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Abstract

The disease burden attributable to opportunistic pathogens depends on their prevalence in

asymptomatic colonisation and the rate at which they progress to cause symptomatic dis-

ease. Increases in infections caused by commensals can result from the emergence of

“hyperinvasive” strains. Such pathogens can be identified through quantifying progression

rates using matched samples of typed microbes from disease cases and healthy carriers.

This study describes Bayesian models for analysing such datasets, implemented in an

RStan package (https://github.com/nickjcroucher/progressionEstimation). The models con-

verged on stable fits that accurately reproduced observations from meta-analyses of Strep-

tococcus pneumoniae datasets. The estimates of invasiveness, the progression rate from

carriage to invasive disease, in cases per carrier per year correlated strongly with the dimen-

sionless values from meta-analysis of odds ratios when sample sizes were large. At smaller

sample sizes, the Bayesian models produced more informative estimates. This identified

historically rare but high-risk S. pneumoniae serotypes that could be problematic following

vaccine-associated disruption of the bacterial population. The package allows for hypothe-

sis testing through model comparisons with Bayes factors. Application to datasets in which

strain and serotype information were available for S. pneumoniae found significant evidence

for within-strain and within-serotype variation in invasiveness. The heterogeneous geo-

graphical distribution of these genotypes is therefore likely to contribute to differences in the

impact of vaccination in between locations. Hence genomic surveillance of opportunistic

pathogens is crucial for quantifying the effectiveness of public health interventions, and

enabling ongoing meta-analyses that can identify new, highly invasive variants.

Author summary

Opportunistic pathogens are microbes that are commonly carried by healthy hosts, but

can occasionally cause severe disease. The progression rate quantifies the risk of such a

pathogen transitioning from a harmless commensal to causing a symptomatic infection.
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The incidence of infections caused by opportunistic pathogens can rise with the emer-

gence of “hyperinvasive” strains, which have high progression rates. Therefore methods

for calculating progression rates of different pathogen strains using surveillance data are

crucial for rapidly identifying emerging infectious disease threats. Existing methods typi-

cally measure progression rates relative to the overall mix of microbes in the population,

but these populations can vary substantially between locations and times, making the out-

puts challenging to combine across studies. This work presents a new method for estimat-

ing progression rates from surveillance data that generates values useful for modelling

pathogen populations, even from relatively small sample sizes.

Introduction

Opportunistic pathogens are commonly found in the environment, or microbiota of healthy

individuals, but have the capacity to cause disease in some host organisms [1]. The frequency

with which they transition from asymptomatic colonisation to symptomatic infection can be

quantified as a progression rate [2]. Many opportunistic pathogens are diverse, and can be

typed by a variety of phenotypic methods [3], or divided into strains using genotyping or

whole genome sequencing [4,5]. Quantifying the variation in progression rates across such

species is crucial for understanding changes in the incidence of diseases caused by opportunis-

tic pathogens. Recently, strains with high progression rates, sometimes referred to as “hyper-

virulent” [6] or “hyperinvasive” [7], have been ascribed as the primary cause of rising case

numbers of disease caused by Neisseria meningitidis [8], Streptococcus pyogenes [9] and Klebsi-
ella pneumoniae [10], among others. However, understanding whether such strains drive ele-

vated disease burdens through more rapid transmission, or heightened progression rates,

typically requires information on the carried population of the opportunistic pathogen.

Progression rates have been extensively studied in the nasopharyngeal commensal and

respiratory pathogen Streptococcus pneumoniae (the pneumococcus). Over one hundred sero-

types have been identified in this species, each corresponding to a structurally-distinct polysac-

charide capsule [11,12]. These are clustered into 48 serogroups, based on serological cross-

reactivity [13]. This capsule inhibits the clearance of pneumococci by the immune system, and

is crucial to their ability to cause invasive pneumococcal disease (IPD) [14,15], infections of

normally sterile anatomical sites. Hence the rate of progression from carriage to IPD is

referred to as invasiveness [16]. It has long been assumed the capsule is an important determi-

nant of pneumococcal invasiveness, based on differences in serotypes’ ability to cause disease

in animal experiments [17]. Epidemiological differences are also apparent in human disease.

Paediatric serotypes (serotype 14 and serotypes within serogroups 6, 9, 19, 23) were identified

as being common in infant disease [18,19]. Epidemic serotypes (such as 1, 2, 5 and 12F) were

found to be capable of causing IPD outbreaks in adults [19], and therefore are likely to repre-

sent hyperinvasive types of S. pneumoniae.
Understanding these differences between serotypes has become crucial for S. pneumoniae

epidemiology, owing to the introduction of polysaccharide conjugate vaccines (PCVs) for

infant immunisation [20]. A seven valent PCV (PCV7) was introduced in the USA in 2000,

which has been supplanted by ten- and thirteen-valent formulations (PCV10 and PCV13,

respectively). The next generation of higher-valency vaccines (PCV15 and PCV20) will soon

be introduced [21,22]. PCVs induce immune responses against a specific subset of serotypes,

usually resulting in their elimination from carriage [23]. This contrasts with the 23-valent poly-

saccharide vaccine (PPV23) administered to older adults, which only protects against
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symptomatic disease [20]. However, the overall frequency of S. pneumoniae colonisation typi-

cally remains stable after any PCV’s introduction, owing to the replacement of vaccine sero-

types by the plethora of non-vaccine serotypes [24,25]. Nevertheless, PCVs have usually

proved highly effective at reducing IPD through facilitating the replacement of the pre-PCV

carried population with pneumococcal serotypes associated with lower invasiveness [26,27].

Hence optimal PCVs are those which minimise the overall invasiveness of the carried pneu-

mococcal population [28,29]. Therefore estimation of invasiveness across vaccine-targeted

serotypes, and those which may replace them post-PCV, is vital for reducing the incidence of

IPD. Such quantification of invasiveness is typically achieved through paired studies of sero-

types’ prevalence in geographically and temporally matched surveys of pneumococcal carriage

and surveillance of IPD.

Multiple methods have been used to estimate invasiveness using such paired case and car-

rier data. The most common approaches use odds ratios: the ratio of isolates of a given sero-

type recovered from disease against those recovered from carriage, divided by the same ratio

calculated across all other serotypes in the population [30,31]. However, this statistic is intrin-

sically imperfect, because even if a serotype causes disease at a consistent rate across popula-

tions, the mix of serotypes against which it is compared will differ between locations [32,33].

