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Introduction
The promyelocytic leukemia (PML) protein and PML nuclear 

bodies (NBs) are implicated in several cellular processes, in-

cluding transcriptional regulation, tumor suppression, apopto-

sis, DNA repair, and the replication of both viral and cellular 

DNA (for reviews see Zhong et al., 2000; Everett, 2001; 

 Salomoni and Pandolfi , 2002; Dellaire and Bazett-Jones, 2004). 

How they contribute to these nuclear activities, however, has re-

mained elusive. In normal mammalian cells, the PML protein 

coaccumulates in 5–30 NBs (Dellaire and Bazett-Jones, 2004) 

with as many as 75 other proteins (listed in the Nuclear Protein 

Database; Dellaire et al., 2003). Rather than just sequestering 

these proteins, there is compelling evidence that the bodies 

serve as sites for the posttranslational modifi cation of nuclear 

proteins. For example, the coaccumulation of p53, CBP, and 

HIPK2 in PML NBs contributes to the regulated phosphoryla-

tion (by HIPK2) and acetylation (by CBP) of p53 in response to 

DNA damage (D’Orazi et al., 2002; Hofmann et al., 2002).

The structural and dynamic behavior of PML NBs is inti-

mately linked to the cell’s chromatin integrity (Eskiw et al., 

2004; Dellaire et al., 2006). Extensive chromatin contacts on 

the periphery of the protein cores of the NBs may account for 

their positional stability through extended periods in interphase 

of the cell cycle. Physical contacts with chromatin may be im-

portant for their proposed role in DNA replication. For example, 

early transcription and replication of the genomes of several 

DNA viruses occur immediately adjacent to PML NBs (Everett, 

2001). A link between PML NBs and chromatin is also demon-

strated in the maintenance of telomeres through a recombina-

tion mechanism called alternative lengthening of telomeres, 
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 T
he promyelocytic leukemia (PML) nuclear body 

(NB) is a dynamic subnuclear compartment that is 

implicated in tumor suppression, as well as in the 

transcription, replication, and repair of DNA. PML NB 

number can change during the cell cycle, increasing in 

S phase and in response to cellular stress, including DNA 

damage. Although topological changes in chromatin 

 after DNA damage may affect the integrity of PML NBs, 

the molecular or structural basis for an increase in PML 

NB number has not been elucidated. We demonstrate 

that after DNA double-strand break induction, the in-

crease in PML NB number is based on a biophysical pro-

cess, as well as ongoing cell cycle progression and DNA 

repair. PML NBs increase in number by a supramolecu-

lar fi ssion mechanism similar to that observed in S-phase 

cells, and which is delayed or inhibited by the loss of 

function of NBS1, ATM, Chk2, and ATR kinase.  Therefore, 

an increase in PML NB number is an intrinsic element 

of the cellular response to DNA damage.
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whereby a subset of PML NBs in late S/G2 phase become asso-

ciated with nascent DNA synthesis, DNA repair factors, and 

telomere proteins (Yeager et al., 1999; Grobelny et al., 2000). 

The connection between PML NBs and chromatin also extends 

to a possible role for PML NBs in DNA repair mechanisms. For 

example, after DNA damage, several DNA repair factors transit 

to and from PML NBs, and the bodies themselves have been re-

ported to colocalize with sites of unscheduled DNA synthesis in 

damaged cells (Dellaire and Bazett-Jones, 2004). PML may 

also function in DNA damage signaling because PML-null cells 

fail to fully activate p53 in response to DNA damage (Guo et al., 

2000) and the PML protein is phosphorylated in response 

to DNA double-strand breaks (DSBs) by Chk2 (Yang et al., 

2002) and ataxia telangiectasia and Rad3-related (ATR) kinase 

 (Bernardi et al., 2004). It is unclear whether these modifi cations 

of PML or PML NB composition are critical for DNA repair to 

proceed or are a consequence of ongoing repair. Regardless, 

PML NBs are clearly more than passive accumulations of 

 nuclear proteins.

We propose in this study that PML NBs can be used to 

monitor the topological state and integrity of chromatin in mam-

malian cells. In so doing, they act as sensors of DNA damage. 

Previously, we have shown that when the topological state of 

chromatin is altered during early S phase by the replication of 

DNA, PML NBs lose both radial symmetry and integrity, frag-

menting into “microbodies” by a fi ssion mechanism (Dellaire 

et al., 2006). We demonstrate a similar response of PML NBs 

after the introduction of DNA DSBs, thereby providing a basis 

for previous observations of increases in PML NB number after 

DNA damage with ionizing radiation (IR; Carbone et al., 2002; 

Xu et al., 2003). We demonstrate that PML NB breakdown 

 occurs in two components. The fi rst is a rapid biophysical 

 response, occurring in cells damaged at 4°C, a state in which 

ongoing DNA repair is inhibited, and a second component as-

sociated with repair mechanisms. Inactivation or loss of repair 

factors, such as Nbs1 or the checkpoint kinases ataxia telangiec-

tasia mutated (ATM), Chk2, and ATR, inhibits PML microbody 

formation in response to DSBs. We suggest that the PML NBs 

are highly sensitive DNA damage sensors whose dynamic be-

havior refl ects both the degree of DNA damage and the integ-

rity of the DNA repair pathways involved in maintaining the 

mammalian genome.

Results
The increase in PML NB number 
in response to DSBs is sensitive, rapid, 
and dose dependent
The mechanism responsible for an increase in PML NBs after 

DNA damage (Carbone et al., 2002; Xu et al., 2003) has not 

been elucidated. To address specifi cally how DSBs might con-

tribute to this process, we characterized the response of PML 

NBs to DSBs in the normal human diploid fi broblast (NHDF) 

cell line GM05757 using IR, etoposide (VP16), and doxorubi-

cin (Fig. 1). IR generates both single-strand breaks and DSBs in 

DNA, whereas the topoisomerase II inhibitors VP16 and doxo-

rubicin primarily create DSBs (for review see Kurz and Lees-

Miller, 2004). PML NBs were counted in maximum-intensity Z 

projections of individual cells. In agreement with previous 

work, we found that PML NB number increased after DSB in-

duction (Fig. 1 A). Furthermore, we found that the time point 

associated with the highest number of PML NBs coincided with 

the peak of H2AX phosphorylation (γ-H2AX; Fig. 1 B), an 

event that occurs on chromatin surrounding DSBs (Rogakou 

et al., 1999). Maximum PML NB number correlated with peak 

γ-H2AX signal regardless of the method of DSB induction, 

suggesting that the increase in PML NB number is coupled 

to DSB formation. PML NB induction was most rapid for IR, 

peaking at 30 min after IR (Fig. 1, C and D). In contrast, 

γ-H2AX signal and PML NB number peaked later, 3 h after 

treatment with VP16 or doxorubicin (Fig. 1, B–D). Consistent 

with previous studies of PML NB association with γ-H2AX 

and components of the Mre11–Rad50–Nbs1 (MRN) complex 

(Carbone et al., 2002; Xu et al., 2003), we observed foci of 

γ-H2AX and Nbs1 that partially colocalized with or were 

 juxtaposed to PML NBs between 6 and 18 h after DSB induction 

(Fig. 1 B and Fig. S1 A, available at http://www.jcb.org/cgi/ 

content/full/jcb.200604009/DC1). In contrast, we observed a 

much earlier colocalization and juxtaposition between the foci 

of RPA and PML NBs at 1.5 h after DSB induction, which 

 persisted for up to 18 h (Fig. S1 B). After etoposide treatment, 

only a subpopulation of cells in S and G2 phase develop replica-

tion protein A (RPA) foci in NHDFs. Therefore, the association 

of PML NBs with RPA foci after DNA damage is restricted to 

S and G2 phase of the cell cycle (Fig. S1 C).

