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Abstract: Neuroelectric measures derived from human magnetoencephalographic (MEG) recordings
hold promise as aides to diagnosis and treatment monitoring and targeting for chronic sequelae of
traumatic brain injury (TBI). This study tests novel MEG-derived regional brain measures of tonic
neuroelectric activation for long-term test-retest reliability and sensitivity to symptoms. Resting
state MEG recordings were obtained from a normative cohort (CamCAN, baseline: n = 613; mean
16-month follow-up: n = 245) and a chronic symptomatic TBI cohort (TEAM-TBI, baseline: n = 62;
mean 6-month follow-up: n = 40). The MEG-derived neuroelectric measures were corrected for the
empty-room contribution using a random forest classifier. The mean 16-month correlation between
baseline and 16-month follow-up CamCAN measures was 0.67; test-retest reliability was markedly
improved in this study compared with previous work. The TEAM-TBI cohort was screened for
depression, somatization, and anxiety with the Brief Symptom Inventory and for insomnia with the
Insomnia Severity Index and was assessed via adjudication for six clinical syndromes: chronic pain,
psychological health, and oculomotor, vestibular, cognitive, and sleep dysfunction. Linear classifiers
constructed from the 136 regional measures from each TEAM-TBI cohort member distinguished those
with and without each symptom, p < 0.0003 for each, i.e., the tonic regional neuroelectric measures of
activation are sensitive to the presence/absence of these symptoms and clinical syndromes. The novel
regional MEG-derived neuroelectric measures obtained and tested in this study demonstrate the
necessary and sufficient properties to be clinically useful, i.e., good test-retest reliability, sensitivity to
symptoms in each individual, and obtainable using automatic processing without human judgement
or intervention.

Keywords: CamCAN; TEAM-TBI; post-concussion syndrome; test-retest reliability; insomnia;
depression; anxiety; somatization; pain; sleep disorder; ocular; vestibular

1. Introduction

Traumatic brain injury (TBI) is a common cause of disability and death. Localized
neuroelectric correlates of persistent functional sequelae after TBI would provide significant
clinical value for diagnosis, targeted therapy, disease monitoring.

For more than a century It has been the expectation that neuronal electric activity is
the key to understanding the brain function. Human behavior is thought to depend on co-
operative activity of large neural populations. Today, clinical neurophysiologists routinely
measure single neurons to aide implantation of therapeutic devices deep in the brain [1].
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Epileptologists map intractable seizures with implanted “stereo EEG” electrodes [2]. In-
dwelling electrical recordings have resolution of a few millimeters at best. The spatial
resolution for non-invasive scalp recordings is considerably poorer.

Magnetoencephalography (MEG) is also noninvasive and has important advantages
over scalp and even direct electrical recordings. High fidelity measurements of the magnetic
fields due to neuroelectric currents are routinely obtained at the MEG sensor array Since
magnetic fields do not interact with brain tissue [3–6] as electric fields do, neuroelectric
currents are more readily localized via MEG than EEG.

The common presumption is that cortical population post-synaptic currents are the
source of MEG recordings. [4–6] Most reported work therefore limits the volumes in which
neural currents may be localized to the cerebral cortex. although there are occasional
reports in which neuroelectric dipoles are localized to the white matter, e.g., [7]. Additional
remarks are found in the Discussion section.

The referee consensus solver utilizes a method which extracts profuse validated and
localized (1 mm resolution) neuroelectric current waveforms (p < 10−12 for each), from
cortical, subcortical and white matter volumes [8–10]. Recordings from healthy volunteers
(CamCAN, n = 621) were processed to generate a normative database, including metrics
of test-retest reliability (n = 253) across MEG studies repeated 16 months apart. Good
test-retest reliability is a primary requirement for both scientific and diagnostic usefulness.

Recordings were processed from a cohort of chronic TBI subjects with persistent
symptoms (Team-TBI, n = 64) to identify patterns of brain activity which distinguish
between those with and without specific TBI sequelae. A second critical requirement for
clinical usefulness is sensitivity to clinical symptoms.

Validation of clinically useful neuroelectric brain measures is the primary objective
of our effort. 136 brain regions were identified for each subject from both cohorts. Each
individual’s regional measures were transformed to z-scores using the means and standard
deviations from the CamCAN cohort baseline results. Test-retest reliability was assessed using
each CamCAN cohort member’s baseline and follow-up z-scores. Sensitivity to symptoms
was assessed using each TEAM-TBI cohort member’s baseline and follow-up z-scores.

The data processing pipeline functions without human judgement or intervention and
is capable of fully processing each new recording within 24 h [8]. This is consistent with
the translational objective of the effort.

High-fidelity waveforms are localized to 1 mm3 [3,4] for dipole electric currents with
80 ms duration. The normalized count of these instances within each standardized region
is the measure used in the present study, i.e., each measure is the total value over a brain
region automatically identified from one subject’s scan. The fact that each standardized
region is automatically identifiable (freesurfer 5.3, [11,12]) for each scan enables generating
standardized measures, i.e., norms, for each region across a large normative cohort. The
values for those regions in any individual may then be compared with the norms to assess
the normality of the individual’s regional measures.

Note that the accuracy of each region’s volume and freesurfer’s parcellation limit the
accuracy of each measure’s localization. The regional volumes range from less than 1.0 cm3,
e.g., left or right nucleus accumbens, to 30–70 cm3, e.g., left or right cerebellar cortex.

The results reported here enable rejection of the following null hypotheses. (a) Indi-
viduals with and without symptoms are indistinguishable. (b) The cohort membership of
each individual (TEAM-TBI or CamCAN) cannot be determined. (c) Regional measures
from an individual do not reliably repeat.

Joint rejection of hypotheses (a) and (c) supports the potential for these measures as
clinically useful in the diagnosis and treatment of insomnia, depression, anxiety, somatiza-
tion, chronic pain, psychological health, and vestibular, oculomotor, sleep, and cognitive
dysfunction, common sequelae of TBI. Rejection of hypothesis (b) suggests the possibility
that these measures may be useful as biomarkers for TBI. It is symptoms rather than eti-
ology which is the emphasis in the study design. It is hoped that this shift in focus will
produce insights which are useful in diagnosis and treatment of those symptoms, regardless
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of etiology. Repeated MEG recordings during drug or other treatment modalities may
provide objective and useful information in assessing treatment efficacy and in making
adjustments to the treatment.

The current study is a natural follow-on to our most recent report [10] with two notable
additions. (1) The MEG-derived measures used there were corrected for empty-room con-
tributions using a weaker method. Here we used a random forest classifier to identify
individual electric currents. (2) The symptom measures used there were insomnia, depres-
sion, anxiety, and somatization as assessed using self-report symptom surveys. Here we
use those symptoms and six additional clinical syndromes assessed via adjudication.

2. Materials and Methods

Magnetoencephalographic (MEG) recordings were processed from each subject of
two cohorts: (1) the normative CamCAN cohort, n = 621 at baseline, ages 18–87 [13,14],
n = 259 at follow-up, and (2) the chronically symptomatic concussed TEAM-TBI cohort,
n = 63 at baseline, ages 21–60, n = 40 at follow-up. The MEG recordings were coregistered
with a high-resolution T1-weighted MRI scan obtained at baseline.

Validation of clinically useful neuroelectric brain measures is the primary objective of
our effort. Each individual’s regional measures were transformed to z-scores using the means
and standard deviations from the CamCAN cohort baseline results. Test-retest reliability was
assessed using each CamCAN cohort member’s baseline and follow-up z-scores Sensitivity
to symptoms was assessed using each TEAM-TBI cohort member’s baseline and follow-up
z-scores. The data processing pipeline functions without human judgement or intervention
and is capable of fully processing each new recording within 24 h [8].

The raw MEG data from each subject was initially transformed to a collection of
probabilistically validated neuroelectric currents. Each current is 80 ms in duration and is
localized with 1 mm (mm) and 1 millisecond (ms) resolution. The total current count per
subject per minute yielded by this primary processing step is typically in excess of 500,000.

The current counts were normalized to produce measures of tonic activity for each
of 171 standard regions of interest (ROIs): 17 subcortical regions, 68 cortical regions,
68 adjacent white matter regions, and 18 deep white matter tracts. Each regional measure is
a count of all the neuroelectric currents localized within the region over the several-minute
recording time. The regional current count is high; hence the available statistical power
is high.

2.1. CamCAN Dataset

The Cambridge Centre for Ageing and Neuroscience (CamCAN) Stage 2 cohort study
is a large cross-sectional adult lifespan study (ages 18–87) of the neural underpinnings of
successful cognitive ageing [13,14]. The work reported here utilized the majority subset
(n = 621) of the cohort for whom high resolution (1 mm) anatomic T1-weighted MR imaging
and MEG recordings were available. Of these, 253 follow-up resting recordings were
obtained (Stage 3 longitudinal study) with a mean interval of 16 months between MEG
studies. Diffusion-weighted imaging (DWI) was obtained for 589 of the baseline subjects,
240 of whom returned for follow-up.

MR imaging was obtained on all subjects at a single site using a 3T Siemens TIM Trio
scanner, Siemens Healthcare, Camberley, UK, with 32-channel head coil. T1 scans were ob-
tained using the MPRAGE sequence. The field of view for these scans was 256 × 240 × 192
at 1 mm resolution. DWI scans were acquired (n = 589) with a twice-refocused spin-echo se-
quence, with 30 diffusion gradient directions for each of two b-values: 1000 and 2000 s/mm2,
plus three images acquired with a b-value of 0. Other parameters are: TR = 9100 ms,
TE = 104 ms, voxel size = 2.0 mm, FOV = 96 mm × 96, 66 axial slices [13].

MEG recordings with continuous head position measures were collected at a single
site using a 306-channel VectorView MEG system (Elekta Neuromag, Helsinki, Finland).
The data were sampled at 1 KHz with anti-aliasing low-pass filter at 330 Hz and high-pass
filter at 0.03 Hz. Subjects were seated upright for all recordings.
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Eyes closed resting recordings for 560 s were collected at baseline [13]. Eyes open
recordings for 560 s during performance of a sensorimotor task were collected in the same
sitting (n = 619). Baseline resting and sensorimotor task recordings were compared to assess
short-term test-retest reliability.

