,

ammonium tetrathiotungstate430, amoxicillin (IC50¼ 9.0 ±
1.8mM)431, mallotophilippen A and B 432 a-naphthol and
b-naphthol433, red koji extracts (IC50 of 5.57mg/mL)434 and

Figure 14. Some kojic acid analogs: hydroxybenzaldehydebased kojic acid analogs (5-substituted-3-[5-hydroxy-4-pyrone-2-ylmethylmercapto]-4-arylmethylamino-1,2,4-
triazole (1–10) and 5-substituted-3-[5-hydroxy-4-pyrone-2-yl-methylmercapto]-4-arylmethyleneamino-1,2,4-triazole (11–14).

Figure 15. Benzaldehyde derivatives: 4-substituted benzaldehyde (1–15).
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alpha-hydrazinophloretic acid435 as competitive inhibitors and
rottlerin as a mixed inhibitor432. Furthermore, n-alkyl sulfates436,
sericin extracted from tasar silk fiber waste437, 2-hydroxy-3-
methylcyclopent-2-enone (IC50¼ 721.91 mgmL�1) isolated from
ribose-histidine Maillard reaction products438, three natural
compounds from safflower439 and mimosine386 and ethylenedi-
amine440 are other kinds of tyrosinase inhibitors.

Synergistic effects of tyrosinase inhibitors

Synergistic strategy for tyrosinase inhibitors is a useful strategy for
the improvement of their inhibitory activities. Based on the find-
ings, the mixtures of glabridin:resveratrol, glabridin:oxyresveratrol,
resveratrol:oxyresveratrol, phenylethylresorcinol:resveratrol441,
oxyresveratrol:dioscin442, aloesin:arbutin443, 4-methyl catechol:
catechol444, 3-(2,4-dihydroxyphenyl)propionic acid:l-ascorbic
acid445, dihydromyricetin:vitamin D337, linderanolide B combined
with arbutin, 1-phenyl-2-thiourea or kojic acid446, have shown
synergistic effect on tyrosinase. These studies may provide a
scientific strategy for screening effective tyrosinase inhibitors.

Conclusion

Due to the vital role of tyrosinase in the enzymatic browning of
food and depigmentation disorders in humans, its inhibitors have
been considered by researchers, extensively. As mentioned above,
natural sources such as plants and microorganisms and their
effective compounds have wonderful potential as organic anti-
tyrosinase sources.

However, the majority of the compounds identified from
natural sources were isolated from plants but, recently, microor-
ganisms are considered as potential sources of tyrosinase inhibi-
tors. It is interesting that despite the diversity of natural inhibitors,
a large number of tyrosinase inhibitors are phenolic-based
structures. Many researchers have designed appropriate scaffold
inspired by the structure of natural compounds and developed
novel synthetic inhibitors. In this paper, many natural, semi-
synthetic and synthetic inhibitors have been summarised and the
inhibitory effects of these compounds on the tyrosinase activity
are discussed.

Based on the results, phenolic compounds (simple phenols
and polyphenols) and their derivatives and several compounds
including terpenoid, phenyl, pyridine, piperidine, pyridinone,
hydroxypyridinone, thiosemicarbazone, thiosemicarbazide, azole,
thiazolidine, kojic acid, benzaldehyde and xanthate derivatives
were characterised as potent tyrosinase inhibitors. The appropriate
functionalisation of these inhibitors such as C-6 and C-7 hydroxyl
groups of the isoflavone skeleton, 4-functionalisation thiophene-2-
carbaldehyde thiosemicarbazone with a methoxyacetyl group and
the aldehyde group and methoxy group in C4 of benzaldehyde
derivatives may be improved the inhibitory activity of these inhibi-
tors. Furthermore, in cholcone derivatives, the location of the
hydroxyl groups on both aromatic rings and the number of
hydroxyls is an important factor in the efficacy of a chalcone. In
contrast, some modifications such as the prenylation or the vinyla-
tion of some flavonoid molecules do not enhance their tyrosinase
inhibitory activity while deglycosylation of some flavonoid
glycosides by far-infrared irradiation can be improved tyrosinase
inhibitory activity. Interestingly, among different inhibitors, some
compounds, especially hydroquinone and its known derivatives (a
and b-arbutin), are described as both a tyrosinase inhibitor and
a substrate.

Actually, the main objective of this review is to provide a
useful source of effective tyrosinase inhibitors. However, despite
the existence of a wide range of tyrosinase inhibitors from natural
and synthetic sources, only a few of them, in addition to
being effective, are known as safe compounds. Therefore, it is
recommended to examine the efficacy and safety of inhibitors
by in vivo models, along with in vitro and docking experiments,
especially for the application of such materials in food and medi-
cinal products. Finally, we hope that the information provided in
this study, which is the result of numerous researchers’ efforts,
could serve as leads in the search for effective anti-tyrosinase
agents from natural and synthetic sources with increased
efficiency and safety in the food and cosmetics industries.
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