We then tested whether the increase in PML NB number 

in response to DSBs is dose dependent by treating cells with 

doses of IR varying from 0–10 grays (Gy; Fig. 1, E and F). We 

found that at doses as low as 1 Gy (i.e., producing �35 DSBs; 

Bristow and Hill, 2005), PML NBs increased in number in 

NHDFs, and the response was dose dependent, based on analysis 

of variance (ANOVA) between our datasets (Table S1, available 

at http://www.jcb.org/cgi/content/full/jcb.200604009/DC1). 

In contrast to low doses of IR, where the number of PML NBs 

returned to baseline levels by 24 h after irradiation, at higher 

doses of 5 and 10 Gy, PML NB numbers remained elevated for 

an extended period of time (Fig. 1, E and F). Therefore, after 

low doses of IR, the increase in PML NB number after DNA 

damage appears to be reversible. When PML NB number is plot-

ted versus dose of IR, NB number appeared to reach a plateau at 

doses of 5 Gy or above for all time points, with the exception of 

24 h (Fig. 1 F). Therefore, PML NB number varies with the 

power of the dose of IR and can be described by the modifi ed 

power function, y = a × bX + c, where y is the number of PML 

NBs and x is the dose of IR in grays (Fig. S2 A). Thus, the in-

crease in PML NB number in response to DSBs is rapid, sensi-

tive to sublethal levels of DNA damage, and dose dependent.

PML protein and NB dynamics in response 
to DSBs
The dynamics of PML NBs after DSB induction with VP16 was 

examined by live cell analysis of U-2 OS cells stably expressing 

PML isoform IV (Fig. 2). We found that within 5 min after 

 addition of VP16, new and smaller PML-containing structures 
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began to appear adjacent to the larger PML NBs that were pres-

ent before treatment (Fig. 2 A). These new bodies, which we 

term microbodies, arise from preexisting PML NBs by a supra-

molecular fi ssion mechanism, as confi rmed by spinning-disc 

confocal microscopy (Fig. 2 B and Video 1, available at http://

www.jcb.org/cgi/content/full/jcb.200604009/DC1). This fi ssion 

mechanism is similar to that observed for new PML NB forma-

tion in early S phase (Dellaire et al., 2006), as PML NB’s bio-

chemical composition was initially indistinguishable between 

microbodies and the larger parental PML NBs, in respect to Sp100 

and small ubiquitin-like modifi er (SUMO-1) content (Fig. S3). 

However, although Sp100 levels at PML NBs did not change 

over the time course observed (Fig. S3 A), we did notice a 

 reproducible drop in SUMO-1 levels in PML NBs at 3 h after 

VP16 treatment (Fig. S3, B and C). Overexpression of SUMO-1 

dramatically reduced PML NB number (Fig. S3 D), resulting in 

enlarged bodies that showed reduced or delayed increase in 

PML NB number in response to DSBs (Fig. S3 E). It is unclear 

if overexpression of SUMO-1 is directly or indirectly responsi-

ble for the stabilization of PML NBs in our experiments be-

cause sumoylation is implicated in many biological pathways, 

including DNA repair (Gill, 2004).

Figure 1. PML NB number increases in response to DSBs in NHDFs. NHDF cells (GM05757) were treated with varying doses of IR, etoposide (20 μM 
VP16), or 1.5 μM doxorubicin for 30 min to induce DSBs. (A) IF analysis of PML NB number in maximum-intensity Z projections of NHDFs after etoposide; 
time after treatment is indicated in hours. (B) IF analysis of the distribution of PML NBs in relation to DSBs in NHDFs after 2 Gy IR or VP16. γ-H2AX is used 
as a marker for chromatin containing DSBs, and asterisks mark the time points in which the maximum fl uorescence intensity of γ-H2AX was fi rst detected. 
Arrowheads indicate juxtaposition of γ-H2AX and PML NBs at 18 h after DNA damage (inset). Images represent a single focal plane. (C) Comparison of 
mean PML NB number over time after IR, VP16, and doxorubicin treatment. (D) Comparison of fold increase in PML NB number over time after IR, VP16, 
and doxorubicin treatment. (E and F) Response of PML NBs to graded doses of IR expressed as a function of time (E) or at each time point as a function of 
dose (F). Bars, 5 μm.
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 irradiated and fi xed on ice to prevent diffusional movement of 

PML protein or ongoing DNA repair (Fig. 2 C). At temperatures 

<15°C, PML protein diffusion is very limited, as confi rmed by 

FRAP analysis (Fig. 2 D). Interestingly, we also observed a 

10% difference in the maximum fl uorescence recovery between 

control and etoposide-treated cells, consistent with a larger im-

mobile fraction of PML protein in bodies after DNA damage 

(Fig. 2 D).

We next examined the behavior of PML NBs in the vicin-

ity of site-specifi c DSBs induced by UV laser irradiation (Fig. 3, 

A and B; and Video 2, available at http://www.jcb.org/cgi/ 

content/full/jcb.200604009/DC1). Within 5 min of the induc-

tion of DSBs, PML NBs in the vicinity of the laser track began 

to move and coalesce (Fig. 3 A, arrowheads). This process con-

tinued for over 20 min, resulting in a drop in PML NB number 

from 21 to 17 NBs, but did not affect PML NBs distal to the 

 laser track (Fig. 3 A). At later time points, however, even PML 

NBs far from the laser track lost their positional stability. 

 Imaging of cells in the absence of UV laser microbeam irradia-

tion did not affect the mobility or number of PML NBs (Video 3). 