This geographical heterogeneity has been exacerbated by post-PCV serotype replacement,

which has driven increasing divergence between countries’ serotype compositions [34]. The

interpretability of the odds ratios may be improved by standardising them relative to the geo-

metric mean across all odds ratios [35], but this does not resolve the underlying problem,

which likely contributes to the substantial heterogeneity observed for some serotypes when

odds ratios are combined in meta-analyses [36]. This means carefully-conducted odds ratio

analyses can be hampered by having to subsample data, and employ both fixed and random

effects analyses, within a single study [37]. One solution has been to estimate invasiveness rela-

tive to a standard serotype that is common in both carriage and IPD across studied locations

[36,38]. However, these properties mean such serotypes are likely to be targeted by PCVs. Cor-

respondingly, the original standard, serotype 14 [31], has been eliminated by PCV7 in many

settings. Similarly, PCV13 has removed the replacement standard serotype used in post-PCV7

studies, 19A [36].

Invasiveness has been more directly characterised as the ratio of disease cases relative to the

estimated prevalence in carriage [27]. However, this approach did not account for the stochas-

ticity of disease cases being observed, and assumed the uncertainty associated with the esti-

mated case-to-carrier ratio derived only from the colonisation survey data. More

comprehensive quantification of the uncertainty in invasiveness can be achieved with Bayesian

frameworks, which have been applied to individual pneumococcal populations [2,39]. One

approach modelled invasiveness by jointly fitting distributions to carriage and disease data,

then used random effects models to estimate invasiveness in different age groups [39]. An

alternative approach, using Poisson regression, was used to estimate serotypes’ progression

rates for causing otitis media [2].

In this work, we apply Bayesian modelling to estimate progression rates from meta-analyses

of multiple studies. The ability to synthesise data across populations is important for maximis-

ing the available information on each type, which may be infrequently observed in individual

studies. This is particularly important in S. pneumoniae, as many genotypes that have emerged

post-PCV were previously rare, and vary geographically in their prevalence [34,40]. The model

enables the estimation of progression rates as an opportunistic pathogen’s hazard of progress-

ing from carriage to disease in a specified population. Such absolute values avoid a measure

that is relative either to the rest of the local microbial population, or to one standard type.

These properties are crucial for quantifying and modelling changes in disease incidence, such
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as following vaccine introduction, or the emergence of a hyperinvasive strain. They can be par-

ticularly valuable in settings where disease surveillance is not comprehensive, and only carriage

data are available [39,41].

Using a Bayesian approach also enables hypothesis testing through statistical comparison of

alternative model structures [2,39]. This is crucial for understanding the host and pathogen

factors that affect progression rates. For instance, the correlation between pneumococcal sero-

types and invasiveness has not been indisputably established as a causal link. InHaemophilus
influenzae, changes to an isolate’s serotype altered its virulence in an animal model of disease

in such a manner that reflected the epidemiology of human disease [42]. While some equiva-

lent experiments in S. pneumoniae have replicated observations from human IPD [43,44], oth-

ers have found alteration of an isolate’s serotype did not change its invasiveness in an animal

model [45,46], suggesting serotype-independent factors may contribute to this phenotype.

Studies of isolates from disease and carriage using comparative genomic hybridisation [47,48]

and whole genome sequencing [49,50] have both supported links between non-capsular loci

and invasiveness. An unambiguous association cannot even be made between the distinctive

phenotypes of the epidemic serotypes and their capsules, as these pneumococci tend to have

low genetic diversity [37,51], and therefore their capsule polysaccharide synthesis locus is in

linkage disequilibrium with many other variable genomic loci [52,53].

Epidemiological studies using genotyped and serotyped isolates have also found examples

of within-serotype differences in invasiveness [35,54,55], although other studies found evi-

dence of serotype being the primary determinant of invasiveness [31]. Genomic analysis by the

Global Pneumococcal Sequencing project also identified differences in the invasiveness of

strains of the same serotype [33]. However, given the multiple pairwise comparisons con-

ducted in such analyses, it is not clear whether such observations might be expected, even if

the capsule is the primary determinant of invasiveness. Such questions can be addressed

through comparison of different model fits to the data. This is essential for deciding on the

most effective methods for ongoing pathogen surveillance, and enabling the most efficient use

of such data. Using appropriately-structured models, capable of combining information from

multiple studies at the most informative level of resolution, will help identify emerging highly

invasive types at the earliest possible opportunity. Therefore the methods, models and data

described in this study are made available as an R package (https://github.com/nickjcroucher/

progressionEstimation), to enable the continual aggregation of case and carrier studies for any

opportunistic pathogens.

Methods

Model definitions and assumptions

All models were designed to be applied to a meta-population of a multi-strain opportunistic

pathogen. Each population i corresponded to a matched sample of microbes from asymptom-

atic carriers, or the environment, and a sample from disease. It was assumed all cases of disease

emerged independently from the carried or environmental population. Across the meta-popu-

lation, the microbes were classified according to their type j, strain k, or the combination of

both, j,k. The “type” may be defined by any phenotypic categorisation; analyses of S. pneumo-
niae typically use serotyping. The “strain” can represent any coherent genetic subdivision of

the population; for instance, analyses of S. pneumoniae can use the Global Pneumococcal

Sequence Clusters (GPSCs) [37], but alternatively-defined “clades” or “lineages” could be

employed instead. If x denotes any one of these classifications, then the carriage rate in popula-

tion i, ρi,x, was estimated based on the total number of samples (including negative results), ηi,
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and the number of samples positive for isolates of category x, ci,x:

ci;x � Binomðri;x; ZiÞ

Modelling the number of positive samples using a Binomial distribution follows the prece-

dent of Weinberger et al [39], and assumes all carriage samples are independently drawn from

the circulating population.

