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Abstract
The tissues and organs of multicellular eukaryotes are frequently observed to
comprise complex three-dimensional interspersions of different cell types. It is
a reasonable assumption that different global patterns of gene expression are
found within these different cell types. This review outlines general experimental
strategies designed to characterize these global gene expression patterns, based on
a combination of methods of transgenic fluorescent protein (FP) expression and
targeting, of flow cytometry and sorting and of high-throughput gene expression
analysis. Copyright  2003 John Wiley & Sons, Ltd.
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Introduction

With the advent of techniques for high-throughput
analysis of gene expression, interest is arising in
the possibility that these methods could be applied
to categorize gene expression, not simply in organs
and tissues but also within the different individual
cell types found in living organisms. Recent esti-
mates suggest that there are 200–300 different cell
types within most mammalian organs, with possi-
bly as many as 1000 within the brain [2]. Clearly,
the ability to chart differences and similarities in
gene expression patterns within these different cell
types would provide considerable insight into the
mechanisms that govern their development, func-
tion and responses to the environment.

The term ‘gene expression’ at its most general
can be defined as linking the genotype of an organ-
ism to a corresponding phenotype. However, the
latter is an inextricable function of the selected
method for empirical observation, be it morphol-
ogy, biochemical assay or high-throughput plat-
form. Mechanistically, gene expression is a com-
plex, regulated process, conventionally regarded as
starting with the information content of the genome
and linked ultimately to the molecules that directly

implement the phenotype that is being measured.
Dissection of the process of gene expression into its
respective mechanistic components clearly should
provide deeper insight into its means of function
than would e.g. observation of Mendelian segrega-
tion of a locus governing a visible phenotype.

This review provides a brief survey of estab-
lished and emerging methods for experimental
analysis of global gene expression, focusing on
high-throughput platforms, and then goes on to
consider how these might be applied for the anal-
ysis of global gene expression within specific cell
types, using higher plant systems as the primary
example.

Platforms for global gene expression
analysis

At the molecular level, the most widely employed
high-throughput methods concern analysis
of mRNA levels. These include various methods
that can be grouped according to whether they
are based on immobilized, high-density arrays of
DNA (microarrays [31], GeneChips [29], Array-
Plates [24], Agilix [http://www.agilixcorp.com])
or based on signature sequencing (SAGE [35];
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Lynx-MPSS [3,4]) and various methods involving
use of diagnostic cDNA sequence-length polymor-
phisms [1,25,36]. These methods were developed
largely as a consequence of the ease with which
DNA can be experimentally manipulated, reflecting
the fact that differences between individual DNA
molecules are encoded within the base sequences
and do not result in differences in physicochemi-
cal properties of the molecule. The methods centre
on the global analysis of one class of polynu-
cleotide macromolecule, polyadenylated RNA, and
thereby provide information about gene expression
as reflected in the steady state intracellular con-
centrations of mRNA within the tissues or organs
of interest. As indicated in Figure 1, accumulation
of cytoplasmic mRNA is a combination of pro-
cesses of intranuclear synthesis and processing and
nuclear export, and cytoplasmic degradation. Anal-
ysis of cytoplasmic mRNA by itself clearly cannot
discriminate between the contributions of these two
processes. We have proposed [25] an examination
of the polyA+ RNA content of nuclei as a means
to insert greater precision into the analysis of gene
expression, involving a focus on the initial pro-
cess of transcription and intranuclear message pro-
cessing. Other published approaches have included
selectively examining only those mRNA molecules
that are being translated [5,22], and these similarly
introduce greater precision into the analysis of the
overall process of gene expression.

The available experimental platforms for anal-
ysis of global gene expression can be ranked
according to the specificity with which they
report the contributions of individual genes. Clas-
sical microarrays, produced from PCR amplicons
of known or unknown sequence, are subject to
cross-hybridization between domains of similar
sequence. Empirically, cross-hybridization is read-
ily detected when two DNA molecules exceed 70%
sequence identity [8,39]. Cross-hybridization also
can occur if genes of otherwise dissimilar sequence
contain regions of identity exceeding around 20
bp in length [39]. Problems of cross-hybridization
can be ameliorated, and ideally eliminated, by use
of long, presynthesized oligonucleotides (50- to
70-mers) as microarray elements. Assuming suf-
ficient genomic sequence is available, these can be
designed in such a manner as to be unique to the
gene of interest. Other criteria for sequence design