Continuous imaging by laser scanning confocal microscopy 

(LSM) after DNA damage did not reveal microbody formation, 

likely because of photobleaching and the loss of visibility of 

small, PML-containing structures. However, after fi xation and 

immunofl uorescence (IF)  detection of PML and γ-H2AX by 

wide-fi eld microscopy 1 h after photoinduction of DNA DSBs, 

it was apparent that the DNA damage was confi ned to the laser 

track and that PML NB number had increased from 17 to 36 

PML NBs (Fig. 3 B).  Although wide-fi eld microscopy is generally 

Figure 2. PML protein and PML NB dynamics after DSB induction. (A) PML 
microbody formation occurs rapidly after treatment with etoposide. Two 
U-2 OS human osteosarcoma cells stably expressing GFP-PML IV protein 
were imaged by fl uorescence microscopy before (T = 0) and after addition 
of etoposide (20 μM VP16; T = 5 min and T = 2 h). Enlarged region of 
the cell marked by white asterisk is shown at each time point. White 
 arrowheads indicate newly formed microbodies after VP16 treatment. 
(B) Formation of PML microbodies in response to DNA DSBs occurs by su-
pramolecular fi ssion from preexisting parental PML NBs. A U-2 OS cell ex-
pressing GFP-PML IV was visualized before (T = 0) and during treatment 
with 20 μM VP16 over several minutes (T = 0.5, 1.0, and 1.5 min are 
shown). Arrowhead indicates fi ssion of a PML microbody from a larger pa-
rental PML NB. (C) PML NBs increase in number in cells irradiated on ice. 
NHDFs (GM05757s) were incubated on ice for 20 min and either fi xed 
(Control) or irradiated on ice (10 Gy IR) before fi xation. Mean PML NB 
number increases signifi cantly between control (17 ± 1; n = 30) and cells 
irradiated with 10 Gy IR on ice (24 ± 2; n = 30; *, P = 0.0008). (D) Dy-
namics of the PML protein within PML NBs is affected by DNA damage and 
reduced temperature. Asynchronous U-2 OS GFP-PML IV cells were sub-
jected to treatment with etoposide (20 μM VP16 for 30 min) before mobil-
ity of PML protein within PML NBs was analyzed by FRAP at 37°C (n = 20). 
Mobility of the PML protein at PML NBs in DNA damaged cells is com-
pared with control untreated cells (n = 20) at 37°C and at 15°C (n = 7). 
Data are presented as the mean fl uorescence recovery plotted as percent 
of initial fl uorescence intensity of the PML NB over 14 min. Error bars rep-
resent the standard error. Bars, 5 μm.

Figure 3. PML NBs lose positional stability when chromatin is damaged 
in their vicinity. (A) UV laser–induced DSBs alter the positional stability of 
PML NBs. A single U-2 OS cell expressing GFP-PML IV is shown, in which 
DSBs were created in a laser track along a defi ned ROI (�0.5 × 10 μm; 
rectangular box) by photoinduction; PML NB movement was tracked over 
time. PML NBs (arrowheads) along the laser path (rectangular box) move 
toward and aggregate with one large PML NB (arrow) adjacent to the 
laser track. PML NB number (NB#) is shown before laser induction of 
DSBs and 22 min after induction. (B) Confi rmation of laser-induced DSBs 
by IF detection of γ-H2AX. The same cell shown in A was fi xed at 60 min 
after laser induction of DSBs and processed for immunodetection of 
PML and γ-H2AX. PML NB number at this time point is indicated (NB#). 
Bars, 5 μm.

PML microbodies also formed immediately after irradia-

tion with doses as low as 1 Gy of IR (unpublished data), and an 

increase in PML NB number was seen even when cells were 
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more sensitive than LSM in the detection of PML microbodies, 

we found that LSM was suffi cient to detect >90% of bodies 

within a focal plane (unpublished data). Therefore, the increase 

in the number of PML NBs at 1 h after DSB induction is 

 primarily caused by microbody formation.

Structural destabilization of PML NBs 
correlates closely with topological changes 
in chromatin after DNA damage
To address the ultrastructural changes in PML NBs after DNA 

damage, we used immunogold detection of PML with correla-

tive light microscopy (LM) and electron spectroscopic imaging 

(ESI; Dellaire et al., 2004; Fig. 4). Using LM/ESI we observed 

that, in control NHDFs, PML NBs exhibit radial symmetry and 

make extensive contacts with the surrounding chromatin (Fig. 4 A). 

Upon treatment with VP16, we found that PML NBs lose 

their radial symmetry and make fewer contacts with the sur-

rounding chromatin fi bers. We also observed “microbody-like” 

structures, which were identifi ed by immunogold detection of 

PML, adjacent to chromatin in the vicinity of larger “parental” 

PML NBs (Fig. 4, B and C). A much larger interchromatin do-

main space was also apparent in cells treated with VP16 (black 

spaces outside of chromatin in Fig. 4). These changes in both 

chromatin and PML NBs are reminiscent of those seen in cells 

entering S phase (Dellaire et al., 2006). Based on these results, 

we suggest that the introduction of DSBs results in topological 

changes in chromatin linked to PML NBs, which destabilizes 

the PML NB core.

The increase in PML NB number 
in response to DSBs does not require 
p53 or ongoing protein translation
PML protein levels can increase after treatment with IR in a 

p53-dependent manner (de Stanchina et al., 2004). Therefore, 

we examined the PML NB response to DNA DSBs in NHDFs 

with inhibition of PML protein synthesis by treatment with 

 cycloheximide, and in cells that lack a functional p53 pathway 

(i.e., null p53 human Saos-2 osteosarcoma cells and paired 

HCT116 cell lines, which were isogenic save for p53 protein; 

Fig. 5). We found that PML protein levels increased slightly, by 

1.3-fold at 4 h after VP16 treatment, and that they reached 1.8-

fold by 12 h (Fig. 5 A). As expected, cycloheximide treatment 

inhibited the DNA damage–dependent increase in PML protein 

levels at 12 h, but had little effect at 4 h, suggesting that post-

translational regulation of PML protein levels may occur at this 

earlier time point. We found that inhibition of protein synthesis 

or loss of p53 function did not prevent the initial increase in 

PML NB number (at 30 min and 3 h) in response to DSBs 

(Fig. 5, B–C). Loss of p53 in the HCT116 cell background 

 actually appeared to enhance the increase in PML NB numbers at 

30 min after VP16 treatment (Fig. 5 C),  perhaps because further 

genome instability from a concurrent loss of the mismatch 

 repair factor MLH1 (Koi et al., 1994).