A set of related statistical models were used to estimate the progression rate [2], ν, the haz-

ard of developing a disease, given carriage of a microbe over a unit of time. As ν was assumed

to be constant for each type x in each study i, the number of observed cases of disease caused

by x in i, di,x, was modelled as the product of the number of potential hosts in i, Ni; the propor-

tion carrying x in i, ρi,x; the per unit time probability of x causing disease, νx; and the duration

of the study, ti. Hence, the expected number of isolates from disease, E½di;x�, in all models was

proportional to all these quantities:

E½di;x� / ri;xNitiux

Some models also adjusted the expected di,x between i through a scaling parameter, γi, that

was relative to a reference population. This corrected for differences between studies both in

the actual hazard of developing a disease, due to host population variation, and differences in

the comprehensiveness of surveillance across the study populations. Hence, the expected num-

ber of isolates from disease, E½di;x�, in such models was proportional the quantities:

E½di;x� / ri;xNitiuxgi

All these parameters were assumed to be constant within a study over ti. As all disease cases

were assumed to develop independently, they were modelled as a Poisson process. However,

relevant unmodelled variation, or oversampling of local transmission chains in either carriage

or disease surveillance [56], could increase heterogeneity in the observed isolate counts in

either component of the paired samples. Hence di,x was additionally modelled as following a

negative binomial distribution, in which overdispersion was quantified by the precision

parameter, ϕ, relative to the mean, μ. Lower ϕ values indicate greater overdispersion, as the

variance of the distribution was equivalent to:

Var di;x
� �

¼ mþ
m2

�

Models of disease prevalence

Four different structures were used to model E½di;x�. For each, two different versions were fit-

ted to the data. In the simpler version, the observed disease case counts were assumed to follow

a Poisson distribution:

di;x � PoissonðE½di;x�Þ

The more complex version assumed a negative binomial distribution of the observed dis-

ease case counts:

di;x � NegBinðE½di;x�; �Þ
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Null model

In this simplest model, the progression rate was independent of the pathogen’s type (νx = ν for

all x) and host population (γi = 1 for all i). Therefore di,x is expected to be correlated with ci,x:

E½di;x� ¼ ri;xNitiu

Type-specific model

This model, similar to that Weinberger et al applied to a single population [39], allowed for

variation in progression rate between types, but still assumed host populations to be homoge-

neous (γi = 1 for all i). Therefore di,x depends on both the carriage prevalence and progression

rate of x:

E½di;x� ¼ ri;xNitiux

Study-adjusted model

In this model, variation in disease prevalence between studies reflected differences in host pop-

ulation and surveillance, rather than differences between types. Hence the progression rate

was independent of the pathogen’s type (νx = ν for all x), but varied between i due to γi:

E½di;x� ¼ ri;xNitiugi

Study-adjusted type-specific model

This model allowed for both variation in the progression rate between types x and study popu-

lations i:

E½di;x� ¼ ri;xNitiuxgi

Joint modelling of strain and type progression rates

For datasets in which information was available on both type (for S. pneumoniae, serotype) j
and strain k, νx was modelled in five different ways:

Type-determined progression rate. The progression rate was entirely determined by an

isolate’s type, and independent of its strain background (vx = vj).
Strain-determined progression rate. The progression rate was entirely determined by

the strain to which an isolate belonged, and independent of its type (vx = vk).
Type-determined strain-modified progression rate. Two approaches were taken to

modelling progression rates as being independently affected by type and genetic background.

The first modelled the progression rate as being primarily determined by an isolate’s type,

which was modified by its strain background. This was calculated as vx = vjvk, where the model

priors meant vj was less constrained than vk. Hence most variation in vx should be attributed

to the type j.
Strain-determined type-modified progression rate. The second approach to analysing

the independent effects of type and genetic background modelled progression rate as being

PLOS COMPUTATIONAL BIOLOGY Bayesian analyses of microbial progression rates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009389 February 17, 2022 6 / 38

https://doi.org/10.1371/journal.pcbi.1009389


primarily determined by the strain to which an isolate belonged, which was modified by its

type. This was calculated as vx = vjvk, where the model priors meant vk was less constrained

than vj. Hence most variation in vx should be attributed to the strain k.

Type and strain-determined progression rate. Each combination of type j and strain k
was modelled as having a unique progression rate (vx = vj,k), suggesting non-multiplicative

interactions between strain background and type on an isolate’s progression rate.

Model priors and implementation

The characteristics of each study population (ηi, Ni, ti) and observed counts of type x in car-

riage (ci,x) and disease (di,x) were assumed to be accurate. As each recovery of a type x isolate

from carriage contributes to the estimation of ρi,x, even if an individual carries multiple types,

the prior distribution was:

ri;x � Betað1; 1Þ

This means each type’s carriage was independently estimated, and the sum of carriage prev-

alences (∑x ρi,x) may be greater than one, if there is high level of multiple carriage in a popula-

tion. The beta distribution was used, as it is the conjugate prior of the binomial distribution,

although setting the scale and shape parameters to one make it equivalent to a uniform distri-

bution bounded by zero and one.

Invasiveness has been estimated to vary over orders of magnitude in S. pneumoniae [29],

and therefore a uniform prior was placed on the logarithm of vx in all models. The lower

bound was set at one IPD case per million carriers per unit time, as the largest studies used sur-

veillance of host populations consisting of tens of millions of individuals (S1 Table). The upper

bound was ten cases per carrier per unit time, which would effectively correspond to an obli-

gate pathogen for a bacterium with the carriage duration of S. pneumoniae [57]:

log10 nxð Þ � Uð� 6; 1Þ

As the scaling factors were relative measures of disease prevalence between populations, γi
for the population with the largest sample size was fixed at one. The scaling factor for each

other population i was allowed to vary higher or lower. The Cauchy distribution was assumed

as the prior for the logarithm of γi, as this describes the ratio of two normally-distributed ran-

dom variables. However, the Hamiltonian Monte Carlo algorithm used for model fitting does

not efficiently sample heavy-tailed distributions, and therefore the prior was reparameterised

to use a random variable Γi with a unit-sized uniform prior [58]:

Gi � U �
p

2
;
p

2

� �

The Γi values were then transformed to generate γi values with a Cauchy distribution using

the location (μstudy = 0) and scale (τstudy = 2) parameters:

log10 gið Þ ¼ mstudy þ tstudytanðGiÞ

The τstudy value allowed for variation in observed incidence over multiple orders of magni-

tude between datasets, ensuring the model makes allowance for substantial heterogeneity in

observed disease burdens [59].