Figure 1. Conventional polyA+ RNA sampling for
gene expression analysis provides a measure of the
steady-state concentrations within the cell, whereas
sampling of purified nuclei focuses attention more closely
on transcriptional events

include positioning the sequence within a reason-
able distance upstream of the 3′ end of the tran-
script, selecting sequences that have similar melting
temperatures, and eliminating from consideration
those capable of adopting stem–loop configura-
tions of greater than a certain degree of stability.
Applying these criteria stringently can eliminate
from consideration, for specific genes, all avail-
able sequences, in which case one or more of the
criteria must be relaxed. It should be noted that
oligonucleotide design can only be as good as the
underlying gene models, which, even for Arabidop-
sis thaliana, will continue to be updated for the
foreseeable future. On the other hand, microarrays
do provide a window of analysis of extraordinarily
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high dimensionality (the Qiagen-Operon oligonu-
cleotide set comprises 26 090 different sequences),
and this feature can be used for classification pur-
poses, even in the face of changing gene models.
The importance of selecting non-redundant (i.e.
non-cross-hybridizing) oligonucleotide sequences
has recently been noted [37], and one should also
be aware of the possibility of discordant mea-
surements between amplicon- and oligonucleotide-
based microarrays as a consequence of alternative
splicing.

We have found that microarrays based on long
oligomers appear to outperform their amplicon
counterparts. Figure 2 illustrates an analysis of
RNA extracted from Arabidopsis seedlings and
hybridized to two separate microarrays, which were
then compared by applying linear regression anal-
ysis to the replicate raw fluorescence intensity val-
ues. Considerable differences in performance were
observed between the different platforms. Whereas
the intensity values were highly correlated for the
long-oligomer microarrays (r2 ∼ 0.95), those for
amplicon microarrays were lower (r2 ∼ 0.6). Long
oligomer arrays also displayed very low back-
ground fluorescence, an excellent dynamic range
(3.5 decades) and the ability to detect most of the
genes represented in the Arabidopsis genome [less
than 5% were deemed undetectable, i.e. provided a
signal intensity less than twice background (a sig-
nal of about 100 fluorescence units), under condi-
tions of scanning that resulted in a saturated signal
(65 536 FUs) from <0.5% of the array elements].
Figure 3 illustrates raw signals obtained from 102

genes classified as MYB domain-containing tran-
scription factors. Using the same empirical criterion
for detectability of expression excludes only five of
these genes.

For expression analysis, an alternative to spot-
ted microarrays is the use of surfaces on which
DNA oligomers are synthesized, first commercial-
ized by Affymetrix in the form of GeneChips. The
array elements comprise short (<25-mer) oligonu-
cleotides, the monomers of which are sequentially
added to the surface by covalent chemical reac-
tion, using photolithographic techniques to depro-
tect specific spatial locations [29]. Design and con-
struction of the series of photolithographic masks
used for the deprotection steps is both costly and
time-consuming. These input costs must be amor-
tized across a substantial number of arrays to
reduce costs to affordable levels. The requirement
for mask construction also limits the flexibility of
the platform. Any changes to the sequences synthe-
sized on the array surface cannot be altered ‘on the
fly’, since new masks must be designed and built
to implement these changes.

This problem has recently been solved by devel-
opments pioneered at the University of Wisconsin
[28,33] and commercialized by NimbleGen. Nim-
bleGen chips are similar to Affymetrix GeneChips
in that they comprise short sequences synthesized
in situ. However, deprotection is achieved not
by physical masks, but by using programmable
micromirrors (Texas Instruments) to guide UV light
to the precise surface locations at which deprotec-
tion is required. The primary advantage of Nim-
bleGen technology over that of Affymetrix is the
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Figure 2. Reproducibility measurements comparing three expression platforms. In all cases, replicate RNA samples
from Arabidopsis plants grown under similar conditions to similar growth stages were converted into targets, and were
hybridized to two separate microarrays or GeneChips. Cy3 and Cy5 dye reversals were done for the microarrays. The
intensity values for the corresponding array elements were then compared over the two replicates. In all cases, a line
of correlation can be seen. Left panel: amplicon microarrays characteristically display a proportion of elements whose
reproducibility is poor. Typically, these elements would be flagged and their contributions to technical replications ignored
[10]. Centre panel: 70-mer oligonucleotide-based microarrays display remarkable reproducibility over the entire dynamic
range. Right panel: for the GeneChips, good reproducibility is observed only for the upper 50% of the elements. Most of
the genes in the lower half are called as ‘Absent’, and their reproducibilities are very low
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Figure 3. Raw signal intensity values obtained for 102 genes annotated as MYB domain-containing transcription factors.
Only four of the signals were less than twice the local background (this value is indicated by the red line). Four of the array
elements produced signals that were off-scale

flexibility and low cost for redesign and production
of modified arrays.