Cycloheximide-treated NHDFs exhibited a higher num-

ber of PML NBs initially, compared with untreated cells, and 

NB number returned to control levels much earlier than in 

 untreated NHDFs (Fig. 5 B). In contrast, PML NB number in 

Figure 4. Ultrastructural analysis of PML NBs in NHDFs by correlative 
LM/ESI before and after etoposide-induced DNA damage. Regions of inter-
est containing a PML NB, which are shown at higher magnifi cation in sub-
sequent images, are delineated by white boxes. (A) LM/ESI of a single 
NHDF (GM05757) cell, fl uorescently labeled for PML protein. Elemental 
maps of nitrogen (N) and phosphorus (P), and the merged maps of a PML 
NB and its surrounding nucleoplasm reveal protein-based (cyan) and nu-
cleic acid-based (yellow) components. Chromatin appears yellow in the 
merged image because of high N and P content. A single PML NB is 
shown at higher magnifi cation (cyan, as indicated by the arrow) making 
many contacts to the surrounding chromatin (yellow), and has radial sym-
metry typical of PML NBs in unstressed cells. (B) LM/ESI of a single NHDF 
(GM05757) treated with 20 μM etoposide (VP16) for 30 min, fl uores-
cently labeled for PML protein. After treatment with VP16, the protein core 
of PML NB is disrupted in response to DSB induction; few contacts with 
chromatin remain, and radial symmetry is lost. (C) PML NB in B, at higher 
magnifi cation (left), and a cartoon representation of the same EM micro-
graph (right), where PML protein–containing protein structures (red), chro-
matin (yellow), and other nonchromosomal protein (blue) are shown. 
Redistribution of PML microbodies along chromatin fi bers (asterisks) is ob-
served, and larger interchromatin spaces (black areas) are apparent. PML 
protein localization was determined by immunogold detection of PML 
(white dots). Bars, 500 nm.



JCB • VOLUME 175 • NUMBER 1 • 2006 60

VP16-treated Saos-2 cells continued to increase over time (Fig. 

5 B). PML NB number is affected by cell cycle progression and 

increases in early S phase (Dellaire et al., 2006). FACS analysis 

revealed that after VP16 treatment, NHDFs showed a marked 

accumulation in G1 and G2 phase of the cell cycle by 18 h 

(Fig. S4 A, available at http://www.jcb.org/cgi/content/full/

jcb.200604009/DC1). Therefore, differences in the number of 

cells in S phase at the late time points (6 and 18 h) might ac-

count for the continued increase in PML NBs observed in the 

G1/S checkpoint-defi cient Saos-2 cells. We examined this pos-

sibility by detecting BrdU incorporation at 18 h after VP16 

treatment to determine the fraction of cells replicating DNA 

(Fig. 5 D). We estimate that �40% of the Saos-2 cells were in 

S phase, compared with only 5–6% of NHDFs, and no BrdU in-

corporation was observed in NHDFs treated with  cycloheximide. 

Therefore, at early time points, the increase in PML NB number 

is independent of both new protein synthesis and p53. However, 

at later time points after DNA damage, PML NB number is 

 sensitive to loss of p53 caused by abrogation of the G1/S check-

point, and as a result, PML NB number continues to increase as 

cells enter S phase inappropriately.

The increase in PML NB number in 
response to DSBs is abrogated by caffeine 
and inhibited by the loss of function 
of Nbs1, ATM, Chk2, and ATR kinase
Because ATM, ATR, and Chk2 kinase are key regulators of the 

cellular response to DNA damage (Shiloh, 2001; Pommier et al., 

2005), we examined whether chemical inhibition of these 

 kinases might affect the response of PML NB to DSBs in 

NHDFs (Fig. 6 A). Inhibition of ATR and ATM kinase by 5 mM 

caffeine had an inhibitory effect on the increase of PML NB 

number after VP16 treatment at all time points (P < 0.0001; 

Fig. 6 A). Similarly, caffeine signifi cantly reduced the response 

of PML NBs to 5 Gy of IR (P < 0.001; Fig. S4 B). This effect 

was not caused by caffeine-dependent changes in the cell cycle 

profi le because PML NB number did not change when cells 

were pretreated with caffeine for 30 min before induction of 

DSBs (Fig. 6 A), and only prolonged treatment with caffeine 

had an effect on the cell cycle profi le of NHDFs, with or with-

out VP16 treatment (Fig. S4, A and C, 18 h). Pretreatment of 

NHDFs with the Chk2 kinase inhibitor II (Arienti et al., 2005) 

did not affect the initial increase in PML NBs in response 

to VP16, but did signifi cantly reduce the number at 3 h, com-

pared with cells treated with VP16 in the absence of inhibitor 

(P < 0.0003; Fig. 6 A). Similarly, 20 μM wortmannin, which 

strongly inhibits DNA-PK and ATM kinase, but weakly inhibits 

ATR, had a signifi cant effect on PML NB number only at 3 h 

after VP16 treatment (P < 0.001; Fig. 6 A). In contrast, the 

DNA-PK inhibitor LY2942002 had little effect on PML NB 

number in  response to DSBs.

Figure 5. The increase in PML NB number in response to DSBs is inde-
pendent of new protein translation and p53. NHDF cells (GM05757) 
in the presence or absence of 150 μM cycloheximide (CHX), Saos-2 
 human osteosarcoma cells, and isogenic HCT116 human colon carcinoma 
cells (+ or − p53) were treated with etoposide (20 μM VP16) for 30 min 
(*, P < 0.0001). (A) Western blot analysis of PML protein levels after 
etoposide treatment in the presence or absence of cycloheximide. NHDFs 
were treated with etoposide (20 μM VP16 for 30 min) and harvested at the 
indicated times for SDS-PAGE and Western blot analysis. Ratio of PML pro-
tein levels in the control lane to PML protein at the indicated time points af-
ter etoposide treatment are shown normalized against actin. (B) Comparison 
of mean PML NB number after VP16 treatment in NHDFs, NHDFs treated 
with cycloheximide (+CHX), and Saos-2 cells. (C) Comparison of mean 
PML NB number after VP16 treatment in isogenic HCT116 and HCT116 

p53-null cells. (D) Comparison of DNA synthesis activity of NHDFs, NHDFs 
treated with cycloheximide (+CHX), and Saos-2 cells at 18 h after VP16 
treatment. 18 h after VP16treatment, cells were incubated with BrdU, fi xed, 
and processed for immunodetection of BrdU, and DNA was counterstained 
with DAPI. Asterisks represent BrdU-positive cells. Bars, 5 μm.
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We also treated several repair-defi cient cell lines with 

VP16 to compare the PML NB response after DNA damage. 

As with chemical inhibition of ATM, AT cells, which are 

 defi cient in ATM, showed a signifi cant inhibition of PML NB 

number increase only at 3 h after VP16 treatment (P < 0.02; 

Fig. 6 B), after which PML NB number actually increased 

 beyond that expected for NHDFs at 6 h. AT-like disorder 

(ATLD) cells expressing mutant Mre11 (Stewart et al., 1999), 

which is a component of the DNA damage sensor known as the 

MRN complex (D’Amours and Jackson, 2002), showed an 

 initial increase in PML NB number after VP16 treatment at 

30 min, which is similar to NHDFs. At the 3-h time point 

and thereafter, however, the increase in PML NB number was 

 inhibited by loss of Mre11 function (P < 0.0001; Fig. 6 B). 