For the sensorimotor task, subjects detected visual and auditory stimuli and responded
to detection of each with a button press with the right index finger. The stimuli were
two circular checkerboards presented simultaneously to the left and right of a central
fixation cross, 34 ms duration, and a binaural tone of 300 ms duration. The tone was at 300,
600, or 1200 Hz in equal numbers with the order randomized. 121 trials were presented
with simultaneous visual and auditory stimulation. Eight trials were randomly intermixed
in which one stimulus was presented at a time, four visual and four auditory. This was
done to discourage dependence on one stimulus modality only. The average inter-trial
interval was approximately 4.3 s.

At follow-up, 320 s were recorded continuously with eyes closed resting, n = 253 [14]
and 60 s of empty-room recordings were also obtained.

2.2. TEAM-TBI Dataset

The chronic TBI subject dataset was derived from the Targeted Evaluation, Action
and Monitoring of Traumatic Brain Injury (TEAM-TBI) study, a personalized medicine
research program for subjects with chronic TBI sequelae at the University of Pittsburgh
(clinicaltrials.gov: NCT02657135). All TEAM-TBI subjects gave their informed consent for
inclusion before the participated in the study. The study was conducted in accordance with
the Declaration of Helsinki, and the protocol was approved the Institutional Review Board
of The University of Pittsburgh (PRO13070121).

Inclusion criteria were ages 18–60 with a history of one or more TBIs more than
six months prior, with high chronic symptom load [15] as assessed with post-concussion
symptom severity (PCSS) scale. 61 of the 63 subjects with MEG recordings had sustained
“mild” TBIs. TEAM-TBI subjects underwent a 4-day comprehensive clinical assessment,
including advanced neuroimaging, followed by multi-disciplinary adjudication of clinical
syndromes. TEAM-TBI subjects then completed 6 months of supervised, targeted therapy.
Subjects returned to Pittsburgh for a follow-up evaluation (mean interval = 6.4 months) to
document impact of treatment on identified clinical disorders.

MR imaging was obtained on all subjects at a single site using a 3T Siemens TIM
Trio scanner, Siemens Medical Solutions USA, Malvern, PA, USA with 32-channel head
coil. T1 scans were obtained using the MPRAGE sequence. The field of view for these
scans was 256 × 256 ×176 at 1 mm resolution. DWI scans were acquired (n = 64) with
a twice-refocused spin-echo sequence, with 64 diffusion gradient directions at b-values
of 1000 and 3000 s/mm2, and 128 directions at b-values of 5000, and 7000. Additional
parameter for the four b-values were: TR = 3700, 3700, 4100, 4500 ms, TE = 92,125,147,164 ms.
voxel size = 2.4 mm, FOV = 230.4 mm, 63 axial slices.

MEG recordings were collected at a single site using a 306-channel VectorView MEG
system, Elekta Neuromag, Helsinki. The data were sampled at 1 KHz with anti-aliasing
low-pass filter at 330 Hz and high-pass filter at 0.03 Hz. Continuous head position measures
were enabled throughout the recordings. All recordings were obtained with the subject
sitting up.

At baseline four 200-s resting recordings were obtained with eyes open and fixated
with the room darkened (n = 63). Four to eight recordings were obtained totaling 1500 s
with the lights on during performance of a visual semantic decision task [8]. The protocol
was the same at follow-up (n = 40).

All baseline resting MEG recordings were used (n = 63) for subjects whose high
resolution (1 mm) anatomic T1 and MEG recordings were available. Of these, 40 follow-up
resting recordings were obtained, mean interval = 6.4 months. DWI was obtained for 63
of the 64 baseline recordings and 39 of the 40 follow-up recordings. At both baseline and
follow-up sessions 300 s of empty-room recordings were obtained.
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2.3. MRI Processing

Each high resolution T1 scan was processed with Freesurfer, version 5.3, using its
default Desikan-Killiany atlas parcellation [11,12]. Freesurfer is a segmentation package
which automatically and reliably identifies brain regions. The 3-dimensional coordinates of
the extent of the brain volume and 153 standardized regions of interest (ROI’s) were identi-
fied, 68 cortical regions, 68 adjacent white matter rims of tissue with thickness ≤ 5.0 mm,
and 17 subcortical regions.

2.4. MEG Processing

The MEG channels were each filtered using MNE tools with high and low pass at 10
and 250 Hz, 5 Hz roll-off [16]. 250 Hz was used for the low pass to thoroughly remove the
continuous head positioning signals present in the raw MEG at 293, 307, 314, and 321 Hz.
Previous work has shown that the higher the low-pass frequency, the greater is the yield of
the solver [8,9]. Note that the 10 Hz high pass filtering effectively demeans each channel
and removes much of the low frequency content most commonly studied. 10 Hz was used
for the high pass because (a) the solver yield significantly increases with the low frequencies
removed and (b) the solver was set to search one 80 ms data segment at a time. Data lengths
greater than this produce reduced solver yield [8,9], presumably because current dipole
orientation rarely remains stable for that long. This short data length provides very low
sensitivity to frequencies below 12 Hz. However, the solver was stepped through the data
in 40 ms increments; hence a bolus of identified current dipoles was identified at 25 Hz.
Analysis of the time course of those boluses can provide analysis of low frequencies. That
work is outside the scope of the present study.

For each 1.24 s data segment, mains noise was removed from the CamCAN data at 50,
100, 150, 200, and 250 Hz using polynomial synchronous noise removal [17]. Mains noise
was removed at 60, 120, 180, and 240 Hz from the TEAM-TBI data. No other preprocessing
was applied, and no data segments were excluded by manual artifact identification.

The subject’s head position within the MEG scanner was manually coregistered to
the TI scan using Elekta’s Mrilab visualization tool. The coordinates of the center point
of a sphere most nearly approximating the brain were identified. These are the only
operations in the data processing pipeline for which human judgement was applied. All
other operations were fully automated.

Continuous head positioning measures were extracted using Elekta’s MaxFilter tool [18].
The coregistration of the MEG sensor array with the location of the subject’s head and brain
was corrected once per second using the continuous head positioning information. This
correction was applied to the forward solution used by the solver. The referee consensus
solver is described in detail elsewhere [8,9,19].

The forward solution is the mathematical relationship between a putative electric
current within the brain and the resultant magnetic field measurements at the sensor array.
The solution we used models the brain as a uniformly conducting sphere [3]. Currents
within 30 mm of the center of the sphere are nearly undetectable and the mathematical
formulation for the forward solution is poorly behaved for this volume; hence it was
excluded from the search. The excluded volume typically includes the posterior thalamus,
the posterior commissure, and much of the midbrain. The solver’s search volume was
delimited using the automated brain segmentation provided by Freesurfer with the 30 mm
sphere at the center excluded.

The solver was deployed on The Open Science Grid, an international distributed
supercomputing partnership for data-intensive research [20,21]. The work described here
utilized more than 70,000,000 processor-hours on the OSG. The solver is detailed in [8–10].

When applied to continuous MEG recordings, the solver typically identifies and
validates more than 400 neuroelectric currents within the brain per 40-ms step through
the data stream, p < 10−12 for each, p < 10−4 for each when conservatively corrected for
multiple comparisons (Bonferroni). That is more than 600,000 currents per minute of
recorded MEG data identified with millimeter and millisecond resolution. Note that data
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segments contaminated by movement or other artifacts were not manually identified for
removal. Instead, artifact rejection relied upon the referee consensus solver’s inherent
failure to validate neuroelectric currents when presented with noisy data [10,19].

The validated currents within each of the 171 automatically identified brain regions
were counted over the duration of the recording. Each count was normalized to current
density, ρroi:

ρroi = (countregion/counttotal) ÷ (volregion/voltotal) (1)

The purpose of this normalization is to enable comparisons of a region within or be-
tween individuals, during different states, at different times, or comparisons of one region
with another. The normalization is defined so that ρregion = 1.0 for all regions if the neu-
roelectric currents are uniformly distributed throughout the brain. In that isotropic case,
(a) the regional count fraction is always equal to the regional volume fraction and (b) no
difference is found for any comparison. Dividing the counts for a region by the total count
normalizes ρ for variations due to both data quality and record length. The normalization
for data quality is important since the yield of the solver changes from moment to moment
as data quality waxes and wanes [8,19].

2.5. Normative Measures

Normative values for regional measures of static neuroelectric activity were estab-
lished. To accomplish this, the meanρ and standard deviationρ for each regional current
density (ρ) were obtained from the CamCAN recordings. P for any region for any individ-
ual may then be compared with the norm for that region by converting it to a z-score with
corresponding p-value under the assumption that the current densities for the normative
population are normally distributed.

z-scoreρ = (ρ - meanρ) ÷ (sdρ) (2)

The tables of CamCAN means and standard deviations are presented in Appendix A
Table A1. They constitute an atlas which may be used to transform the current densities
from any individual to z-scores and then assess the normality of deep white matter tonic
neuroelectric traffic and cortical/subcortical tonic neuroelectric activity.

Note that transformation of the density measures to z-scores nominally equalizes the
variances of the norms for all of the regions. This insures that for a composite measure,
e.g., a linear classifier composed of the 18-tract z-scores, the impact of each of the 18 densities
is approximately equal.

2.6. Empty Room Correction

An ideal method for extracting neuroelectric measures from MEG recordings would
consistently yield a value of zero from empty room recordings. The referee consensus
solver falls short of this ideal—there is a significant contribution of falsely validated
currents, i.e., “dark count”. The normalized current densities extracted from empty room
recordings consistently demonstrate significant correlations to the densities extracted from
human resting recordings obtained the same day ([10], Figure 1). We previously used an
approximate correction to each ρregion. That correction used the correlations as estimates of
the competitive detection advantages of true vs. false neuroelectric currents, viz.

ρregion-corrected = ρregion − (corrregion × ρregion-empty) (3)
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Figure 1. Random forest classification accuracy. Results for all CamCAN subjects (n = 613) x all
regions (n = 168) are shown. Red: Each dot in the left panel represents the classification accuracy
for empty-room (x-axis) vs resting (y-axis) data. All of the 80-ms currents were used for a single
region for a single subject. See the text for detail. Blue: Each dot represents classification accuracy for
task (x-axis) vs resting (y-axis) data. The right panel shows histograms of the resting classification
accuracies for resting vs. empty-room (red) and resting vs. task (blue).

Here ρregion-empty is the result of the ρregion calculation applied to the empty-room
data and corrregion is the correlation across the CamCAN subjects between ρregion and
ρregion-empty, i.e., between the regional activity measured with the subject present and
absent in the scanner.