GeneChips have advantages and disadvantages
relative to spotted microarrays. As for long-
oligomer microarrays, array elements can be desig-
ned to maximize specificity. However, the shorter
lengths of the array elements provide greater flex-
ibility in this choice, which therefore suggests that
GeneChips have the potential to be intrinsically
more specific. This flexibility also, in theory, allows
identification of specific oligomers that are partic-
ularly sensitive in transcript detection, whereas for
long oligomers one is essentially restricted to one
or at most a few different choices of sequence, none
of which may be optimal for detection. One draw-
back of oligonucleotides synthesized in situ is that
the efficiency of nucleotide incorporation per syn-
thesis cycle (range 96–99%, dependent upon the
type of chemistry employed) limits the final lengths
of the oligonucleotides. For GeneChips, less than
5% of the sequences at any one location are full-
length, others being shorter, capped, versions of

the design sequence. Consequently, the hybridiza-
tion events are close to the limits of duplex sta-
bilization governed by thermodynamic considera-
tions. For this reason, each gene sequence is rep-
resented by up to 20 different 25-mers at differ-
ent GeneChip coordinates, hybridization being esti-
mated based on the combined fluorescent signals
from these probes. Signal specificity can also be
calculated based on differences between ‘perfect-
match’ (PM) and ‘mismatch’ (MM) probe sets, the
MM probes being identical to their PM counter-
parts but with a single mismatched base at the
central position of the sequence. The idea here
is to eliminate contributions due to ‘non-specific
cross-hybridization’, although the theory behind
this approach does not appear particularly well
founded and may have empirical flaws [9]. This
approach also reduces the chip area available for
different gene sequences by 50%, and some users
exclusively employ GeneChips lacking MM sets
for this reason. GeneChips are queried using sin-
gle sets of fluorescent targets, rather than Cy3/Cy5
pairs as done for conventional microarrays, and
this has the effect of doubling the numbers of
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chips required for the commonly employed pair-
wise comparisons of expression.

Analysis of the reproducibility of typical mea-
surements obtained using GeneChips is also illus-
trated in Figure 2. Whereas for high fluorescence
intensity measurements, the between-Chip corre-
lations are excellent (r2 > 0.94), at lower inten-
sity values the correlations drastically decrease.
This is evident in the characteristic broadening
seen at the left-hand end of the distributions, com-
monly observed in other published datasets [7].
It is also reflected in the qualitative calls made
by the Affymetrix data-analysis software, which
define genes as Present, Marginal or Absent, based
on the characteristics of the 20 pairs of intensity
measurements made for each gene. For the data
presented in the right-hand panel of Figure 3, pro-
duced using standard conditions of RNA extraction
and labelling from Arabidopsis plants, ∼50% of
the genes were called as Absent, and even for those
genes called as Present, those of low signal inten-
sity (i.e. those within the lower two quartiles of the
datapoints) were poorly correlated (r2 ∼ 0.15).

Given the available platforms for analysis of
gene expression, an emerging issue concerns the
numbers of replications required for identification
of statistically significant changes in mRNA levels.
It is insufficient to apply criteria of fold-changes
to identify genes of interest, simply because this
does not address the problems of variation inher-
ent to the individual genes that are being mea-
sured. We subscribe to the view proposed by
Kerr and Churchill [23] and Wolfinger et al. [38],
among others, that microarray experiments should
be designed, and the datasets produced and rig-
orously evaluated, using statistical methods, par-
ticularly analysis of variance (ANOVA). ANOVA
requires a sufficient number of replicate arrays
for data generation, and can only be possible for
expression platforms of relatively low cost. For
the spotted microarrays, we routinely employ a
two-stage linear ANOVA: first, global variation is
evaluated across the arrays as a function of dye
type and individual RNA samples. The unexplained
variance, corresponding to the gene-by-treatment
changes of experimental interest, provides the input
to the second stage to determine whether these
changes are statistically significant. Based on this
analysis, the long oligo arrays in our hands show
essentially no background variance (<0.5% of the
total variance) and no evidence of dye-specific or