A similar reparameterization of the Cauchy distribution was used for the models in which

type and strain background independently contributed to a genotype’s progression rate (the

type-determined strain-modified, and strain-determined type-modified, progression rate

models). The categorisation modelled as determining the progression rate (vx) had the same
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prior as when a single factor determined the progression rate. This was multiplied by a second

value, vy, determined by the classification modifying the progression rate. The prior distribu-

tion for the logarithm of this value was a truncated Cauchy, symmetrical around zero. This

represented the expectation that the modification of the progression rate would be small

(approximately one) in most cases, but may be substantial in rare instances. The truncation

was found to be necessary for efficient sampling with the Hamiltonian Monte Carlo algorithm.

This was parameterised with a random variable Yy, sampled from a uniform distribution with

narrower boundaries than those for the analogous Γi variable:

Yy � U � 1:25; 1:25ð Þ

The Yy values were then transformed to generate vy values using the location (μmod = 0) and

scale (τmod = 0.5) parameters:

log10 ny

� �
¼ mmod þ tmodtanðYyÞ

This meant vy values could vary over three orders of magnitude (between 0.0313 and 32.0),

while enabling models to converge with reasonable MCMC lengths.

The precision parameter of the negative binomial distribution, ϕ, was sampled from an expo-

nential distribution. Values of ϕ that are large relative to E½di;x� suggest there is little evidence of

overdispersion, and therefore these parameter values should be associated with small prior prob-

abilities. As E½di;x�must always be close to, or above, one in well-powered case-carrier studies,

an exponential rate parameter of one was used to penalise the likelihood of the negative bino-

mial model when ϕ was above this value. Yet this broad, always positive, distribution enabled

estimation of smaller, albeit non-zero, ϕ values for representing highly overdispersed data:

� � Expð1Þ

Model parameters are summarised in Table 1. All models were implemented using R [60]

and Rstan [61]. Each model was fitted using two Hamiltonian Markov chain Monte Carlo

(MCMC) evaluations for 25,000 iterations, of which half were warmup iterations. Conver-

gence was assessed through analysing the MCMC traces, using the criteria of requiring all R̂
values to be below 1.05, and no reports of divergent transitions in the sampling [58]. This was

achieved using default MCMC sampling parameters for the serotype analyses, but the strain

analyses required a smaller step size (0.01), higher acceptance probability (0.99) and larger tree

depth (20). The data and code used for the analyses are available as an R package from https://

github.com/nickjcroucher/progressionEstimation/.

Model evaluation and comparison

The ability of models to recover known parameter values from synthetic datasets was tested by

simulation, as described in S1 Text. Models were compared using likelihoods, independent of

priors, through approximate leave-one-out cross-validation with the loo package [62]. The mar-

ginal likelihoods of different models, given the data, were compared with Bayes factors calcu-

lated using the bridgesampling package [63]. The same number of iterations were used to

calculate the logarithmic marginal likelihoods as were used to fit the models. Evaluation of our

results against odds ratio calculations used the metafor package [64], as described previously

[29]. Model outputs were analysed and plotted with the tidyverse and ggpubr packages [65,66].

PLOS COMPUTATIONAL BIOLOGY Bayesian analyses of microbial progression rates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009389 February 17, 2022 8 / 38

https://github.com/nickjcroucher/progressionEstimation/
https://github.com/nickjcroucher/progressionEstimation/
https://doi.org/10.1371/journal.pcbi.1009389


S. pneumoniae serotype data

The matched carriage and IPD serotype datasets were combined from two meta-analyses

[29,36]. Twelve of the reported studies were omitted due to lack of publicly-available data

[31,67–72]; difficultly in defining independent cross-sectional carriage samples [73,74]; small

sample sizes once stratified by age [75], or study design biased towards particular serotypes

[76]. If a PCV were introduced during a study, then samples were divided into pre-PCV and

post-PCV datasets. This resulted in 21 systematically-sampled and comprehensively serotyped

paired asymptomatic carriage and disease samples (S1 Table). Of these studies, 20 included

data on child carriage and child IPD, and five included data on child carriage and adult IPD.

Data that were only resolved to serogroup level, based on the currently-known serotypes,

were omitted from the analysis, although the overall number of samples taken (ηi) was not

adjusted. However, data on serotypes in historical studies that are now known to correspond

to multiple serotypes (e.g. serotype 6A now being resolved into 6A and 6C [77]) were included

unaltered. Additionally, isolates of serotypes 15B and 15C were combined into the single 15B/

C category.

Table 1. Summary of parameters used in the models.

Parameter Description Value or prior distribution

i Index denoting study 1..(number of studies)

j Index denoting type 1..(number of types)

k Index denoting strain 1..(number of strains)

x Generic index for type or strain -

y Generic index of type or strain that modifies the invasiveness of

a genotype

-

c Number of isolates detected in carriage study -

d Number of isolates detected in disease surveillance -

ρ Carriage prevalence ρ ~Beta(1,1)

η Total number of positive and negative samples in carriage

study

From previous publications

N Number of individuals of the specified demographic under

disease surveillance

From previous publications

t Duration of disease surveillance From previous publications

ν Progression rate log10(ν) ~U(-6,1) or truncated

Cauchy(μmod, τmod); see below

γ Study-specific scale parameter 1 or log10(γ)~ Cauchy(μstudy,τstudy)

ϕ Precision parameter of negative binomial distribution ϕ~Exp(1)

Γi Random variable for sampling from the Cauchy distribution

for the study-specific scale parameters

Γi ~U(-0.5π,0.5π)

μstudy Location parameter of the Cauchy distribution for the study-

specific scale parameters

0

τstudy Scale parameter of the Cauchy distribution for the study-

specific scale parameters

2

Yy Random variable for sampling from the truncated Cauchy

distribution for the invasiveness modification terms

Yy~U(-1.25,1.25)

μmod Location parameter of the truncated Cauchy distribution for

the invasiveness modification terms

0

τmod Scale parameter of the truncated Cauchy distribution for the

invasiveness modification terms

0.5

https://doi.org/10.1371/journal.pcbi.1009389.t001
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S. pneumoniae strain data

Analysis of variation of invasiveness between S. pneumoniae strains in children used popula-

tion genomic data from South Africa [37], a mixture of population genomic and genotyped

data from the USA [37], and genotyped data from Finland [74], Oxford [31] and Stockholm

[78]. The equivalent analysis of strain invasiveness using isolates mainly from adult disease

used data from Portugal [54]. Some of the genotyped datasets were not as thoroughly docu-

mented as the serotyped datasets, and therefore it was not appropriate to fit models that lacked

a study-specific scale factor that reduced their reliance upon accurate carriage sample informa-

tion (S2 Text).