For cortical and adjacent white matter regions, we applied a more accurate correction
using a random forest classifier [22] to decide on inclusion/exclusion of each identified
current one at a time. A separate classifier was computed for each of 136 regions for
each subject. The size of the training subset was limited to 5000 currents from each of the
two current populations being classified, viz. resting vs. empty room and resting vs. task.
This training set limitation reduces the computation time and memory requirements of
the calculation while providing training set size which is ample to produce reliable results.
In addition, the number of currents from the larger population was limited to 110% of
the number of currents in the smaller population if the smaller population’s size was less
than 5000. This constraint to approximately equal sizes for the two classes eliminates a key
failure point for random forest classification [22]. The resultant classifier was then applied
to the total populations, i.e., training + test, to obtain the percentage accuracy for each. The
results are shown in Figure 1. The figure shows classification accuracies of 75–95% for rest
vs. empty room “currents” compared with 53–75% for rest vs task. Hence empty room
“currents” differ more reliably from resting currents than do resting and task currents from
each other.

Each current was characterized using four features. The features were defined from

the following quantities. Each current has a location, Ixyz, and
−→
Ixyz , a direction vector in

the plane which is normal to the head-approximating sphere at Ixyz. ctx|wmxyz is the
location of the point on the interface between gray and white matter nearest to the current

location, Ixyz. piaxyz is the location of the point on the pial nearest to ctx|wmxyz.
−−−−−−−→
ctx

∣∣wmxyz

is the vector normal to the gray/white interface nearest location Ixyz. −→rxyz is the radial
vector originating at the origin of the head-approximating sphere and passing through
location Ixyz.
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Four local features were identified for each identified electric current, Ixyz.

1. cos(
−→
Ixyz ,

−−−−−−−→
ctx

∣∣wmxyz )

2. cos(−→rxyz ,
−−−−−−−→
ctx

∣∣wmxyz )
3. distance(Ixyz, ctx|wmxyz)
4. distance(piaxyz, ctx|wmxyz), i.e., cortical thickness at Ixyz

All four features depend on both the location of the current, Ixyz, and the geometry of
the brain within a few mm of Ixyz. Feature 1 also depends on the direction in which the
current flows. Since Feature 1 is more dependent on a neuroelectric current properties than
the other features, we expect it to have a greater contribution to classifiers for one brain
state vs another, e.g., rest vs task, than for classifying empty room vs brain recordings. This
expectation is confirmed in Figure 2 which shows that the contribution of feature #1 to the
rest vs task classifier is consistently greater than for empty room vs rest or task.

Figure 2. Feature contribution to classification accuracy. Histograms of the contribution of feature #1
to classification accuracy are shown for empty-room vs. rest (red), empty-room vs. task (black), and
rest vs. task (blue). See text for details. Of the four features used in the classifications, #1 depends
most heavily on the direction of current flow. It is expected to make a greater contribution to classifiers
for one brain state vs. another than for a brain state vs. empty-room results. The figure confirms
this expectation.

2.7. Classification

Regional measures of neuroelectric activity for 68 cortical regions and 68 adjacent white
matter regions were combined into classifiers using stepwise linear classification [17–19].
This is an automated computer algorithm which performs discriminant analysis between
two groups by computing a linear classification function in a stepwise manner. The group-
ings for classification were determined (a) by symptom survey scores and (b) by consensus
adjudicated opinions to test for sensitivity of the measures to symptoms and by cohort mem-
bership to test for differences between the cohorts. These are detailed in the Results section.

3. Results

Validation of clinically useful neuroelectric brain measures is the primary objective
of our effort. Each individual’s regional measures were transformed to z-scores using
the means and standard deviations from the CamCAN cohort baseline results. Test-retest
reliability was assessed using each CamCAN cohort member’s baseline and follow-up
z-scores. Sensitivity to symptoms was assessed using each TEAM-TBI cohort member’s
baseline and follow-up z-scores.

Regional measures of neuroelectric activity for 68 cortical and 68 adjacent white
matter regions were extracted from the MEG recordings for each study participant. For
the normative CamCAN cohort, the mean and standard deviation baseline values for each
region are shown in Appendix A Table A1. These values were used to transform all
regional measures to z-scores. Appendix A Table A2 shows the correlations and differences
for baseline vs. follow-up measures. These were used to assess test-retest reliability. The
presence/absence of relationships between these neuroelectric measures and measures of
potential clinical relevance was tested.
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This effort has produced several types of results. Significant relationships were found
between measures of tonic regional neuroelectric activity and (1) screening measures of
insomnia, depression, anxiety, and somatization, (2) adjudicated assessments of six clinical
syndromes: chronic pain, psychological health, and cognitive, ocular, sleep, and vestibular
dysfunction, and (3) subjects in the CamCAN control cohort vs. the TEAM-TBI chroni-
cally symptomatic group with history of concussion. These bear directly on the potential
usefulness of the measures as diagnostics and as probes for scientific questions.

In addition (4) both short-term (1-h) and long-term (16-month) baseline vs. follow-up
test-retest reliability results are reported. This too bears directly on potential clinical utility.
Note that all regional neuroelectric activity measures were reduced to z-scores; the means
and standard deviations of the baseline CamCAN recordings (n = 613) were used for the
z-score transformation.

3.1. Self-Reported Symptoms and Adjudicated Clinical Syndromes

MEG-derived neuroelectric measures were obtained from 63 TEAM-TBI subjects at
baseline and from the 40 who returned for follow-up. Symptom surveys for insomnia and
three symptoms of psychological distress were obtained from all but one of the baseline
subjects. Standard inventories were for insomnia (Insomnia Severity Index, ISI, [23,24])
and somatization, depression and anxiety (Brief Symptom Inventory, BSI, [25,26]. Cut-offs
of 15 (ISI) and 63 (BSI) were used to divide both the baseline and follow-up TEAM-TBI
recordings into clinically negative or positive groups. In addition, adjudicated binary
assessments of six clinical syndromes were obtained: chronic pain, psychological health,
and cognitive, ocular, sleep, and vestibular dysfunction. The matrix of coincidence rates
between the symptoms and clinical syndromes is shown in Table 1. Note that the acceptance
criteria for the TEAM-TBI study included “high symptom burden.”

Table 1. Coincidence rates at baseline (n = 62) for pairs of symptoms and adjudicated clinical
syndromes. Clinical syndrome names are highlighted in gray. See text for details. Insomnia threshold
score = 15 (ISI). Somatization, depression, and anxiety threshold t-statistic = 63 (BSI). The six clinical
syndromes were assessed by consensus at adjudication.

Somatization Depression Anxiety Cognitive Pain Ocular Psych Health Sleep Vestibular

insomnia 0.67 0.61 0.71 0.64 0.57 0.52 0.45 0.67 0.58 insomnia

somatization 0.66 0.70 0.61 0.52 0.49 0.54 0.58 0.55 somatization

depression 0.66 0.43 0.52 0.55 0.48 0.48 0.61 depression

anxiety 0.59 0.50 0.51 0.52 0.62 0.55 anxiety

cognitive 0.55 0.42 0.51 0.63 0.42 cognitive

pain 0.53 0.52 0.46 0.53 pain

ocular 0.39 0.43 0.64 ocular

psych
health 0.60 0.47 psych health

sleep 0.41 sleep

somatization depression anxiety cognitive pain ocular psych health sleep vestibular

Regional measures of neuroelectric activity for 68 cortical regions and 68 adjacent white
matter regions were combined into classifiers using stepwise linear classification [27–29].
Classification accuracies with p-values are shown in Table 2.
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Table 2. Clinical trajectory classification accuracy using regional activation. 136 cortical and ad-
jacent white matter regional measures were trained as linear classifiers by group determined by
adjudicated clinical trajectory opinions. Jackknifed classification accuracies are shown. Trajectory
opinions and regional neuroelectric measures were used from both baseline (n = 62) and follow-up
(n = 40) sessions for all subjects of the TEAM-TBI cohort. The p-values were obtained using χ2 with
df = 1 (column 5) and df = 2 (column 7). p-values > 0.001 are not reported. The trajectories were
coded 0/1. For follow-up trajectories, code was set to 0 if the subject had improved (ocular) or fully
recovered (all others).

Insomnia Classified Negative Classified Positive Percentage p-Value < Right/Wrong p-Value <

clinically negative 45 8 84.9% 10−6

80/20 10−7

clinically positive 12 35 74.5% 10−6

somatization classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 46 10 82.1% 10−5

79/19 10−7

clinically positive 9 33 78.6% 0.0003

depression classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 52 14 78.8% 10−5

78/20 10−7

clinically positive 6 26 81.2% 0.0005

anxiety classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 39 13 75.0% 0.0004
69/29 0.0003

clinically positive 16 30 65.2% 0.04

cognitive classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 33 3 91.7% 10−6

91/8 10−15

clinically positive 5 58 92.1% 10−10

headache classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 42 8 84.0% 10−5

88/12 10−12

clinically positive 4 46 92.0% 10−8

ocular classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 51 15 77.3% 10−4

74,25 10−5

clinically positive 10 23 69.7% 0.03

psych health classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 17 2 89.5% 0.0006
88/11 10−13

clinically positive 9 71 88.8% 10−11

sleep classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 27 2 93.1% 10−5

90/9 10−14

clinically positive 7 63 90.0% 10−10

vestibular classified negative classified positive percentage p-value < right/wrong p-value <

clinically negative 48 8 85.7% 10−7

83/16 10−9

clinically positive 8 35 81.4% 10−4

The p-values were computed as follows. Consider line 1 of the table: 45 of 53 TEAM-
TBI subjects who screened negative for insomnia were classified as negative, 8 as positive.
The chance that this would happen by chance is equivalent to the chance that we would
get at least 45 heads when we flip a fair coin 53 times. For each symptom, both sides of the
classification have at least marginally significant p-values, i.e., the classifier does well in
classifying both those who screen positive and those who screen negative. For eight of the
ten symptoms tested, both classifications yielded p < 0.001. For all ten symptoms, the total
classified correctly (column 6) was significant with p < 0.0003. This provides confidence
that the neuroelectric measures which comprise the classifier are related to the symptoms.
For each symptom, the regions whose measures were included are shown in Tables 3 and 4.
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Table 3. The left-side regions whose neuroelectric activity values contributed to the symptom-specific
classifiers reported in Table 2 are shown. Activity in regions marked “↑” was higher in those who
screened positive; those marked “↓“ were lower.