The increase in PML NB number after induction of DSBs was 

signifi cantly inhibited at all time points observed in Nijmegen 

breakage syndrome (NBS) cells, which are defi cient in Nbs1, 

which is also a member of the MRN complex (Carney et al., 

1998), and was profoundly inhibited in Seckel syndrome cells, 

which are defi cient in ATR kinase (P < 0.0001; Fig. 6 B; 

O’Driscoll et al., 2003).

Because the concentration of Chk2 inhibitor used in our 

experiments could have residual effects on other kinases (<25% 

inhibition of a panel of 35 kinases, Arienti et al., 2005), we 

wished to confi rm the role of Chk2 in regulating the response of 

PML NBs to DSBs using a genetic mouse model. As predicted 

from our inhibitor data, Chk2 −/− murine embryonic fi broblasts 

(MEFs) had an abrogated PML NB response to DSBs, compared 

with isogenic wild-type MEFs at 3 h after VP16 treatment 

(P < 0.001; Fig. 7 A). Similarly, reconstitution of NBS cells 

with wild-type human Nbs1 by retroviral transduction resulted 

in a robust increase in NB number at 3 h after VP16 treatment, 

confi rming a role for Nbs1 in regulating the PML NB response 

to DSBs (P < 0.02; Fig. 7 B). Finally, we further characterized 

the role of ATR kinase in regulating the response of PML NBs 

to DSBs by VP16 treatment of U-2 OS cells expressing an 

 inducible dominant-negative mutant of ATR (kinase-dead  

ATR-DN; Fig. 7 C; Nghiem et al., 2001). Induction of ATR-DN 

in these U-2 OS cells for 24 h before VP16 treatment signifi -

cantly inhibited PML NB induction at 30 min, 3 h (P < 0.0001), 

and 6 h after treatment (P < 0.001; Fig. 7 C). Interestingly, 

PML NB numbers continued to rise in U-2 OS cells expressing 

the ATR-DN protein, possibly because of extensive genome 

 instability and eventual apoptosis associated with prolonged ex-

pression of this protein. Even within the population of U-2 OS 

cells expressing the ATR-DN protein, high expression corre-

lated with reduced PML NB number, compared with low-

 expressing cells at 3 h after VP16 treatment (Fig. 7 C).

Discussion
PML NBs make extensive contacts to chromatin in their vicin-

ity, which accounts both for their positional stability during in-

terphase (Eskiw et al., 2004) and their highly dynamic behavior 

in S phase, when chromatin topology is altered during DNA 

replication (Dellaire et al., 2006). Because of their intimate 

 relationship with chromatin, we previously hypothesized that 

PML NBs might also represent sensors of DNA damage (Dellaire 

and Bazett-Jones, 2004). In this study, we have systematically 

tested this hypothesis, demonstrating that PML NBs behave as 

dose-dependent sensors of DSBs.

PML NBs initially respond to DSBs 
by increasing in number by fi ssion
Chromatin is physically constrained by subnuclear compart-

ments such as the nucleolus and the nuclear lamina (Chubb 

et al., 2002). Chromatin contacts on the surfaces of the protein-

based cores of PML NBs may also serve as chromatin- anchoring 

sites (Fig. 8 A). The positional stability of PML NBs and the 

low rates of chromatin mobility indicate a balance of forces be-

tween chromatin and such anchoring sites. Recently, we have 

shown that chromatin appears to “relax,” or decondense, in the 

vicinity of DSBs (Kruhlak et al., 2006). This balance of forces, 

or tensegrity, may be altered by the introduction of DSBs in 

chromatin, and could lead to the shearing of the PML NB core 

as the associated chromatin domains pull away from the body. 

One outcome of this biophysical response is the supramolecular 

fi ssion of PML NBs into microbodies immediately after the 

Figure 6. The increase in PML NB number in response to DSBs is delayed 
or inhibited in the presence of PI3 kinase inhibitors and in DNA repair–
 defi cient cell lines. (A) Comparison of effects of DNA repair kinase inhibitors 
on the increase in PML NB number in response to DSBs. NHDF cell line 
GM05757 (control) was pretreated with 10 μM Chk2 kinase inhibitor 
(Chk2 inhibitor II) or various PI3 kinase inhibitors (5 mM caffeine, 20 μM 
wortmannin, or 50 μM LY2942002) for 30 min before treatment with 
etoposide (20 μM VP16 for 30 min; *, P < 0.0001; **, P < 0.001). 
(B) Comparison of the fold increase in PML NB number after etoposide 
treatment (20 μM VP16 for 30 min) in NHDF cells and DNA repair–
 defi cient human fi broblast cell lines. AT, ataxia telangiectasia; NBS, Nijmegan 
breakage syndrome; ATLD, AT-like disorder; Seckel, Seckel syndrome. 
*, P < 0.0001; **, P < 0.02.
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 introduction of DSBs (Fig. 8 B). We propose that the biophysical 

response to changes in chromatin tensegrity is the primary basis 

for the fi ssion of PML NBs when cells are irradiated at 4°C 

(Fig. 2 C), a condition under which biochemical activities, such 

as DNA repair and biochemical changes to chromatin and PML 

NBs, are almost entirely blocked (Fig. 8 B). It is unlikely that 

de novo formation of PML NBs (Everett and Murray, 2005) by 

the redistribution of PML protein accounts for the initial  increase 

in the number of PML NBs because protein diffusion is very 

limited below 15°C (Fig. 2 D). Furthermore, an ultrastructural 

examination of PML NBs in situ after DSB induction with 

VP16 revealed that the protein core of the PML NB is indeed 

destabilized in conjunction with structural changes in  chromatin 

(Fig. 4 B). A similar instability of PML NB structure is  observed 

Figure 7. PML NB induction in response to DSBs requires NBS1, Chk2, and ATR-function. Cells were treated with etoposide (20 μM VP16 for 30 min), left 
to recover for 3 h, and processed for IF detection of PML. DNA was counterstained with DAPI. PML NB number is indicated in maximum-intensity Z projec-
tions of IF images of control and etoposide-treated cells (left) and a comparison of mean PML NB number (right) is shown. Error bars represent the SEM. 
Bars, 5 μm. (A) Comparison of the PML NB number between etoposide-treated Chk2-null (Chk2 −/−) and wild-type Chk2 (Chk2 WT) MEFs (*, P < 0.001). 
(B) Comparison of PML NB number between Tert-immortalized human NBS fi broblasts infected with an empty retroviral vector (NBST pBabe) or a retroviral 
vector carrying wild-type human NBS1 (*, P < 0.02). (C) Disruption of ATR kinase function inhibits the increase in PML NB number in response to DSBs. U-2 
OS cells expressing a doxycycline-inducible, kinase-inactive, dominant-negative ATR kinase (ATR-DN) were treated with (+ Dox) or without doxycycline for 
24 h before etoposide treatment. Besides PML, IF detection of ATR-DN (Fl-ATR-DN) is also shown. Cells with high ATR-DN expression (arrow) contain fewer 
PML NBs after etoposide treatment than cells with low expression (arrowhead). White asterisks indicate two cells with similar PML NB number in cells not 
expressing ATR-DN. DNA was counterstained with DAPI. *, P < 0.0001; **, P < 0.001.
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in early S phase, where the NBs also break apart by fi ssion 

 (Dellaire et al., 2006).