microarray positional effects. With the given num-
ber of replications, gene expression changes are
then categorized as significant or non-significant.
A recent paper has discussed the application of
ANOVA to GeneChip experiments [9]. Their con-
clusions were that: (a) additional statistical power
is obtained if all data values are employed, rather
than the averages of the individual hybridization
values for the different 25-mers representing indi-
vidual genes; (b) direct subtraction of MM from
PM values has no advantage and, in fact, only adds
noise to the dataset; and (c) replication is essential
to bring out the full power of the GeneChips.

The importance of replicating microarray/Gene-
Chip experiments cannot be understated. The high
technical reproducibility of the long oligomer
arrays contrasts very favourably with other plat-
forms, suggesting the number of required techni-
cal replicates will be fewer than for other plat-
forms. However, replication is always required to
address biological variability, and sufficient data
is needed to determine whether given changes in
transcript level are, on a gene-by-gene basis, sta-
tistically significant. Fiscal issues limit replications
of microarray and GeneChip experiments. In terms
of cost, long oligonucleotide microarrays outper-
form GeneChips by a factor of 8 (Arabidopsis
GeneChips cost ∼$400 each, whereas long oligo
arrays at ∼$100 each produce twice as many data
points).

Identification and purification of different
cell types

Developing methods for analysis of specific cell
types requires means for identification of these cell
types that are compatible with methods for their
subsequent purification. At the molecular level, the
most flexible way to identify different cell types
relies on the observation that specific genes are fre-
quently found that are uniquely transcribed within
these cell types. Transgenic gene technologies can
then be employed to specifically highlight these
cells via expression of heterologous markers. Par-
ticularly suitable for the purification step is the
use of fluorescent proteins (FPs) as markers, a
class of proteins for which the green fluorescent
protein (GFP) of Aequorea victoria is the found-
ing member [6]. Fluorescent cells can be conve-
niently purified from their non-fluorescent counter-
parts by fluorescence-activated cell sorting (FACS).
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One prerequisite for successful use of FACS is
that the input population comprises a single-cell
suspension. This is because each cell must be indi-
vidually queried as it passes in a constrained fluid
stream through the focus of an intense light source,
and then sorted following its emergence from the
flow cell tip. A second prerequisite is that the cells
be optically homogeneous, i.e. as far as possi-
ble they should be spherical, with little variation
in diameters across the population, and without
unusual light scattering or endogenous fluorescence
or absorbance characteristics. Sorting large cells
(>50 µm in diameter) is also technically demand-
ing [13], and therefore less desirable. Methods for
flow cytometric analysis of plant protoplasts and
animal cell populations based on FP expression
are well established [14,16]. Recent progress has
included multicolor FP flow analysis and sorting
[21], as well as examples of the sorting of a vari-
ety of different cell types from different organisms
[11,30,34].

The major problem confronting the application
of flow cytometric techniques for sorting specific
cell types concerns the requirement for single-cell
suspensions. For mammals, some tissues exist as
natural single-cell suspensions, e.g. the circulating
cells of the haematopoietic system, and cell cul-
tures in general. The cells of animal organs, on
the other hand, exist as complex three-dimensional
interspersions. Producing single-cell suspensions
from these organs requires the use of proteolytic
enzymes to hydrolyse the proteins and glycopro-
teins mediating specific cell–cell interactions. Sim-
ilar problems of tissue architecture are encountered
in considering plant organs. In this case, conver-
sion of plant tissues to protoplasts, using wall-
degrading enzymes, provides the means for produc-
tion of single cell suspensions. An addition layer
of complexity is a consequence of the presence of
a hypertonic osmoticum during cell wall hydrol-
ysis, required to prevent plasma membrane lysis.
It appears inevitable that global patterns of gene
expression will be perturbed by alterations to inter-
cellular communication and, in the latter case, by
osmotic stress, based on what is already known
about the behaviour of organisms subjected to these
treatments. This question has been addressed by
several groups, including our own [19,32]. Surpris-
ingly, perhaps, it appears that protoplasts maintain
many features of normal cellular regulation, at least
for a limited period of time. During this period,

transfection methods can be employed to probe sig-
nal transduction pathways using FP reporters [32].
A further complication in plant protoplast prepa-
ration is the accessibility of specific cell types,
and the susceptibilities of their walls to enzymatic
hydrolysis. Protoplast preparation is also not down-
wardly scalable in terms of cell number (due to
non-specific adhesion of protoplasts to glass and
plastic-ware, amongst other issues) and below a
certain protoplast yield, recovery of viable proto-
plasts is very difficult to achieve.