Results

Bayesian meta-analysis of S. pneumoniae serotype invasiveness

Twenty matched IPD case and nasopharyngeal carriage datasets were used to quantify S. pneu-
moniae serotype invasiveness in children (S1 Table). From these, 7,340 carriage isolates and

2,851 disease isolates were extracted, across 72 serotypes (S1 Fig). Multiple models of invasive-

ness were proposed to analyse these data (see Methods). The null model assumed there was no

systematic difference between serotypes’ invasiveness across datasets. The type-specific model

assumed each serotype had a characteristic invasiveness that was consistent across locations.

The study-adjusted model assumed invasiveness did not vary across serotypes, but could differ

between studies. Finally, the study-adjusted type-specific model allowed invasiveness to vary

between both types and studies. All four approaches to estimating the expected numbers of

disease cases and carriage isolates were fitted assuming the number of disease cases would fol-

low a Poisson distribution, and allowing for overdispersion by fitting a negative binomial dis-

tribution to these values, resulting in eight models overall. These models were able to

accurately recover progression rates (S2 Fig) and infer overdispersion (S3 Fig) from simulated

data (S1 Text), with the true values used to generate the synthetic datasets lying within the 95%

credibility intervals of the estimates from the fit of the corresponding model.

There was limited power for distinguishing the different model structures when the counts

of both carriage and disease isolates were low for a given type in a study. Therefore paired

observations from an individual study were only used for the model comparison if either the

number of carried, or disease, isolates was at least five. This reduced the dataset to 7,048 car-

riage isolates and 2,617 disease isolates across 45 serotypes (S4 Fig). The eight models were

each fitted to the data using two Hamiltonian MCMC chains, both run for 25,000 iterations.

All chains appeared to have converged, based on the traces of the posterior probabilities (S5

Fig) and all R̂ values being below 1.001 (S6 Fig). Comparisons of the observed and predicted

isolate counts showed all models could accurately reproduce the observations from carriage

studies, with the exception of the null and study-adjusted Poisson models (Fig 1). However,

only the most complex models, adjusting for both S. pneumoniae serotype and study, were

able to accurately reproduce the disease case counts.

The deviations between the observed and predicted isolate counts can be quantified using

the distributions of absolute residuals (S7 Fig). These show the negative binomial models repli-

cate the carriage values closely, relative to the equivalent Poisson models, with correspondingly

greater deviation from the disease counts enabled by the overdispersion permitted by the nega-

tive binomial distribution’s precision parameter, ɸ. That the ɸ values were below one for the

three simplest negative binomial models suggested there was substantial unmodelled variation

(S8 Fig). However, for the study-adjusted type-specific model, the ɸ value rose above one, indi-

cating less overdispersion. Correspondingly, the similarly low residuals for the Poisson and
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Fig 1. Comparison of observed and predicted counts of each serotype within each study of S. pneumoniae
invasiveness in children. The points show the observed value on the horizontal axis, and the median predicted value

on the vertical axis. The error bars show the 95% credibility intervals. The points and bars are coloured by the study to

which they correspond; note that England and Wales is abbreviated to “E&W” (S1 Table). The red dashed line shows

the line of identity, corresponding to a perfect match between prediction and observation. The left column shows the
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negative binomial versions of this model suggested adjusting for study and serotype enabled

progression rates to be estimated robustly with either distribution (S7 Fig).

The success of the study-adjusted type-specific models in reproducing the observations

may represent overfitting by the most complex models. Therefore formal model comparisons

were undertaken using leave-one-out cross-validation (LOO-CV) [62]. Although this sug-

gested the study-adjusted type-specific models were the most appropriate, the large number of

model parameters meant the Pareto k statistic diagnostic values were too high for these com-

parisons to be reliable (S2 Table) [79]. This was still true if the models were compared using

only the likelihoods calculated from the disease counts, which were more constrained than

those calculated from the carriage data (S3 Table). Hence models were instead compared using

Bayes factors calculated from bridge sampling [63]. This approach was validated by demon-

strating it was able to accurately assign simulated data to the model under which it was gener-

ated (S4 Table). The Bayes factors identified the null Poisson model as the most poorly fitting,

whereas the study-adjusted type-specific negative binomial model was the most strongly

favoured by the data (S5 Table).

Identification of highly invasive non-vaccine serotypes

This study-adjusted type-specific negative binomial model was therefore applied to the full

dataset. Both the MCMC traces and R̂ statistics indicated the model fit converged after 25,000

iterations (S9 Fig). This enabled the estimation of invasiveness for 72 serotypes (Fig 2 and S1

Dataset), including all 24 included in vaccine formulations that are currently licensed or under

development [20–22]. The analysis found the serotypes associated with high invasiveness and

narrow credibility intervals were the three serotypes added to PCV7 to generate PCV10 (1, 5

and 7F), which are also present in higher-valency PCVs, and serotype 12F, included in PCV20.

Other serotypes not included in current vaccine designs, but likely to be highly invasive, were

9L, 19C, 24B, 24F, 25A, 27, 28A and 46. However, the credibility intervals of some of these esti-

mates were substantial, resulting from small sample sizes.