Left

Cortex Adjacent White Matter
In

so
m

ni
a

So
m

at
iz

at
io

n

D
ep

re
ss

io
n

A
nx

ie
ty

C
og

ni
ti

ve

C
hr

on
ic

Pa
in

O
cu

la
r

Ps
yc

h
H

ea
lt

h

Sl
ee

p

V
es

ti
bu

la
r

In
so

m
ni

a

So
m

at
iz

at
io

n

D
ep

re
ss

io
n

A
nx

ie
ty

C
og

ni
ti

ve

C
hr

on
ic

Pa
in

O
cu

la
r

Ps
yc

h
H

ea
lt

h

Sl
ee

p

V
es

ti
bu

la
r

bankssts ↓ ↓ 1 69

caudalanteriorcingulate ↑ ↓ ↓ 70

caudalmiddlefrontal 3 71

cuneus ↓ 4 ↓ 72

entorhinal ↑ 5 ↓ ↓ 73

frontalpole 6 74

fusiform 7 ↑ 75

inferiorparietal ↑ ↓ ↑ 8 ↑ 76

inferiortemporal 9 ↓ ↑ 77

insula ↑ 10 ↑ ↑ ↓

isthmuscingulate 11 79

lateraloccipital 12 ↓

lateralorbitofrontal ↓ 13 ↓ 81

lingual 14 ↓ 82

medialorbitofrontal 15 83

middletemporal ↓ 16 84

paracentral 17 85

parahippocampal 18 ↑ 86

parsopercularis ↓ ↑ 19 ↓ ↓ 87

parsorbitalis 20 88

parstriangularis ↑ 21 89

pericalcarine 22 90

postcentral 23 91

posteriorcingulate ↓ 24 92

precentral 25 ↑ 93

precuneus 26 94

rostralanteriorcingulate ↑ 27 ↓ ↑ ↓

rostralmiddlefrontal 28 96

superiorfrontal ↑ 29 ↓ 97

superiorparietal ↑ ↓ ↑ ↓ 98

superiortemporal ↑ ↑ 31 ↓ 99

supramarginal 32 100

temporalpole ↑ ↑ 101

transversetemporal ↓ 34 ↑ 102
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Table 4. The right-side regions whose neuroelectric activity values contributed to the symptom-
specific classifiers reported in Table 2 are shown. Activity in regions marked “↑” was higher in those
who screened positive; those marked “↓“ were lower.
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bankssts 35 ↑ 103

caudalanteriorcingulate ↓ 36 104

caudalmiddlefrontal ↑ ↓ ↑

cuneus 38 ↓

entorhinal 39 107

frontalpole 40 108

fusiform 41 ↑ 109

inferiorparietal 42 110

inferiortemporal ↓ 111

insula 44 112

isthmuscingulate ↑ 45 113

lateraloccipital 46 114

lateralorbitofrontal ↑ 47 ↑

lingual ↓ ↓ 48 116

medialorbitofrontal ↓ ↓ ↓ ↓ ↓ ↑ ↑ 117

middletemporal 50 ↓ ↓ 118

paracentral ↑ 51 119

parahippocampal 52 ↓ 120

parsopercularis ↑ 53 ↓ 121

parsorbitalis 54 ↑ 122

parstriangularis ↓ 55 ↑ ↓ 123

pericalcarine ↓ ↓ 124

postcentral ↓ ↓ 57 125

posteriorcingulate ↑ 58 ↓ ↓ 126

precentral ↑ 59 ↓ ↑ ↑ 127

precuneus ↑ 60 ↓ 128

rostralanteriorcingulate ↑ 61 ↑ 129

rostralmiddlefrontal ↑ 62 ↓ 130

superiorfrontal 63 131

superiorparietal ↓ 64 132

superiortemporal 65 133

supramarginal ↓ ↓ ↓ ↓ 134

temporalpole ↓ 67 135

transversetemporal ↑ ↓ 68 136

3.2. CamCAN vs. TEAM-TBI Cohort

MEG recordings and high resolution T1-weighted MR imaging (MRI) were obtained
from 613 CamCAN subjects at baseline, 254 at follow-up, 63 TEAM-TBI subjects at baseline
and 40 at follow-up. Regional measures of neuroelectric activity for 68 cortical regions
and 68 adjacent white matter regions were combined into classifiers using stepwise linear
classification [27]. Classification accuracies with p-values are shown in Table 5. The regions
which contributed to the classifier are listed in Table 6.
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Table 5. 68 cortical and 68 adjacent white matter regional measures were trained as linear classifiers by
cohort using the baseline CamCAN and TEAM-TBI measures. Jackknifed classification accuracies are
shown. The results highlighted in light gray were obtained when the regions which were selected for
the first classification analysis were excluded. The results highlighted in darker gray were obtained
when the regions which were selected for the both the first and second classification analyses were
excluded. See the text for details.

1st Step Classified as CamCAN Classifiedd asTEAM-TBI Percentage p-Value

CamCAN baseline 602 11 98.2% 10−125

CamCAN follow-up 236 9 96.3% 10−46

TEAM-TBI baseline 4 59 93.7% 10−11

TEAM-TBI follow-up 8 32 80.0% 10−3

2nd step CamCAN TEAM-TBI percentage p-value

CamCAN baseline 578 35 94.3% 10−105

CamCAN follow-up 231 14 94.3% 10−42

TEAM-TBI baseline 3 60 95.2% 10−12

TEAM-TBI follow-up 3 37 92.5% 10−7

3rd step CamCAN TEAM-TBI percentage p-value

CamCAN baseline 534 79 87.1% 10−74

CamCAN follow-up 221 24 90.2% 10−35

TEAM-TBI baseline 6 57 90.5% 10−9

TEAM-TBI follow-up 4 36 90.0% 10−6

Table 6. The regions whose neuroelectric activity values contributed to the cohort-specific classifiers
reported in Table 5 are shown. Activity in regions marked ↑ was higher in the Team-TBI cohort;
those marked ↓ were lower. Regions marked ↑↑ or ↓↓made the largest statistical contribution to the
classifier. The results for the 2nd step are highlighted in light gray and for the 3rd step are highlighted
in darker gray as in Table 5. These were obtained when the regions which were selected for the 1st
(light gray) and 1st and 2nd (dark gray) classification analyses were excluded.

Left Right

Cortex White Matter Cortex White Matter

bankssts ↑

↓ ↓↓ caudalanteriorcingulate ↓ ↓↓

caudalmiddlefrontal

↑ cuneus ↑↑ ↑

↓ ↓ entorhinal

frontalpole

↓↓ ↓ fusiform ↓ ↓

↓ inferiorparietal ↓

↓ inferiortemporal

↑↑ ↑ insula ↑

↑↑ isthmuscingulate ↑ ↑↑
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Table 6. Cont.

Left Right

Cortex White Matter Cortex White Matter

lateraloccipital

lateralorbitofrontal

↓ ↑ lingual ↓

↑ medialorbitofrontal ↓

middletemporal ↑ ↑

↑ ↑ paracentral

↑↑ parahippocampal ↑

↑ parsopercularis

↑↑ parsorbitalis ↑↑

↓ ↑ parstriangularis ↓ ↑

pericalcarine ↑

postcentral

↑ ↓ posteriorcingulate ↓

↑ precentral

↓↓ ↓ precuneus ↓↓ ↓↓

↑ rostralanteriorcingulate ↓ ↑↑

↓ rostralmiddlefrontal ↓

superiorfrontal

superiorparietal ↑

superiortemporal ↑

↓↓ supramarginal ↓

↓ ↑ temporalpole

↑↑ ↑ transversetemporal ↑

3.3. Test-Retest Reliability

Regional measures of neuroelectric activity for 68 cortical and 68 adjacent white matter
regions were extracted from the resting and task MEG recordings for each member of
the CamCAN cohort. These values were used to assess short-term and long-term repeat
reliability. For short-term, values from the baseline resting vs. task recordings obtained in
the same sitting were used. For long-term, values from the baseline vs. follow-up resting
recordings were used (mean interval = 16 months). The long-term correlations and mean
differences for each region are listed in Appendix A Table A2.

The correlations are centered about 0.85 for the short-term; they were centered about
0.8 using the previously reported empty-room correction [12]. For the long-term, they
are centered about 0.67; they were centered about 0.45 with the previous correction (see
Figure 3). The mean long-term differences are consistently near zero and are much less than
those found with the previous empty-room correction. Test-retest reliability with values
with the random forest empty-room correction is high in both the short-term and long-term
and is consistently better than with the previously reported empty-room correction.
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Figure 3. The y-coordinate of each dot is the average test-retest correlation for a region of interest.
The x-coordinate is the number of subjects for whom the random forest empty-room adjustment was
successfully applied for that ROI. Short-term test-retest reliability is shown in blue, i.e., resting vs. task
in the same sitting. Long-term (mean 16 months) reliability is shown in red. The error bars show
the mean ± 1.0 standard deviation for the short-term values (red bar), long-term (upper black bar),
and for the less accurate empty-room correction used in previous work (lower black bar) [10]. The
improvement in test-retest reliability with application of the random forest empty-room correction is
significant with p < 10−26, t = 13.953, df = 126.3 (Welch’s t-statistic). Only the 68 cortical ROI measures
were used for the error bar and t-statistic calculations since these are the ROIs to which both random
forest and the previous empty-room correction were applied.

Note that the resting recordings were obtained with eyes closed while the task record-
ings were obtained with eyes open. Yet the comparisons of these, reported here as short-
term correlations are quite high, demonstrating that these measures, unlike fMRI measures,
are relatively insensitive to eyes open vs. eyes closed.

3.4. Differential Activity: Cortical vs. Adjacent White Matter Regions

For each of 68 cortical regions, freesurfer identifies an adjacent white matter region
with maximum thickness of 5 mm. For each such pair of regions the difference in activity
can be tested for significance by comparing the observed current counts within the regions
to the expected counts given the volumes of the regions. This is not only a test of the
spatial resolution of the referee consensus solver, but in addition may provide useful
neurophysiological information. See the discussion for additional comments.

For most regions, there are thousands of counts so there is considerable statistical
power to identify differences using the χ2 statistic. For each of the 613 baseline CamCAN
subjects, there are 68 cortex/white matter region pairs, i.e., 41,684 in total. The random
forest empty-room correction was successful for 70% of these pairs, i.e., for 29,264, To
reduce false positives due to the large number of comparisons, p < 10−8 was used as the
threshold for significance.

9018 (30.8%) of the pairs demonstrated greater cortical than white matter activity. This
supports the claim that the solver’s resolution is less than 5 mm. Surprisingly 15,137 (51.7%)
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of the pairs demonstrated greater white matter than cortical activity. Additional comments
may be found in the discussion.