Flow analysis and sorting of nuclei based
on FP expression

Given that the process of protoplast production has
the potential to perturb gene expression and that
protoplast preparation and sorting is technically dif-
ficult, we have proposed an alternative approach to
analysis of cell and tissue-specific gene expression
that simultaneously solves both problems. This is
based on the observation that flow analysis and
sorting can be done using tissue homogenates,
assuming that a fluorescent signal can be specif-
ically associated with the objects to be sorted.
Given the role of the nucleus in transcript produc-
tion (Figure 1), we have based our strategy on the
idea of flow analysis and sorting as a means to
specifically purify nuclei labelled through directed
targeting of FP-fusions. Flow analysis of nuclei
within tissue homogenates is a robust procedure
devised originally for characterization of genome
sizes, ploidy status and the activity of the cell cycle
[15]. We have also established that flow analysis
and sorting can also be employed for detection of
GFP within the nuclei of transgenic tobacco [17].
The large size of the tobacco genome, and hence
that of the nucleus, relative to those of many other
plant species, facilitates the detection of the GFP-
specific signal, which is derived from nuclear local-
ization signal-mediated accumulation of a chimeric
GFP-β-glucuronidase protein over that of other flu-
orescent particles in the homogenate. In Arabidop-
sis thaliana, which has a much smaller genome,
it appears that fusion of GFP to nuclear structural
proteins (such as histones) provides a signal that
is more readily detected above this background
(Zhang, Lambert and Galbraith, unpublished).
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Highlighting specific cell types through
FP expression and targeting

Essential to the concept of employing flow cyto-
metric methods for purifying single cells or their
nuclei for analysis of specific gene expression is
the ability to readily identify gene sequences that
regulate FP expression within specific cell types
of interest. A variety of promoters are known
to exhibit tissue-specific patterns of expression in
higher plants (see e.g. [27]), and various projects
are under way around the world that are aimed to
systematically describe DNA sequences that reg-
ulate expression in a tissue- or cell type-specific
manner. These projects essentially involve high-
throughput FP-based promoter and enhancer trap-
ping, the most advanced of which has produced a
number of Arabidopsis lines exhibiting cell type-
specific FP expression [20]. Adapting these lines
for expression of nuclear-targeted FP is facilitated
by their use of the GAL4-UAS/DBD system to
drive marker gene expression.

Combining technologies for global
analysis of cell type-specific gene
expression

Flow sorting of FP-tagged protoplasts or nuclei
can be done at high rates. Although sorting of
protoplasts requires large flow tips (100 µm or
greater), which reduces the rates of sorting due to
physical considerations governing the process of
droplet break-off [18], we routinely sort protoplasts
at 50–1000 positive events/s. Nuclei, due to their
small sizes, can be sorted using smaller flow
tips (50 µm in diameter), which allows operation
of the Cytomation MoFlo flow cytometer at its
upper sort rate limit (an event rate of ∼70 000/s).
Thus, sorting is limited only by source materials,
e.g. if one were interested in a specific cell type
that is present at only one or two cells/plant.
Under these circumstances, amplification of the
RNA signal, prior to microarray analysis, becomes
essential. Various methods for target amplification
have been reported (for a recent discussion, see
[12]). Of these, linear amplification methods, rather
than those based on PCR, appear to be most
appropriate, since they are likely to introduce less
distortion into the patterns of expression that are
subsequently measured. Amplification has been

reported to increase the reproducibility of ratio
measurements of amplicon-based microarrays [12],
and it would be of interest to see whether this is
also true of the raw intensity measurements.

Conclusions and prospects

The last decade has seen extraordinary advances
in our ability to chart global gene expression.
The combinations of technologies outlined in this
review are not restricted by species, or even
to particular kingdoms. They should permit a
detailed description, at the level of individual
cells, of the processes of normal development,
as well as those underlying diseased states, and
responses to environmental changes. It should be
noted that these methods should also be applicable
to the global study of non-coding RNAs, for which
important roles in gene regulation, as well as
tissue-specificity of expression, have recently been
uncovered [24].
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