The serotypes associated with low invasiveness and narrow credible intervals were 11A

(included in PCV20), 6C, 21, 23A, 23B, 34, 35B and 35F. Many other serotypes (e.g. 10F, 11F,

19B, 33A, 35A, 36, 39, 42 and 45) were associated with low invasiveness values, but these esti-

mates had wide credibility intervals. The higher uncertainty generally corresponded with

lower sample sizes, although some of these serotypes had a total sample size above 10 (e.g. 10F,

35A and 42), but were nevertheless rare in IPD. The absolute estimates of invasiveness relate to

the reference population for the model fit, which was the post-PCV7 sample from the Navajo

nation [39], as this study contributed the largest number of isolates (S1 Fig). The model fits

found the maximal progression rates were above 10−2 IPD cases per carrier per year, with the

minimum point estimates below 10−4 IPD cases per carrier per year. However, the incidence

of IPD in the Navajo population is high, with excellent disease surveillance [80], and therefore

other studies were expected to report lower disease cases per carriage episode. Correspond-

ingly, the study-adjustment scale factors were below one for most other datasets (S10 Fig), sug-

gesting many locations would expect to detect around 30–50% of the number of IPD cases per

carriage episode for the same carriage serotype composition.

correspondence for carriage data (values of ci,j), and the right column shows the correspondence for disease isolates

(values of di,j). Each row corresponds to a different model: (A) null Poisson model; (B) null negative binomial model;

(C) type-specific Poisson model; (D) type-specific negative binomial model; (E) study-adjusted Poisson model; (F)

study-adjusted negative binomial model; (G) study-adjusted type-specific Poisson model; (H) study-adjusted type-

specific negative binomial model.

https://doi.org/10.1371/journal.pcbi.1009389.g001
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Fig 2. Invasiveness estimates for S. pneumoniae serotypes from the study-adjusted type-specific negative binomial model applied to the full

dataset of serotype studies from child carriage and disease. Points represent the median estimate, and are coloured according to the vaccine

formulation in which they are found; all higher valency formulations encompass the serotypes found in lower valency formulations, with the exception

of 6A not being present in PPV23. The point shape represents the sample size, summed across disease and carriage isolates from all studies, on which

the estimates are based. The error bars show the 95% credibility intervals. (A) Estimates for all 72 serotypes in the full dataset. (B) Estimates when

distinguishing between vaccine-type serotypes in unvaccinated and vaccinated populations. Vaccine serotypes in vaccinated populations are denoted

with the suffix “_pv”.

https://doi.org/10.1371/journal.pcbi.1009389.g002
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The fitted study-adjustment scale factors were all associated with similarly narrow credibil-

ity intervals, demonstrating there were enough shared types between samples to robustly infer

these parameters. For four locations (Atlanta, Bogota, the Netherlands and France), both pre-

PCV and post-PCV samples were included in the meta-analysis, which might be expected to

have similar scale factors, if the host population and disease surveillance were consistent across

these eras. However, this was not the case for studies from Bogota. The model’s assumption

that serotype invasiveness is constant across studies may be violated by a reduction in vaccine-

type invasiveness following PCV introduction, if vaccine-induced immunity inhibited pro-

gression from carriage to IPD. Therefore the study-adjusted type-specific negative binomial

model was refitted, treating vaccine-type serotypes as different types pre- and post-PCV

(including 6A as a PCV7 type, and 6C as a PCV13 type [81]; S11 Fig). The point estimates of

invasiveness for most vaccine serotypes dropped following PCV introduction, with the evi-

dence strongest for the invasiveness of serotypes 14 and 7F falling after the introduction of

PCV7 and PCV10, respectively (Fig 2). This fit further improved the consistency of scale fac-

tors across the Netherlands and Atlanta, but did not resolve the discrepancy between samples

from Bogota (S12 Fig). These data suggest PCVs can reduce the invasiveness of vaccine types

before they are eliminated by herd immunity, and therefore distinguishing between pre- and

post-PCV invasiveness may help standardisation across meta-analyses.

Comparison of Bayesian modelling with odds ratios

The outputs of the study-adjusted type-specific negative binomial model were compared to

those from estimating pneumococcal invasiveness from the same dataset using odds ratios

(Fig 3). Odds ratios were combined across studies using either random (Fig 3A) or fixed effects

(Fig 3B) models, and the results disaggregated based on the total number of isolates, summed

across carriage and disease, for each serotype. Across all sample sizes, there was a significant

positive correlation between the two measures of invasiveness. The range of invasiveness val-

ues extended over two orders of magnitude for both methods. Hence the study-adjusted type-

specific negative binomial model produced similar relative estimates of invasiveness to odds

ratio analyses, while having the advantage of providing both overall, and location-specific,

absolute estimates of these progression rates that can be used in quantitative analyses.

Fixed effects analyses assume there is a single invasiveness value across all locations,

whereas random effects analyses allow for variation in the underlying invasiveness estimate

between studies. The identification of between-location heterogeneity typically suggests ran-

dom effects models are more appropriate for analyses of pneumococcal invasiveness

[29,36,37]. This variation may either reflect genuine differences in serotype behaviour, or arise

from standardisation relative to a variable mix of serotypes between locations. By accounting

for this variation, random effects models often calculate wider confidence intervals than fixed

effect models (Fig 3). Additionally, random effects models are typically not recommended

where there are fewer than five studies in which a serotype features [82], and therefore meta-

analyses of odds ratios may be a mixture of fixed- and random-effects models [37]. By contrast,

this single, consistent Bayesian model can be applied across serotypes, regardless of their distri-

bution across studies. Furthermore, this framework explicitly accounts for the uncertainty

associated with overdispersed data through the negative binomial precision parameter, ϕ
(Fig 1). This variation is quantified separately from the uncertainty in the progression rate

estimate.

Deviations between the methods in the rank order of invasiveness point estimates were

most evident at small sample sizes. This was most notable for serotypes 33A and 36, both of

which were associated with relatively high logarithmic odds ratios (above zero) and relatively

PLOS COMPUTATIONAL BIOLOGY Bayesian analyses of microbial progression rates

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009389 February 17, 2022 14 / 38

https://doi.org/10.1371/journal.pcbi.1009389


Fig 3. Comparison of the serotype invasiveness estimates from the study-adjusted type-specific negative binomial

model with those from meta-analyses of the same dataset calculated as logarithmic odds ratios combined using

(A) fixed effects models and (B) random effects models. Points are coloured based on the vaccine formulations in

which serotypes are found. The horizontal error bars are the 95% credibility intervals from the Bayesian model, and the

vertical error bars show the 95% confidence intervals from the logarithmic odds ratio analyses. Each plot is divided

based on the sample size associated with each serotype, calculated as the sum of isolates from carriage and disease

across all studies. The correlation between the two estimates is summarised as Kendall’s τ on each panel, with an

associated p value.

https://doi.org/10.1371/journal.pcbi.1009389.g003
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low Bayesian progression rate estimates (below 10−4 cases per carrier per year). Both were

observed only in carriage: five isolates across four studies for serotype 33A, and one isolate in

each of three studies for serotype 36. Hence the Bayesian model estimates provide a more

informative representation of the limited available data.