4. Discussion

MEG-derived regional brain measures of tonic neuroelectric activation were tested for
long-term test-retest reliability in a large normative cohort, CamCAN, and for sensitivity to
symptoms and clinical syndromes in a chronic TBI cohort, TEAM-TBI. The studied symp-
toms were insomnia, depression, anxiety, and somatization. The clinical syndromes were
chronic pain, psychological health, and cognitive, ocular, vestibular, and sleep dysfunction.
Good test-retest reliability was found as well as sensitivity to all four symptoms and all
six clinical syndromes. Hence the measures reported here may prove of significant clinical
utility in diagnosis and treatment. In addition, the measures enable classification of each
individual into her/his cohort, i.e., normative vs chronic TBI. Hence the measures may
prove useful as biomarkers for TBI.

The analysis and all results were obtained “by region”. Since we are seeking measures
with good test-retest reliability and which can be compared between subjects, the volumetric
units we use are regions, i.e., volumes which can be reliably and automatically identified
because they are common to the anatomically normal human brain. As more detailed
atlases with finer structures are developed, the measures reported here will be recomputed
and tested for those volumes. For the present, the volumes to which the measures reported
here apply are the regions identifiable with freesurfer 5.3 [11,12].

Each regional value which demonstrates long-term test-retest reliability is a measure
of regional neuroelectric tonus, i.e., the static level of regional neuroelectric activation.
Elevated or reduced regional tonus within an individual may prove emblematic of tonic
alterations in network function. The ability to assess many such regional measures si-
multaneously may provide substantive useful information which is complementary to the
measures which have specificity to TBI, e.g., blood born markers [30,31], MEG-derived slow
waves [32–34]. These patterns of altered regional tonus may prove useful in monitoring
response to treatment.

Analysis of the patterns may enable identification of regions to target for treatment. In
particular, the localization of the measures to several centimeter3 regions is comparable
to the localization precision of trans-cranial magnetic stimulation (TMS) [35–38]. The
deviations seen in a particular individual may prove sufficient to identify individualized
target regions for TMS, unlike the practice of standardized targeting of left and/or right
prefrontal cortex currently in use for major depression [39–42].

4.1. Potential Clinical Utility

This study was undertaken to utilize and assess MEG-derived measures for the diag-
nosis and monitoring of treatment for chronic sequellae of TBI. We report results which
demonstrate (a) sensitivity to the presence/absence of insomnia, somatization, depression,
anxiety, chronic pain, psychological health, and sleep, vestibular, oculomotor, and cognitive
dysfunction (Table 2) and (b) sensitivity to history of concussion and/or chronic symptoms
(Table 5). We cannot directly tie these MEG-results to TBI. However, for clinical purposes,
the etiology may not matter so long as we can use the measures to more effectively diagnose
and treat.

The symptomatic identification accuracies shown in Table 2 are reliably significant,
and the percentages are approaching what is needed for this classification method to be
useful clinically. It is likely that classification accuracy can be increased by (a) refining
the measures of neuroelectric activity and by (b) using nonlinear or machine-learning
classification methods,

The primary results of the study combine the information contained in many regional
neuroelectric measures into patterns of brain activity which are related to chronic symptoms
in chronic TBI. We also report cohort-wide differences in regional activity (Tables 5 and 6).
These are findings which suggest ways to study the mechanisms which underlie presen-
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tation and recovery from symptoms. Productive scientific use of these findings may be
complemented by a working theoretical conjecture. To this end, we propose a phantom
pain conjecture: all symptoms of psychological distress result from hyper- or hypo-activity
in brain regions responsible for attention and response to pain. In support of this conjec-
ture, many regions which show fMRI-derived differential activation in response to painful
stimuli ([43], Table 1) show differential activation in MEG-derived measures in the TEAM-
TBI cohort when compared with the CamCAN cohort (Table 6), e.g., cuneus, fusiform,
paracentral, precuneus, and medialorbitofrontal cortex and the adjacent white matter.

4.2. Test-Retest Reliability

We report short-term (1-h, n = 613) and long-term (mean 16-months, n = 253) test-
retest reliability for the CamCAN normative cohort for each of 103 brain regions. We use
Pearson’s correlation and mean difference in test-retest values, Appendix A Table A2 and
Figure 3. The difference measure may be used to correct a follow-up measure to compare
with a baseline.

Short-term repeat reliability ranged around a mean correlation of 0.85. Long-term
repeat reliability ranged around a mean correlation of 0.67 with mean average difference as
high as |z-score| = 0.147.

A survey of recent test-retest reliability reports shows reliability ranging widely. As
would be expected, test-retest reliability is more consistent for time-locked measures in
evoked response paradigms [44–51]. For free-running paradigms, measures are consistently
resting connectivity confined to frequency bands [52–58]. The test-retest intervals in most
studies are days to weeks. Recasens et al. [47] report results from a 7-week interval, how-
ever, both Piitulainen et al. [57] and Dunkley et al. [48] report results for intervals greater
than one year. Over all the reports, the maximum number of subjects was 40 [46]. Co-
horts with clinical diagnoses were reported by Candelaria-Cook et al. [55] (psychosis) and
Dunkley et al. [48] (PTSD).

Both short-term and long-term reliability values we report compare favorably with all
others. For the work reported here (a) the n’s are much larger, (b) the long-term interval
is 16 months, (c) the measures are free-running rather than synchronized to an event, and
(d) the measures are from raw rather than averaged data.

4.3. Currents Localized to White Matter Regions

We report profuse detectable neuroelectric activity from the white matter with positive
differentials in favor of adjacent white matter for 62.7% of those pairs for which the
differential is significant with threshold: p < 10−8. Both previously reported measurements
and neurophysiological understanding speak to the plausible validity of these findings.
MEG-derived evoked responses from thalamocortical fibers have been reported [59,60].
The source magnetic fields were presumed due to synchronous volleys of action potentials,
APs. Each AP produces a travelling current quadrupole. The approximate amplitude has
been estimated at 100 Amp−15 m in an unmyelinated axon [7] with separation of 1 mm
between the two dipoles forming the quadrupole assuming a propagation velocity of 1 m/s.
It is presumed that the velocity is greater in the myelinated fibers which comprise the white
matter. Hence the velocity and dipole separation would be greater. This would decrease
the distance-dependence of the magnetic field strength and so enhance the detectability of
this activity. In addition, the magnetic field due to an action potential in a single axon has
been directly measured at about 150 × 10−12 Tesla [60].

A trivial explanation of the profuse findings we report is that cortical activity is
localized in nearby white matter due either to poor resolution or to head movements. The
robust finding of differential activity between adjacent cortical and white matter ROIs [10]
argues against this. So too does the design of the method which relies on gradients between
points within the brain that are 1 mm apart [8,9,61,62], coupled with the use of once per
second corrections to the forward solution using continuous head positioning information.
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Under the assumption that the white matter is, in fact, the source of profuse measurable
neuroelectric activity, the measured magnetic field components can only be due to syn-
chronous volleys of APs. These would produce transient longitudinal intra-axonal currents
which are nearly synchronous in many parallel running axons due to near simultaneous
passage of propagating APs.

The detected magnetic field waveforms are envelopes which follow the high frequency
waveforms of several AP volleys in sequence. The envelope of a single highly synchronized
AP volley would require well under 10 ms to rise and fall. Hence this type of activity
would be dominated by high frequency content. This is consistent with the observation
that the yield of the solver improves when the low pass cut-off with which the signals
are preprocessed is increased from 150 Hz to 330 Hz ([8], Figure 3). It is also consistent
with the observation from a typical task recording that the frequency content of the current
waveforms includes profuse resonant activity with frequency content above 70 Hz [63].

Additional work outside the scope of the present study is needed to understand the
mechanisms which underlie the detection of profuse activity localized to the white matter.

4.4. CamCAN vs. TEAM-TBI Differences

The robust differences seen between the two cohorts must be interpreted with caution.
We cannot rule out the possibility that those differences are due to differences in the
scanners or the scanner noise environments. Given the robustness of the differences, this
question can be answered by running a cohort of 40 neurologically normal individuals in
the scanner used for the TEAM-TBI cohort. The classifiers developed for the present study
can be applied to the measures from such a control cohort. If they are different from the
CamCAN cohort, then the differences between the CamCAN and TEAM-TBI cohorts must
be presumed to be due to differences in the scanners.

A second potential confound to these results is that the CamCAN resting recordings
were obtained with eyes closed whereas the Team-TBI recordings were obtained with eyes
open. To test this, consider that the short-term test-retest reliability results were obtained
by comparing baseline CamCAN resting (eyes closed) with CamCAN sensorimotor task
(sitting, eyes open). The test-retest reliability is very good, i.e., the differences between
resting and task are very small. In addition, linear classifiers fail to distinguish well
between baseline CamCAN resting and task recordings. Hence this difference in recording
conditions, i.e., eyes closed vs. eyes open, does not account for the differences between
the cohorts.

It is noteworthy that differences found between TEAM-TBI cohort members with
and without specific symptoms is not affected by these questions. The same applies to
the test-retest reliability results. Only the cause of the differences between the cohorts is
in question.

Under the assumption that the differences found between cohorts are due to differ-
ences from the norm in the neuroelectric brain activity of those with TBI, correspondences
between the normal vs. TBI classification results we report and those reported by others
may be useful. The high classification accuracy found between CamCAN and TEAM-TBI
cohorts, i.e., greater than 93% (Table 5), provides confidence in the validity of the regions
whose measures contribute most to the classifier (Table 6).

At present, we can only speculate what the neurophysiologic mechanisms are which
tie altered regional activation, functional connectivity, and symptoms together. The growth
in our ability to reliably measure such alterations and to target specific regions with drug
and TMS therapies may enable us to understand those mechanisms and to more effectively
treat them.
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Appendix A

Table A1. Atlas for measures with random forest empty-room correction. Regional measures of
neuroelectric activity for 68 cortical and 68 adjacent white matter regions were extracted from both
the baseline (n = 613) CamCAN recordings. The columns labelled “mean” and “s.d.” contain the
means and standard deviations for the baseline current density measures These density measures were
transformed to z-scores. The columns labelled “n” show the number of subjects for whom the random
forest classification yielded significant accuracy for resting vs. empty-room recordings. Only those
subjects’ measures were used to compute the densities listed in the atlas.