PML NBs are sensitive detectors 
of DNA damage
PML NBs behave as DNA damage sensors by increasing in 

number in response to genotoxic stress. The initial formation of 

microbodies by a fi ssion mechanism is sensitive to as few as 35 

DSBs (1 Gy IR). However, PML NB number does not increase 

in a linear fashion with the dose of IR, in contrast to the induc-

tion of DSBs and, consequently, the phosphorylation of H2AX 

(Rogakou et al., 1999). At high doses of IR (>5 Gy), PML NB 

number per cell becomes saturated (Fig. 1 F). We can model the 

relationship of PML NB number to DSBs as a modifi ed power 

function, where NB number varies with the power of the dose 

(Fig. S2 A). This relationship holds for PML NB number up to 

6 h after irradiation. In addition, at low doses of IR, PML NB 

number returns to control levels within 24 h, whereas at high 

doses of IR (i.e., 5 and 10 Gy), PML NB number remains 

 elevated. Doses of IR at 5 and 10 Gy are considered supralethal, 

as they inhibit cell growth in clonogenic assays by 90–100% 

(Bristow and Hill, 2005). Therefore, the failure of PML NB 

number to return to that of control cells after irradiation may be 

an indication of either eventual senescence or programmed cell 

death. PML NB number also remains elevated for extended 

 periods after DNA damage in cells that have impaired cell cycle 

checkpoints (e.g., caused by loss of p53; Fig. 5). Thus, at nonlethal 

physiological levels of DNA damage, PML NB number may 

provide a simple indicator of the complex response of mamma-

lian cells to DNA damage and the fi delity of the p53-dependent 

G1/S checkpoint.

Live cell analysis demonstrates 
that PML NBs are not recruited 
to sites of DNA damage
PML NBs appear to associate with single-stranded regions of 

DNA, as well as with foci containing γ-H2AX and/or repair 

proteins after DNA damage (Dellaire and Bazett-Jones, 2004). 

We also observed the juxtaposition of γ-H2AX foci (Fig. 1 B) 

and the colocalization of Nbs1 with PML NBs at 6 and 18 h 

 after the induction of DSBs (Fig. S2 A). At 1.5 h after DSB 

 induction, we also observed the colocalization and juxtaposition 

of RPA foci with PML NBs in NHDFs in S and G2 phase of the 

cell cycle (Fig. S2, B–C). These data raise the possibility that 

PML NBs and DNA repair proteins may be able to coaccumu-

late at sites of DNA damage by the movement of intact PML 

NBs or by their de novo formation. We tested these assump-

tions by UV laser induction of DSBs in defi ned regions of the 

nucleus of U-2 OS cells expressing GFP-PML IV (Fig. 3, A–B). 

PML NBs in close proximity to the laser-induced DSBs 

began to lose positional stability and NB number dropped as 

these “liberated” bodies aggregated with each other. However, 

we did not see the de novo formation of PML NBs along the 

length of the laser track, as would be expected if PML were 

coaccumulating at sites of DNA damage. Thus, although PML 

NBs lose positional stability when chromatin is damaged in 

their vicinity, they do not form de novo or move to sites of 

DNA damage. Rather, they are able to move large distances 

through the nucleoplasm, possibly through spaces or channels 

created in chromatin by the extensive number of DSBs created 

along the laser track  (Bradshaw et al., 2005). Such long-

range movement of PML NBs is consistent with “corral” models 

of NB movement within the interchromatin domain space 

Figure 8. Summary of the biophysical and molecular 
mechanisms responsible for the increase in PML NB 
number in response to DSBs. (A) Model of the biophysical 
effect on PML NBs by changes in chromatin structure or 
tensegrity. Chromatin is constrained and under tension 
(double-headed arrows) by tethering to subnuclear com-
partments such as the nucleolus, nuclear lamina, and, 
 possibly, PML NBs. DSB-induced changes in chromatin 
structure or tensegrity alter the balance of forces constrain-
ing chromatin within the nucleus; this biophysical phenom-
enon destabilizes PML NBs that are tethered to chromatin, 
resulting in microbody formation by fi ssion from preexist-
ing NBs. (B) Model for PML NB number increase in re-
sponse to DSBs. Initially, PML NB number increases 
because of biophysical changes in chromatin after DSBs, 
as in A. The second phase of the PML NB response to 
DNA damage requires ongoing DNA repair processes, 
which can be inhibited by low temperatures (4°C) by inhi-
bition (caffeine) or loss of ATR kinase function (∆ATR) and, 
to a lesser extent, by loss of function of NBS1 (∆NBS1) or 
Chk2 (∆Chk2), whose activation is affected by inhibition 
of ATM (wortmannin). (C) Summary of DNA repair kinase 
pathways implicated in phosphorylation of the PML pro-
tein in response to DNA DSBs. It is currently unknown if 
ATM can directly phosphorylate PML.
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 (Eskiw et al., 2003; Gorisch et al., 2004). Eventually, PML 

NBs far from the laser track respond by changes in their movement 

and microbody formation, suggesting that either global changes 

in chromatin structure are occurring at later time points after 

DNA damage and/or ongoing DNA repair processes are re-

quired for this phenomenon. The colocalization of PML NBs 

with RPA in G2- and S-phase cells at 1.5 h after DSB induction 

may indicate a role for PML in homologous recombination 

events, such as sister-chromatin exchange, in cooperation with 

other factors, such as BLM (Hu et al., 2001; Rao et al., 2005). 

The signifi cance of the colocalization and juxtaposition of NBs 

with γ-H2AX and Nbs1 at late time points after DNA damage 

(i.e., 6 and 18 h; Fig. S1 A) remains unclear because >90% of 

DNA repair has already been completed. Perhaps at these late 

time points, PML NBs may function as sites of posttransla-

tional modifi cation of DNA repair factors at the end of the re-

pair cycle, rather than playing a direct role in the DNA repair 

mechanisms themselves.

Signaling pathways regulating DNA repair 
and PML NB response to DSBs share 
common factors
After the initial rapid formation of PML microbodies by a fi ssion 

mechanism, further increases in PML NB number accom pany 

ongoing DNA repair. This can be explained by the sensitivity 

of PML NBs to the topological state of chromatin (Dellaire 

et al., 2006), which is affected by chromatin remodeling associ-

ated with DNA repair (Lydall and Whitehall, 2005). Therefore, 

mutations in components of the DNA repair response could 

also abrogate the breakdown of PML NBs into microbodies. 

ATM and ATR kinases are key regulators of the cellular re-

sponse to DNA damage, which may play partially redundant 

roles because they share many of the same substrates, such as 

Chk2, Brca1, and p53 (for reviews see Shiloh, 2001; Pommier 

et al., 2005).