At the upper end of the scale, the Bayesian model found the most highly invasive serotype

to be 46, with credibility intervals indicating this serotype is unlikely to be of intermediate

invasiveness [30]. By contrast, the confidence intervals for the odds ratios calculated for sero-

type 46 were larger relative to the variation between serotypes, with those calculated using ran-

dom effects spanning the full range of invasiveness point estimates across the species. This

serotype was observed in two studies, but never isolated from carriage, and there is further cir-

cumstantial evidence that serotype 46 is likely to be highly invasive (see Discussion). Hence

this Bayesian framework can use case-carrier studies to provide informative estimates of inva-

siveness even from small sample sizes.

Odds ratios were previously found to correlate with another measure of invasiveness, the

“attack rate”, which in turn negatively correlated with carriage duration [18]. This could result

from IPD being most common shortly after the acquisition of a novel serotype in the naso-

pharynx, which occurs more frequently for serotypes carried for only a short period in each

host. The invasiveness values from child IPD data were compared with recent estimates of car-

riage duration from multi-state modelling of longitudinally-sampled carriage studies in Maela,

Thailand [57,83]. Although the highest invasiveness values were associated with short carriage

durations, likely as longer carriage duration is expected to result in higher cross-sectional car-

riage prevalences, there was no strong overall relationship (S13 Fig).

Differences in invasiveness between host age demographics

Although S. pneumoniae bacteria primarily circulate between children, they frequently cause

disease in adults. Five datasets were identified in which adult disease cases could be matched

with child nasopharyngeal carriage datasets, to estimate serotype invasiveness in adults. Over-

all, 3,756 carriage isolates and 3,041 disease isolates were extracted across 53 serotypes (S14

Fig). As with the child IPD samples, this dataset was filtered for observations where either the

number of carriage or disease isolates was at least five, to improve the power for identifying

the best fitting model. This left 3,704 carriage isolates and 2,969 disease isolates across 40 sero-

types for this model selection analysis (S15 Fig). As with the child dataset, two 25,000 iteration

Hamiltonian MCMCs were used to fit each of the eight models, which converged based on the

traces of the posterior probability (S16 Fig) and R̂ values being below 1.05 (S17 Fig). Similar to

the analysis of invasiveness in children, comparisons of the observed and predicted isolate

counts again showed that only the models adjusting for both S. pneumoniae serotype and

study were able to accurately reproduce the adult disease case counts (S18 Fig). Bayes factors

concurred that the study-adjusted type-specific negative binomial model was the most likely,

given the data (S6 Table).

This model was applied to the complete adult disease dataset. MCMC traces and R̂ statistics

again indicated the model fit converged after 25,000 iterations (S19 Fig). As with the child

analysis, the reference population for the model fit was the post-PCV7 sample from the Navajo

nation [39]. The high incidence of IPD in this population is again evident in the adult popula-

tion, as the other studies had lower study-adjustment scale factors (S20 Fig). Most locations

expected to detect 5–50% of the number of IPD cases per carriage episode for the same car-

riage serotype composition.

This analysis therefore enabled the estimation of invasiveness of 53 serotypes in adults

(Fig 4A and S2 Dataset), including the 24 in vaccine formulations that are currently licensed
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Fig 4. Invasiveness estimates for S. pneumoniae serotypes from the study-adjusted type-specific negative binomial model

applied to the full dataset of serotype studies from child carriage and adult disease. Points represent the median estimates, and

are coloured according to the vaccine formulation in which they are found; all higher valency formulations encompass the serotypes

found in lower valency formulations, with the exception of 6A not being present in PPV23. The error bars show the 95% credibility

intervals. (A) Estimates for all 53 serotypes in the full dataset. The point shape represents the sample size, summed across disease
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or under development. The analysis showed the serotypes associated with high invasiveness

and narrow credibility intervals not in currently-used PCVs included serotypes 8 and 12F,

included in the PCV20 formulation; serotype 20, included in PPV23, and the non-vaccine type

serotype 13. Other serotypes not in current vaccine designs, but likely to be highly invasive,

included serotypes 9L and 12B. However, the credibility intervals of these estimates were sub-

stantial, resulting from small overall sample sizes. The non-PCV serotypes associated with low

invasiveness (upper 95% credibility interval estimates <10−3 disease cases per carrier per year)

were serotypes 6C, 18B, 21, 23A, 23B, 35B and 35F.

Comparisons with the corresponding child invasiveness analysis (Fig 4B) showed many

PCV serotypes had similar invasiveness estimates in both age groups [39], with PCV7 and

PCV10 types having mid-range and high invasiveness estimates for both children and adults,

respectively. The invasiveness of serotype 6C, which is affected by PCV13-induced immunity

against the 6A component, was low in both children and adults. The non-PCV serotype 9L

appears to be highly invasive in both populations, although this value was associated with con-

siderable uncertainty. However, other non-PCV types showed a discrepancy between the two

age groups. For example, serotypes 12B and 29 were estimated to be highly invasive in adults

but not children, though the credible interval ranges were large for both.

Serotypes included in the PCV15 and PCV20 formulations appeared to have mid-range

invasiveness in both age groups, except for the rarely invasive serotype 11A, and the consis-

tently highly invasive serotypes 8 and 12F. This suggests the removal of these latter two sero-

types through herd immunity from higher-valency PCV infant immunisation programmes

would likely be beneficial to the adult population [84,85]. However, this would concomitantly

reduce the effectiveness of the current PPV23 adult vaccine, due to its overlap in serotype cov-

erage with PCVs meaning it would protect against a lower proportion of the post-vaccine S.

pneumoniae population [29,86]. PPV23’s residual effect would be determined by the preva-

lence and adult invasiveness of the final non-PCV PPV23 serotypes. Both serotypes 2 and 20

were estimated to be highly invasive for both age groups, albeit with broad credible intervals

for adults for the former, due to it only being included in one adult dataset. The remaining

non-PCV PPV23 serotypes (9N and 17F) also exhibited elevated invasiveness compared to

many non-vaccine types, suggesting that PPV23 may offer protection against a limited number

of higher-risk serotypes following the implementation of PCV15 or PCV20 infant vaccination

programmes.