Left Right

Cortex Adjacent White Matter Cortex Adjacent White Matter

n mean s.d n mean s.d n mean s.d. n mean s.d.

530 1.256 0.345 553 1.206 0.337 bankssts 515 1.230 0.368 532 1.177 0.321

155 0.825 0.353 416 0.758 0.349 caudalanteriorcingulate 173 0.735 0.360 384 0.701 0.353

562 0.948 0.353 573 0.983 0.400 caudalmiddlefrontal 543 0.911 0.369 547 0.938 0.409

360 0.889 0.291 389 0.969 0.325 cuneus 368 0.864 0.266 378 0.932 0.303

517 1.291 0.333 149 1.431 0.386 entorhinal 476 1.304 0.355 125 1.537 0.419

0 0 0 0 0 0 frontalpole 6 1.479 0.556 0 0 0

608 1.020 0.201 609 1.008 0.221 fusiform 607 1.067 0.213 603 1.038 0.243

https://www.cam-can.org/
https://www.cam-can.org/
https://fitbir.nih.gov/
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Table A1. Cont.

Left Right

Cortex Adjacent White Matter Cortex Adjacent White Matter

n mean s.d n mean s.d n mean s.d. n mean s.d.

608 0.992 0.236 602 0.894 0.237 inferiorparietal 606 0.939 0.217 606 0.865 0.212

611 1.230 0.213 608 1.308 0.242 inferiortemporal 610 1.236 0.220 609 1.303 0.256

605 0.989 0.234 608 1.066 0.250 insula 603 1.023 0.248 604 1.121 0.278

208 0.849 0.340 426 0.836 0.331 isthmuscingulate 171 0.859 0.303 408 0.880 0.330

611 1.196 0.218 608 1.225 0.236 lateraloccipital 610 1.175 0.226 608 1.228 0.268

601 1.124 0.251 596 1.184 0.313 lateralorbitofrontal 601 1.149 0.267 596 1.186 0.324

599 0.871 0.230 600 0.970 0.256 lingual 599 0.863 0.224 594 0.941 0.264

539 0.853 0.248 511 0.937 0.269 medialorbitofrontal 486 0.800 0.253 420 0.882 0.268

610 1.179 0.225 601 1.346 0.279 middletemporal 611 1.174 0.210 607 1.341 0.267

308 0.574 0.274 420 0.677 0.325 paracentral 324 0.552 0.262 455 0.649 0.301

542 1.256 0.314 467 1.355 0.337 parahippocampal 537 1.273 0.337 469 1.357 0.346

579 1.102 0.309 539 1.055 0.347 parsopercularis 554 1.073 0.341 522 1.008 0.354

325 1.128 0.345 54 1.358 0.421 parsorbitalis 381 1.012 0.362 98 1.340 0.433

532 1.087 0.321 520 1.068 0.338 parstriangularis 556 1.036 0.322 526 1.075 0.345

357 1.016 0.330 543 1.031 0.314 pericalcarine 384 0.970 0.295 538 0.990 0.304

603 0.914 0.235 594 0.965 0.269 postcentral 597 0.884 0.223 594 0.928 0.248

322 0.712 0.322 484 0.724 0.311 posteriorcingulate 305 0.668 0.292 466 0.67 0.281

605 0.944 0.245 609 0.935 0.265 precentral 606 0.914 0.245 605 0.909 0.266

526 0.530 0.235 577 0.663 0.249 precuneus 528 0.529 0.230 580 0.680 0.246

319 0.896 0.319 409 0.917 0.331 rostralanteriorcingulate 184 0.951 0.318 246 0.939 0.321

603 0.823 0.258 603 0.933 0.296 rostralmiddlefrontal 606 0.785 0.278 598 0.906 0.308

599 0.674 0.230 595 0.774 0.292 superiorfrontal 603 0.651 0.237 598 0.741 0.284

606 0.879 0.246 607 0.929 0.255 superiorparietal 604 0.854 0.265 601 0.906 0.280

611 1.164 0.191 610 1.227 0.223 superiortemporal 610 1.160 0.207 607 1.248 0.247

604 0.933 0.244 593 0.947 0.275 supramarginal 599 0.903 0.258 595 0.942 0.268

514 1.171 0.343 55 1.545 0.335 temporalpole 533 1.297 0.325 47 1.553 0.420

223 1.269 0.429 71 1.377 0.432 transversetemporal 109 1.316 0.379 18 1.441 0.378

Table A2. Test-retest reliability for measures with random forest empty-room correction. n = 245. The
regional measures of neuroelectric activity for 68 cortical and 68 adjacent white matter regions were
extracted from both the baseline (n = 613) and 16-month follow-up (n = 245) CamCAN recordings.
The columns labelled “corr” and “diff.” contain the correlation and difference between the baseline
and follow-up measures. The columns labelled “n” show the number of subjects for whom the
random forest classification yielded significant accuracy for resting vs. empty-room recordings for
both baseline and follow-up.

Left Right

Cortex Adjacent White Matter Cortex Adjacent White Matter

n corr diff n corr diff n corr diff n corr diff

148 0.664 0.037 175 0.725 0.095 bankssts 148 0.666 −0.024 175 0.694 −0.138

9 0.914 −0.007 83 0.752 −0.002 caudalanteriorcingulate 9 0.787 −0.058 83 0.663 0.020

179 0.642 −0.089 183 0.642 −0.035 caudalmiddlefrontal 179 0.648 0.004 183 0.571 0.069

97 0.760 0.096 98 0.738 0.070 cuneus 97 0.804 0.042 98 0.722 0.007

137 0.612 −0.093 7 0.062 −0.028 entorhinal 137 0.654 −0.072 7 0.562 −0.024

0 0 0 0 0 0 frontalpole 0 0 0 0 0 0

238 0.739 0.096 233 0.763 0.060 fusiform 238 0.686 0.017 233 0.777 −0.040

235 0.688 0.063 234 0.772 −0.024 inferiorparietal 235 0.714 0.022 234 0.743 −0.007
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Table A2. Cont.

Left Right

Cortex Adjacent White Matter Cortex Adjacent White Matter

n corr diff n corr diff n corr diff n corr diff

241 0.591 0.117 237 0.660 0.107 inferiortemporal 241 0.583 −0.004 237 0.649 0.010

235 0.717 0.076 236 0.740 0.037 insula 235 0.777 0.097 236 0.794 0.051

28 0.595 0.041 126 0.669 0.015 isthmuscingulate 28 0.623 0.062 126 0.503 0.039

241 0.728 0.091 236 0.693 0.085 lateraloccipital 241 0.621 0.072 236 0.563 0.034

235 0.540 0.088 225 0.617 0.044 lateralorbitofrontal 235 0.639 0.015 225 0.598 −0.023

229 0.720 0.080 225 0.709 0.073 lingual 229 0.691 0.000 225 0.733 0.024

138 0.637 0.025 113 0.654 −0.006 medialorbitofrontal 138 0.674 0.006 113 0.562 −0.059

242 0.687 0.032 231 0.650 −0.001 middletemporal 242 0.683 −0.005 231 0.646 0.017

63 0.673 0.062 102 0.645 0.058 paracentral 63 0.619 0.031 102 0.510 0.065

171 0.617 −0.097 128 0.614 −0.050 parahippocampal 171 0.580 −0.105 128 0.523 −0.099

196 0.609 −0.088 161 0.675 −0.058 parsopercularis 196 0.600 0.017 161 0.599 0.079

65 0.723 −0.077 3 −0.370 −0.008 parsorbitalis 65 0.859 0.015 3 0.561 −0.005

173 0.733 0.016 157 0.650 0.036 parstriangularis 173 0.666 0.085 157 0.635 0.048

78 0.784 0.000 180 0.830 −0.034 pericalcarine 78 0.772 −0.057 180 0.736 −0.024

231 0.550 −0.070 224 0.542 −0.072 postcentral 231 0.562 −0.026 224 0.540 0.029

68 0.581 0.056 132 0.603 −0.042 posteriorcingulate 68 0.568 −0.037 132 0.660 −0.032

236 0.582 −0.097 234 0.637 −0.031 precentral 236 0.638 −0.013 234 0.530 0.016

181 0.852 −0.073 206 0.795 −0.058 precuneus 181 0.843 −0.051 206 0.821 0.002

21 0.425 −0.017 52 0.552 −0.036 rostralanteriorcingulate 21 0.478 −0.034 52 0.562 0.009

233 0.675 −0.030 228 0.604 −0.016 rostralmiddlefrontal 233 0.649 0.012 228 0.521 0.062

233 0.645 0.012 228 0.661 0.022 superiorfrontal 233 0.651 −0.052 228 0.664 −0.002

232 0.635 −0.015 234 0.646 −0.012 superiorparietal 232 0.664 0.053 234 0.732 0.015

240 0.569 0.100 238 0.682 0.085 superiortemporal 240 0.610 0.030 238 0.621 −0.029

227 0.666 −0.001 218 0.629 −0.039 supramarginal 227 0.592 −0.128 218 0.615 −0.147

157 0.756 0.023 0 0 0 temporalpole 157 0.740 0.001 0 0 0

10 0.913 0.029 0 0 0 transversetemporal 10 0.238 −0.002 0 0 0

References
1. Telkes, I.; Jimenez-Shahed, J.; Viswanathan, A.; Abosch, A.; Ince, N.F. Prediction of STN-DBS Electrode Implantation Track in

Parkinson’s Disease by Using Local Field Potentials. Front. Neurosci. 2016, 10, 198. [CrossRef]
2. Moroni, F.; Nobili, L.; Curcio, G.; De Carli, F.; Fratello, F.; Marzano, C.; De Gennaro, L.; Ferrillo, F.; Cossu, M.; Francione, S.; et al.

Sleep in the Human Hippocampus: A Stereo-EEG Study. PLoS ONE 2007, 2, e867. [CrossRef] [PubMed]
3. Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 1987, 32, 11–22.

[CrossRef] [PubMed]
4. Cheyne, D.; Weinberg, H. Neuromagnetic fields accompanying unilateral finger movements: Pre-movement and movement-

evoked fields. Exp. Brain Res. 1989, 78, 604–612. [CrossRef]
5. Harrop, R.; Weinberg, H.; Brickett, P.; Dykstra, C.; Robertson, A.; Cheyne, D.; Baff, M.; Crisp, D. The biomagnetic inverse problem:

Some theoretical and practical considerations. Phys. Med. Biol. 1987, 32, 1545–1557. [CrossRef]
6. Hämäläinen, M.S.; Ilmoniemi, R. Interpreting magnetic fields of the brain: Minimum norm estimates. Med. Biol. Eng. Comput.