We addressed the role of the ATM and ATR DNA repair 

pathways in regulating the increase in PML NB number in re-

sponse to DSBs, by using both repair-defi cient cell lines and 

chemical inhibition of ATM, ATR, and Chk2 kinase. AT cells 

expressing mutant ATM or NHDF treated with wortmannin, 

which is an inhibitor of ATM, demonstrated a similar delay in 

the increase in PML NBs in response to DSBs, which was most 

signifi cant at 3 h after VP16 treatment (Fig. 6 A–B). A similar 

delay in the increase in PML NB number occurred at 3 h in 

NHDFs treated with a Chk2-specifi c kinase inhibitor (Fig. 6 A) 

and in Chk2 −/− MEFs (Fig. 7 A). We also found that loss of 

Nbs1, which is a member of the MRN DNA  damage–sensing 

complex (D’Amours and Jackson, 2002) and is required for 

activation of Chk2 by ATM in response to low levels of DNA 

damage (Buscemi et al., 2001), caused a  signifi cant delay in 

the increase in PML NB number in response to VP16 (Fig. 

6 B and Fig. 7 B). Therefore, the inhibition of PML microbody 

formation in NBS or AT cells at 3 h after etoposide treatment 

(Fig. 6 B) may result, in part, from a failure to activate Chk2 

in response to DSBs. In addition, chromatin topology changes 

after DNA damage may be subject to regulation by ATM 

kinase (unpublished data; Shiloh, Y., personal communication). 

Therefore, ATM’s role in regulating PML NB behavior after 

DNA damage could be twofold, (a) through the activation 

of Chk2 and (b) via modulation of chromatin topology after 

DNA damage.

NBS cells also initially had many fewer PML NBs at 

30 min after VP16 treatment compared with ATM- or Chk2-

 defi cient cells. In contrast, Mre11-defi cient ATLD cells showed an 

initial increase in PML NB number similar to NHDFs, followed 

by a signifi cant reduction in PML NB number at all other time 

points. Because Nbs1 and Mre11 are in the same DNA damage–

sensing complex, the basis for this discrepancy between NBS 

and ATLD cells in regard to PML NB induction is unclear. 

An intriguing possibility is that Nbs1 may play an earlier and 

separate role in regulating the increase in PML NB number in 

response to DSBs beyond the activation of Chk2.

PML NB number after VP16 treatment was inhibited to 

an even greater extent in Seckel syndrome cells defi cient in 

ATR (O’Driscoll et al., 2003) than for cells defi cient in ATM, 

Chk2, or Nbs1 (Fig. 6 B). In addition, the dominant-negative 

inhibition of ATR kinase by expression of a kinase-dead mu-

tant of ATR (ATR-DN; Fig. 7 C) in U-2 OS cells also inhibited 

the increase in PML NB number in response to DSBs. The 

most dramatic inhibition, however, occurred when we inhib-

ited both ATM and ATR with caffeine (Fig. 6 A). At all time 

points after DSB induction, PML NB number remained at or 

below that of untreated cells. The additive effect of inhibi-

tion of ATM- and ATR-dependent pathways on the increase 

in PML NB number in response to DSBs by caffeine suggests 

they act in parallel pathways, which is consistent with their re-

dundant roles in regulating DNA damage checkpoints  (Shiloh, 

2001). Although the initial biophysical response of PML NBs 

is dependent on changes in the tensegrity and topological 

state of chromatin associated with DSB induction and DNA 

repair, it remains an intriguing possibility that ATR- or Chk2-

 dependent phosphorylation of PML and PML NB constituents 

(Yang et al., 2002; Bernardi et al., 2004) may also contribute 

to NB instability (Fig. 8 C). Other forms of DNA damage, 

such as UV irradiation (Seker et al., 2003), also appear to 

destabilize PML NBs. Because ATR kinase is strongly activated 

by UV irradiation, DNA single-strand breaks, and drugs that 

induce replication fork stalling (Shiloh, 2001), it is likely that 

the increase in PML NB number seen in response to these 

 cellular stresses is also regulated by ATR kinase. We are cur-

rently testing this hypothesis.

In summary, we have demonstrated that PML NBs are, 

indeed, dynamic sensors of DNA damage that respond to 

DNA DSBs by increasing in number, primarily by a fi ssion 

 mechanism. The DSB-dependent increase in PML NBs occurs 

fi rst as a biophysical response to changes in chromatin. However, 

soon after DSB induction, PML NB number becomes  sensitive 

to cell cycle checkpoint control and ongoing DNA repair, 

 being regulated by ATR kinase and, to a lesser extent, ATM 

kinase, possibly through Nbs1-dependent activation of Chk2 

kinase. This dynamic behavior of PML NBs in mammalian 

cells provides an exceptional pathological marker for cellular 

health, cell cycle progression, and the integrity and stability of 

the genome.
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Materials and methods
Cell culture and drug treatments
Cell lines used in this study are as follows: NHDFs (GM05757; Coriell Cell 
Repository); human AT fi broblasts (AT5B1 and GM05823; Coriell Cell Re-
pository); human NBST fi broblasts (gift from J. Lukas, Danish Cancer Society, 
Copenhagen, Denmark); human ATLD fi broblasts (gift from Y. Shiloh, 
Tel Aviv University, Tel Aviv, Israel); Saos-2 (American Type Culture Collec-
tion [ATCC]); HCT116 and p53-null HCT116 isogenic cells (gift from 
B. Vogelstein, Johns Hopkins University, Baltimore, MD); ATR-DN and ATR-WT 
cells (gift from Paul Nghiem, University of Washington Medical School, 
 Seattle, WA); Seckel syndrome cells (GM18366; Coriell Cell Repository); 
Chk2 −/− MEFs and isogenic WT MEFs (gift from T. Mak, University of 
Toronto, Toronto, Canada); and isogenic and U2OS cells stably expressing 
GFP-PML IV (gift from J. Taylor, University of Wisconsin, Milwaukee, WI). 
NBST-pBabe and NBST-pBabe-NBS1 cell lines were generated by retrovi-
ral transduction of NBST fi broblasts using either pBabe-Puro alone or en-
coding full-length human Nbs1 (gift from J. Lukas), respectively. To generate 
DSBs, cells were treated with 20 μM etoposide (VP16; Sigma-Aldrich) or 
1.5 μM doxorubicin (Sigma-Aldrich) for 30 min, washed two times in PBS 
(WISENT, Inc.), and left to recover for the indicated time. We determined 
that 20 μM VP16 for 30 min was equivalent to �2 Gy of IR by the neutral 
comet assay (Fig. S2 B). Alternately, asynchronous cell cultures were ex-
posed to whole-cell IR (dose range, 0–20 Gy) using a 137Cs irradiator 
(MDS Nordion) at 1 Gy/min (on ice, aerobic conditions). For kinase inhibi-
tion studies, cells were incubated with growth medium supplemented with 
20 μM wortmannin (Sigma-Aldrich), 5 mM caffeine (Sigma-Aldrich), 50 μM 
LY294002, or 10 μM Chk2 inhibitor II (EMD Biosciences, Inc.; Arienti 
et al., 2005) for 30 min, before addition of VP16 or exposure to IR. Cells 
were maintained in growth medium containing kinase inhibitors for the in-
dicated time. For the inhibition of protein synthesis, cells were treated with 
150 μg/ml of cycloheximide (Sigma-Aldrich) for 30 min before treatments 
and maintained in cycloheximide until processed for LM.