1994, 32, 35–42. [CrossRef]
7. Papadelis, C.; Leonardelli, E.; Staudt, M.; Braun, C. Can magnetoencephalography track the afferent information flow along

white matter thalamo-cortical fibers? NeuroImage 2012, 60, 1092–1105. [CrossRef] [PubMed]
8. Krieger, D.; McNeil, M.; Zhang, J.; Puccio, A.; Schneider, W.; Li, X.; Okonwko, D.O. Very high resolution neuroelectric brain

imaging by referee consensus processing. Int. J. Adv. Comput. Sci. 2014, 1, 15–25.
9. Krieger, D.; Shepard, P.; Okonkwo, D.O. Normative atlases of neuroelectric brain activity and connectivity from a large human

cohort. arXiv 2018, arXiv:1805.01552.
10. Krieger, D.; Shepard, P.; Soose, R.; Puccio, A.; Beers, S.; Schneider, W.; Kontos, A.; Collins, M.; Okonkwo, D. Symptom-Dependent

Changes in MEG-Derived Neuroelectric Brain Activity in Traumatic Brain Injury Patients with Chronic Symptoms. Med. Sci.
2021, 9, 20. [CrossRef]

11. Fischl, B.; Sereno, M.I.; Dale, A. Cortical Surface-Based Analysis: II: Inflation, Flattening, and a Surface-Based Coordinate System.
NeuroImage 1999, 9, 195–207. [CrossRef] [PubMed]

http://doi.org/10.3389/fnins.2016.00198
http://doi.org/10.1371/journal.pone.0000867
http://www.ncbi.nlm.nih.gov/pubmed/17848998
http://doi.org/10.1088/0031-9155/32/1/004
http://www.ncbi.nlm.nih.gov/pubmed/3823129
http://doi.org/10.1007/BF00230248
http://doi.org/10.1088/0031-9155/32/12/002
http://doi.org/10.1007/BF02512476
http://doi.org/10.1016/j.neuroimage.2012.01.054
http://www.ncbi.nlm.nih.gov/pubmed/22266410
http://doi.org/10.3390/medsci9020020
http://doi.org/10.1006/nimg.1998.0396
http://www.ncbi.nlm.nih.gov/pubmed/9931269


Diagnostics 2022, 12, 84 22 of 23

12. Reuter, M.; Schmansky, N.J.; Rosas, H.D.; Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis.
NeuroImage 2012, 61, 1402–1418. [CrossRef] [PubMed]

13. Taylor, J.R.; Williams, N.; Cusack, R.; Auer, T.; Shafto, M.A.; Dixon, M.; Tyler, L.K.; Henson, R.N. The Cambridge Centre for Ageing
and Neuroscience (CamCAN) data repository: Structural and functional MRI, MEG, and cognitive data from a corss-sectional
adult lifespan sample. Neuroimage 2015, 144, 262–269. [CrossRef]

14. Shafto, M.A.; Can, C.; Tyler, L.K.; Dixon, M.; Taylor, J.R.; Rowe, J.B.; Cusack, R.; Calder, A.J.; Marslen-Wilson, W.D.; Duncan, J.; et al.
The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan, multidisciplinary
examination of healthy cognitive ageing. BMC Neurol. 2014, 14, 204. [CrossRef] [PubMed]

15. Collins, M.W.; Kontos, A.P.; Okonkwo, D.O.; Almquist, J.; Bailes, J.; Barisa, M.; Bazarian, J.; Bloom, O.J.; Brody, D.; Cantu, R.; et al.
Concussion is treatable: Statements of agreement from the targeted Evaluation and Active Management (TEAM) approaches to
treating concussion meeting held in Pittsburgh, October 15–16, 2015. Neurosurgery 2016, 79, 912–929. [CrossRef]

16. Hämäläinen, M.; Hari, R.; Ilmoniemi, R.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography—Theory, instrumentation, and
applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 1993, 65, 413–497. [CrossRef]

17. Krieger, D.; Onodipe, S.; Charles, P.J.; Sclabassi, R.J. Real time signal processing in the clinical setting. Ann. Biomed. Eng. 1998,
26, 462–472. [CrossRef]

18. MaxFilter User’s Guide, Software Version 2.1; Elekta Neuromag Oy: Helsinki, Finland, 2008.
19. Krieger, D.; Shepard, P.; Zusman, B.; Jana, A.; Okonkwo, D. Shared high value research resources: The CamCAN human

lifespan neuroimaging dataset processed on the open science grid. In Proceedings of the 2017 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 1815–1822. [CrossRef]

20. Pordes, R.; Petravick, D.; Kramer, B.; Olson, D.; Livny, M.; Roy, A.; Avery, P.; Blackburn, K.; Wenaus, T.; Würthwein, F.; et al. The
open science grid. J. Phys. Conf. Ser. 2007, 78, 012057. [CrossRef]

21. Sfiligoi, I.; Bradley, D.C.; Holzman, B.; Mhashilkar, P.; Padhi, S.; Wurthwein, F. The Pilot Way to Grid Resources Using glideinWMS.
In Proceedings of the 2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles, CA, USA,
31 March–2 April 2009; Volume 2, pp. 428–432. [CrossRef]

22. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
23. Morin, C.M.; Belleville, G.; Bélanger, L.; Ivers, H. The Insomnia Severity Index: Psychometric Indicators to Detect Insomnia Cases

and Evaluate Treatment Response. Sleep 2011, 34, 601–608. [CrossRef]
24. Gagnon, C.; Bélanger, L.; Ivers, H.; Morin, C.M. Validation of the Insomnia Severity Index in Primary Care. J. Am. Board Fam. Med.

2013, 26, 701–710. [CrossRef]
25. Lancaster, M.A.; McCrea, M.A.; Nelson, L.D. Psychometric properties and normative data for the Brief Symptom Inventory-18

(BSI-18) in high school and collegiate athletes. Clin. Neuropsychol. 2016, 30, 321–333. [CrossRef]
26. Raghavan, S.S.; Rosenfeld, B.; Rasmussen, A. Measurement Invariance of the Brief Symptom Inventory in Survivors of Torture

and Trauma. J. Interpers. Violence 2015, 32, 1708–1729. [CrossRef]
27. Dixon, W.J. BMDP Statistical Software Manual, Chapter on BMDP7M; University of California Press: Berkeley, CA, USA, 1990.
28. Afifi, A.; Clark, V. Computer Aided Multivariate Analysis; Wadsworth Publishing: London, UK, 1984.
29. Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics; Pearson/Allyn & Boeon: Boston, MA, USA, 2007.
30. Gan, Z.S.; Stein, S.C.; Swanson, R.; Guan, S.; Garcia, L.; Mehta, D.; Smith, D.H. Blood Biomarkers for Traumatic Brain Injury:

A Quantitative Assessment of Diagnostic and Prognostic Accuracy. Front. Neurol. 2019, 10, 446. [CrossRef] [PubMed]
31. Peltz, C.; Kenney, K.; Gill, J.; Diaz-Arrastia, R.; Gardner, R.; Yaffe, K. Blood biomarkers of traumatic brain injury and cognitive

impairment in older veterans. Neurology 2020, 95, e1126–e1133. [CrossRef] [PubMed]
32. Lewine, J.D.; Davis, J.T.; Sloan, J.H.; Kodituwakku, P.W.; Orrison, W.W., Jr. Neuromagnetic assessment of pathophysiologic brain

activity induced by minor head trauma. Am. J. Neuroradiol. 1999, 20, 857–866. [PubMed]
33. Huang, M.; Theilmann, R.J.; Robb, A.; Angeles, A.; Nichols, S.; Drake, A.; Dandrea, J.; Levy, M.; Holland, M.; Song, T.; et al.

Integrated imaging approach with MEG and DTI to Detect Mild Traumatic Brain Injury in Military and Civilian Patients.
J. Neurotrauma 2009, 26, 1213–1226. [CrossRef]

34. Huang, M.; Risling, M.; Baker, D.G. The role of biomarkers and MEG-based imaging markers in the diagnosis of post-traumatic
stress disorder and blast-induced mild traumatic brain injury. Psychoneuroendocrinology 2016, 63, 398–409. [CrossRef] [PubMed]

35. Sack, A.T.; Kadosh, R.C.; Schuhmann, T.; Moerel, M.; Walsh, V.; Goebel, R. Optimizing Functional Accuracy of TMS in Cognitive
Studies: A Comparison of Methods. J. Cogn. Neurosci. 2009, 21, 207–221. [CrossRef]

36. Alexander, B.; Laycock, R.; Crewther, D.P.; Crewther, S.G. An fMRI-Neuronavigated chronometric TMS investigation of V5 and
intraparietal cortex in motion driven attention. Front. Hum. Neurosci. 2018, 11, 638. [CrossRef]

37. Inuggi, A.; Filippi, M.; Chieffo, R.; Agosta, F.; Rocca, M.A.; González-Rosa, J.J.; Cursi, M.; Comi, G.; Leocani, L. Motor area
localization using fMRI constrained cortical current density reconstruction of movement-related cortical potentials, a comparison
with fMRI and TMS mapping. Brain Res. 2010, 1308, 68–78. [CrossRef] [PubMed]

38. Trapp, N.T.; Uitermarkt, B.; Johnson, M.K.; Koscik, T.R.; Garrett, L.; Heinzerling, A.; Zanaty, M.; Holland, M.T.; Howard,
M.; Boes, A.D. A new device to improve target localization for transcranial magnetic stimulation therapy. Brain Stimul. 2019,
12, 1600–1602. [CrossRef] [PubMed]

http://doi.org/10.1016/j.neuroimage.2012.02.084
http://www.ncbi.nlm.nih.gov/pubmed/22430496
http://doi.org/10.1016/j.neuroimage.2015.09.018
http://doi.org/10.1186/s12883-014-0204-1
http://www.ncbi.nlm.nih.gov/pubmed/25412575
http://doi.org/10.1227/NEU.0000000000001447
http://doi.org/10.1103/RevModPhys.65.413
http://doi.org/10.1114/1.95
http://doi.org/10.1109/bibm.2017.8217936
http://doi.org/10.1088/1742-6596/78/1/012057
http://doi.org/10.1109/csie.2009.950
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1093/sleep/34.5.601
http://doi.org/10.3122/jabfm.2013.06.130064
http://doi.org/10.1080/13854046.2016.1138504
http://doi.org/10.1177/0886260515619750
http://doi.org/10.3389/fneur.2019.00446
http://www.ncbi.nlm.nih.gov/pubmed/31105646
http://doi.org/10.1212/WNL.0000000000010087
http://www.ncbi.nlm.nih.gov/pubmed/32571850
http://www.ncbi.nlm.nih.gov/pubmed/10369357
http://doi.org/10.1089/neu.2008.0672
http://doi.org/10.1016/j.psyneuen.2015.02.008
http://www.ncbi.nlm.nih.gov/pubmed/25769625
http://doi.org/10.1162/jocn.2009.21126
http://doi.org/10.3389/fnhum.2017.00638
http://doi.org/10.1016/j.brainres.2009.10.042
http://www.ncbi.nlm.nih.gov/pubmed/19853590
http://doi.org/10.1016/j.brs.2019.07.028
http://www.ncbi.nlm.nih.gov/pubmed/31402180


Diagnostics 2022, 12, 84 23 of 23

39. Luber, B.M.; Davis, S.; Bernhardt, E.; Neacsiu, A.; Kwapil, L.; Lisanby, S.H.; Strauman, T.J. Using neuroimaging to individualize
TMS treatment for depression: Toward a new paradigm for imaging-guided intervention. Neuroimage 2017, 148, 1–7. [CrossRef]
[PubMed]

40. Van Dun, K.; Bodranghien, F.; Manto, M.; Mariën, P. Targeting the Cerebellum by noninvasive neurostimulation: A review.
Cerebellum 2017, 16, 695–741. [CrossRef]

41. Sonmez, A.I.; Camsari, D.D.; Nandakumar, A.L.; Voort, J.L.V.; Kung, S.; Lewis, C.P.; Croarkin, P.E. Accelerated TMS for Depression:
A systematic review and meta-analysis. Psychiatry Res. 2018, 273, 770–781. [CrossRef]

42. Alexopoulos, G.S. Mechanisms and treatment of late-life depression. Transl. Psychiatry 2019, 9, 188. [CrossRef]
43. Mayhew, S.D.; Hylands-White, N.; Porcaro, C.; Derbyshire, S.W.; Bagshaw, A.P. Intrinsic variability in the human response to

pain is assembled from multiple, dynamic brain processes. NeuroImage 2013, 75, 68–78. [CrossRef]
44. Tan, H.-R.; Gross, J.; Uhlhaas, P. MEG—Measured auditory steady-state oscillations show high test–retest reliability: A sensor

and source-space analysis. NeuroImage 2015, 122, 417–426. [CrossRef]
45. Legget, K.T.; Hild, A.K.; Steinmetz, S.E.; Simon, S.; Rojas, D. MEG and EEG demonstrate similar test-retest reliability of the 40 Hz

auditory steady-state response. Int. J. Psychophysiol. 2017, 114, 16–23. [CrossRef]
46. Onishi, H.; Otsuru, N.; Kojima, S.; Miyaguchi, S.; Saito, K.; Inukai, Y.; Yamashiro, K.; Sato, D.; Tamaki, H.; Shirozu, H.; et al.

Vaiability and reliability of paired-pulse depression and cortical oscillation induced by median nerve stimulation. Brain Topogr.
2018, 31, 780–794. [CrossRef]

47. Recasens, M.; Uhlhaas, M. Test-retest reliability of the magnetic mismatch negativity response to sound duration and omission
deviants. NeuroImage 2017, 157, 184–195. [CrossRef]

48. Dunkley, B.T.; Wong, S.; Jetly, R.; Wong, J.K.; Taylor, M.J. Post-traumatic stress disorder and chronic hyperconnectivity in
emotional processing. NeuroImage Clin. 2018, 20, 197–204. [CrossRef] [PubMed]

49. Takeuchi, N.; Sugiyama, S.; Inui, K.; Kanemoto, K.; Nishihara, M. Long-latency suppression of auditory and somatosensory
change-related cortical responses. PLoS ONE 2018, 13, e0199614. [CrossRef] [PubMed]

50. Ahonen, L.; Huotilainen, M.; Brattico, E. Within- and between-session replicability of cognitive brain processes: An MEG study
with an N-back task. Physiol. Behav. 2016, 158, 43–53. [CrossRef] [PubMed]

51. Solomon, J.; Boe, S.; Bardouille, T. Reliability for non-invasive somatosensory cortex localization: Implications for pre-surgical
mapping. Clin. Neurol. Neurosurg. 2015, 139, 224–229. [CrossRef] [PubMed]

52. Colclough, G.L.; Woolrich, M.W.; Tewarie, P.K.; Brookes, M.J.; Quinn, A.J.; Smith, S.M. How reliable are MEG resting-state
connectivity metrics? NeuroImage 2016, 138, 284–293. [CrossRef] [PubMed]

53. Dimitriadis, S.I.; Routley, B.; Linden, D.E.; Singh, K. Reliability of Static and Dynamic Network Metrics in the Resting-State:
A MEG-Beamformed Connectivity Analysis. Front. Neurosci. 2018, 12, 506. [CrossRef] [PubMed]

54. Martín-Buro, M.C.; Garcés, P.; Maestú, F. Test-retest reliability of resting-state magnetoencephalography power in sensor and
source space. Hum. Brain Mapp. 2015, 37, 179–190. [CrossRef]

55. Candelaria-Cook, F.T.; Schendel, M.E.; Ojeda, C.J.; Bustillo, J.R.; Stephen, J.M. Reduced parietal alpha power and psychotic
symptoms: Test-retest reliability of resting-state mangetoencephalography in schizophrenica and health controls. Schizophrenia
Research. Schizophr. Res. 2020, 215, 229–240. [CrossRef]

56. Marquetand, J.; Vannoni, S.; Carboni, M.; Hegner, Y.L.; Stier, C.; Braun, C.; Focke, N.K. Reliability of Magnetoencephalography
and High-Density Electroencephalography Resting-State Functional Connectivity Metrics. Brain Connect. 2019, 9, 539–553.
[CrossRef]

57. Piitulainen, H.; Illman, M.; Laaksonen, K.; Jousmäki, V.; Forss, N. Reproducibility of corticokinematic coherence. NeuroImage 2018,
179, 596–603. [CrossRef]

58. Garcés, P.; Martín-Buro, M.C.; Maestú, F. Quantifying the Test-Retest Reliability of Magnetoencephalography Resting-State
Functional Connectivity. Brain Connect. 2016, 6, 448–460. [CrossRef]

59. Kimura, T.; Ozaki, I.; Hashimoto, I. Impulse Propagation along Thalamocortical Fibers Can Be Detected Magnetically outside the
Human Brain. J. Neurosci. 2008, 28, 12535–12538. [CrossRef]

60. Roth, B.J.; Wikswo, J.P., Jr. The magnetic field of a single axon. A comparison of theory and experiment. Biophys. J. 1985, 48, 93–109.
[CrossRef]

61. Krieger, D.; Becker, J.; Fabrizio, M.; McNeil, M.; Schneider, W.; Habeych, M.; Okonkwo, D. LP35: Task relevant high frequency
neuroelectric oscillations in humans. Clin. Neurophysiol. 2014, 125, S193. [CrossRef]

62. Antonakakis, M.; Dimitriadis, S.I.; Zervakis, M.; Papanicolaou, A.C.; Zouridakis, G. Aberrant Whole-Brain Transitions and
Dynamics of Spontaneous Network Microstates in Mild Traumatic Brain Injury. Front. Comput. Neurosci. 2020, 13, 90. [CrossRef]
[PubMed]

63. Krieger, D.; McNeil, M.; Zhang, J.; Schneider, W.; Li, X.; Okonkwo, D.O. Referee consensus: A platform technology for nonlinear
optimization. XSEDE 2013, 12, 1–7. [CrossRef]

http://doi.org/10.1016/j.neuroimage.2016.12.083
http://www.ncbi.nlm.nih.gov/pubmed/28062252
http://doi.org/10.1007/s12311-016-0840-7
http://doi.org/10.1016/j.psychres.2018.12.041
http://doi.org/10.1038/s41398-019-0514-6
http://doi.org/10.1016/j.neuroimage.2013.02.028
http://doi.org/10.1016/j.neuroimage.2015.07.055
http://doi.org/10.1016/j.ijpsycho.2017.01.013
http://doi.org/10.1007/s10548-018-0648-5
http://doi.org/10.1016/j.neuroimage.2017.05.064
http://doi.org/10.1016/j.nicl.2018.07.007
http://www.ncbi.nlm.nih.gov/pubmed/30094169
http://doi.org/10.1371/journal.pone.0199614
http://www.ncbi.nlm.nih.gov/pubmed/29944700
http://doi.org/10.1016/j.physbeh.2016.02.006
http://www.ncbi.nlm.nih.gov/pubmed/26855266
http://doi.org/10.1016/j.clineuro.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26519893
http://doi.org/10.1016/j.neuroimage.2016.05.070
http://www.ncbi.nlm.nih.gov/pubmed/27262239
http://doi.org/10.3389/fnins.2018.00506
http://www.ncbi.nlm.nih.gov/pubmed/30127710
http://doi.org/10.1002/hbm.23027
http://doi.org/10.1016/j.schres.2019.10.023
http://doi.org/10.1089/brain.2019.0662
http://doi.org/10.1016/j.neuroimage.2018.06.078
http://doi.org/10.1089/brain.2015.0416
http://doi.org/10.1523/JNEUROSCI.3022-08.2008
http://doi.org/10.1016/S0006-3495(85)83763-2
http://doi.org/10.1016/S1388-2457(14)50630-X
http://doi.org/10.3389/fncom.2019.00090
http://www.ncbi.nlm.nih.gov/pubmed/32009921
http://doi.org/10.1145/2484762.2484789

	Introduction 
	Materials and Methods 
	CamCAN Dataset 
	TEAM-TBI Dataset 
	MRI Processing 
	MEG Processing 
	Normative Measures 
	Empty Room Correction 
	Classification 

	Results 
	Self-Reported Symptoms and Adjudicated Clinical Syndromes 
	CamCAN vs. TEAM-TBI Cohort 
	Test-Retest Reliability 
	Differential Activity: Cortical vs. Adjacent White Matter Regions 

	Discussion 
	Potential Clinical Utility 
	Test-Retest Reliability 
	Currents Localized to White Matter Regions 
	CamCAN vs. TEAM-TBI Differences 

	Appendix A
	References