IF detection of proteins, live-cell imaging, and FRAP
Cells grown on coverslips were treated with or without kinase or protein 
synthesis inhibitors before DSB induction (etoposide or IR), fi xed, and pro-
cessed for IF as previously described (Dellaire et al., 2006). Primary anti-
bodies used in this study are as follows: rabbit anti-PML (CHEMICON 
International, Inc.); rabbit anti-Sp100 (CHEMICON International, Inc.); 
mouse anti-RPA (RPA34-20; Calbiochem); mouse anti–phospho-Histone H3 
(ser10; clone MC463; Millipore); rabbit anti–cyclin A (sc-751; Santa Cruz 
Biotechnology, Inc.); mouse anti–SUMO-1 (GMP-1; Invitrogen); mouse 
anti–γ-H2AX (JBW301; Millipore). Secondary antibodies conjugated to 
Cy3 and Cy5 were obtained from Jackson ImmunoResearch Laboratories, 
and secondary antibodies conjugated to Alexa Fluor 488 were obtained 
from Invitrogen. DNA was stained with DAPI (Sigma-Aldrich) in mounting 
media containing 90% glycerol and 1 mg/ml paraphenylenediamine 
(Sigma-Aldrich). Fluorescence micrographs of fi xed cells were collected us-
ing a 63×, 1.32 NA, oil-immersion objective lens (HCX PL APO CS; Leica) 
on an upright fl uorescence microscope (DMR2; Leica) fi tted with a camera 
(Orca; Hamamatsu). OpenLab 3.5.1 software (Improvision) was used for 
image acquisition. Live-cell imaging and FRAP analysis of GFP-PML IV in 
U-2 OS cells was performed as previously described (Dellaire et al., 2006). 
ImageJ v1.33 (National Institutes of Health) and Photoshop 7.0 (Adobe) 
software were used for image processing and analysis.

Statistical analysis
To determine mean PML NB number, maximum intensity projections of mul-
tiple focal planes were generated for the IF localization of PML using 
OpenLab 3.5.1 software (Improvision). PML NBs were counted in a mini-
mum of 30 cells per time point and the NB number per cell was normalized 
for nucleus size. Normalization of NB number was accomplished by multi-
plying the ratio of the area of each nucleus divided by the mean area of a 
nucleus in a given dataset. This calculation was necessary to account for 
the variability in PML NB number caused by cell cycle phase or ploidy 
(Dellaire et al., 2006). However, in normal diploid cell lines, this calcula-
tion will not affect the mean NB number per cell, but will reduce statistical 
variability between datasets. Each experiment was repeated in triplicate, 
and the mean PML NB number was used directly or divided by the mean 
number of bodies in the control (untreated) to give the fold induction of PML 
NBs. Error analysis for triplicate experiments is expressed as the SEM, 
where SEM = SD ÷ √3. For all other experiments, error analysis was 
 expressed simply as standard error. Datasets of PML NB number per cell 
exhibit a normal distribution; therefore, statistical signifi cance between 

 datasets was derived using the t test for pair-wise analysis using Excel soft-
ware (Microsoft) and by ANOVA for testing the signifi cance of IR dose on 
PML NB number using online statistical tools available from http://www.
physics.csbsju.edu/stats/anova.html. Curve fi tting for PML NB induction 
versus dose of IR was accomplished online using tools available from 
http://zunzun.com.

Induction of subnuclear DNA damage by UV laser treatment
Cells grown on coverslips were incubated for 5 min in growth medium 
containing 0.5 μg/ml of Hoechst 333258 to sensitize cells to the UV 
 laser–induced damage. A confocal microscope (LSM 510; Carl Zeiss 
 MicroImaging, Inc.), equipped with an argon laser (488 nm) and tunable 
multiphoton laser (Chameleon; Coherent Inc.) capable of effective wave-
lengths in the UV range, was used to image cells and to generate UV 
 laser–induced damage using a 63×, 1.40 NA, oil-immersion objective 
lens (Plan-Apochromat; Carl Zeiss MicroImaging, Inc.). Laser damage was 
accomplished by selecting a region of interest (ROI) within a cell and 
bleaching the ROI using the tunable laser set at 790 nm (effective λ = 390 nm) 
and 20% power for a 200-ms pulse. At 20% power, the laser  generates 
7−8 mW, which translates to a cellular dose of �80 Gy (Bradshaw et al., 
2005). Images were collected immediately after the bleach, using the 
 argon laser at 50% power and 10% transmittance. Cells were maintained 
at 37°C during live-cell imaging, using a heated stage (Bioptechs).

Correlative LM/ESI
Samples were prepared and sectioned for correlative microscopy and 
ESI as previously described (Eskiw et al., 2003; Dellaire et al., 2004). 
 Nitrogen and phosphorus maps were collected using a transmission electron 
microscope (Tecnai 20; FEI) fi tted with an electron imaging spectrometer 
(Gatan). Immunogold labeling was accomplished using a secondary anti-
body conjugated to Ultrasmall nanogold (donkey anti–rabbit; Electron 
 Microscopy Sciences).

Online supplemental material
Fig. S1 shows the relative localization of PML NBs in respect to foci con-
taining γ-H2AX, Nbs1, and RPA over time, after etoposide induced DSBs. 
Fig. S2 shows the mathematical modeling of PML NB number in response 
to IR-induced DSBs and compares the number of DSBs induced by 20 μM 
etoposide versus varying doses of IR by neutral comet assay. Fig. S3 shows 
the biochemical composition of PML NBs over time after etoposide induced 
DSBs, in respect to SP100 and SUMO-1 content. Fig. S4 shows the effects 
of etoposide and caffeine, alone or in combination, on both the cell cycle 
profi le and PML NB number of NHDFs. Table S1 shows the ANOVA analy-
sis of PML NB number as a function of the dose of IR in NHDFs. Video 1 
shows the fi ssion of a PML microbody from a preexisting PML NB in re-
sponse to DSBs induced by etoposide. Video 2 shows the loss of positional 
stability of PML NBs after UV laser induction of DSBs. Video 3 shows a 
control cell where, in the absence of UV laser–induced DSBs, PML NBs are 
positionally stable. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200604009/DC1.
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