Invasiveness varies between pneumococcal strains and serotypes

S. pneumoniae populations are genetically diverse, and can be divided into discrete strains

[52,87]. Isolates of a particular serotype are often found across multiple strain backgrounds,

and a single strain may be associated with multiple serotypes through switching [53,88]. To

test how each of these characteristics affected pneumococcal progression rates, five different

models of isolates’ invasiveness were fitted using the study-adjusted type-specific model frame-

work (see Methods). These corresponded to the hypotheses that an isolate’s invasiveness was

determined by its serotype; by its strain background; primarily by its serotype, but modified by

strain background; primarily by its strain background, but modified by its serotype; and deter-

mined by the combination of its serotype and strain background. All five models were fitted

using Poisson and negative binomial distributions.

and carriage isolates from all studies, on which the estimates are based. (B) Scatterplot comparing the invasiveness estimates for

serotypes across adults and children.

https://doi.org/10.1371/journal.pcbi.1009389.g004
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These ten models were used to conduct a meta-analysis of six studies in which both sero-

type and strain background could be determined, for at least some isolates (S21 Fig). Three of

the studies (post-PCV7 and post-PCV13 South Africa; post-PCV7 USA) were modified ver-

sions of a comparison primarily conducted using genomic data [37]. These were combined

with pre-PCV genotyped studies from Oxford, UK [31]; Stockholm, Sweden [78], and Finland

[74] (see S2 Text and S7 Table). For each dataset i, isolates were grouped by both their serotype

j and strain k. As with the child serotype-only analysis, models were fitted to a subset of these

samples in which the count of each serotype-strain combination in either carriage or disease in

a study (ci,j,k or di,j,k) was at least five. To focus on testing for within-category variation, only

strains associated with five different serotypes, and serotypes associated with five different

strains, were included in the analysis. The final dataset comprised 11 serotypes, 35 strains, and

46 serotype-strain combinations (S22 Fig). All models converged on stable set of parameter

estimates, as inferred from the traces of logarithmic posterior probability values (S23 Fig) and

distribution of R̂ values (S24 Fig). Few observed frequencies of serotype-strain combinations

in either carriage or disease were inconsistent with the 95% credible intervals calculated from

any of the fitted models (S25 Fig). There was little evidence of negative binomial distributions

improving the fit of these models, and the precision parameters were correspondingly high,

albeit with evidence of greater overdispersion when serotype information was omitted from

the model fit (S26 Fig). The lowest absolute residuals were associated with the more complex

models that accounted for both strain background and serotype (S27 Fig).

Correspondingly, comparisons with LOO-CV found such models that combined genetic

and serotype information to be the best-performing (S8 and S9 Tables), although the Pareto k
statistic diagnostic values were again too high for this comparison to be reliable. Comparisons

using Bayes factors concurred, identifying the most likely model as that in which invasiveness

was primarily determined by serotype, but modified by strain, with the count of disease isolates

following a Poisson distribution (S10 Table). Some carriage sample sizes had to be approxi-

mated in this analysis (for the Oxford and Finland studies in particular; see S2 Text), but the

study adjustment factors were robustly estimated and significantly differed across studies, sug-

gesting the model was able to compensate for this aspect of the data (S28 Fig). To test whether

these problems could have affected relative model likelihoods, the model comparison was

repeated with a 100-fold change in the carriage sample size values for those studies in which

the precise number was not reported. The study-adjustment factor meant the comparisons

were relatively insensitive to these changes, and the same model was identified as the most

likely, given the data (S11 Table). Hence model comparisons demonstrated that neither sero-

type nor strain background alone determines a genotype’s invasiveness.

Identification of invasive pneumococcal genotypes

The best-fitting type-determined strain-modified Poisson model could be reliably fitted to the

full dataset (S29 Fig). The invasiveness estimates were plotted to analyse variation by serotype

within strains (Fig 5 and S3 Dataset). Some strains expressed serotypes of uniformly low inva-

siveness (e.g. serotypes 11A, 15A and 20A within GPSC22), whereas others expressed serotypes

with consistently higher invasiveness estimates (e.g. serotypes 4 and 19A within GPSC27). By

contrast, 19A had an elevated invasiveness relative to 19F within GPSC1, and relative to sero-

type 15B/C in GPSC4. Similarly, serotypes 8 and 33F were substantially more invasive than

11A within GPSC3. Hence there was considerable variation in estimated invasiveness both

between, and within, strains.

Similarly, the factors by which strain backgrounds modified serotypes’ invasiveness were

plotted, grouped by the serotypes with which they were associated (Fig 6). The meta-analysis
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identified significant evidence to support many of the observations of within-serotype inva-

siveness variation noted in the individual analyses (S12 Table). These included elevated inva-

siveness being associated with GPSCs 1, 24 and 41. Heterogeneity was most strongly evident

within some of the paediatric serotypes [19], including 6A, 6B, 14, 19F, 19A, 23F and 23A.

This may represent these common serotypes being distributed across a wider diversity of strain

backgrounds. However, the estimates for other low invasiveness serotypes disseminated across

Fig 5. Estimates of the invasiveness associated with serotypes inferred from genotyped isolates using the study-adjusted type-determined strain-

modified model. Serotypes are arranged by the strains in which they are found. Data are only shown for strains found in multiple serotype-strain

combinations, each represented by at least ten isolates across the studies with genotype information. Points represent the median estimate, and are

coloured by the vaccine formulations in which the corresponding serotype is present. The error bars represent the 95% credible intervals. The shape of

the point represents the sample size on which the estimate is based.

https://doi.org/10.1371/journal.pcbi.1009389.g005
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Fig 6. Estimates of the coefficient by which strains modify the invasiveness of their expressed serotype, inferred from

genotyped isolates using the study-adjusted type-determined strain-modified model. Strains are arranged by the

serotypes with which they are associated. Data are only shown for serotypes found in multiple serotype-strain

combinations, each represented by at least ten isolates across the included studies. Points represent the median estimate,

and are coloured by the vaccine formulations in which the corresponding serotype is present. The error bars represent the

95% credibililty intervals. The shape of the point represents the sample size on which the estimate is based.

https://doi.org/10.1371/journal.pcbi.1009389.g006
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multiple backgrounds, such as 15B/C and 35B, were more consistent. Furthermore, some

highly-invasive serotypes (such as 1 and 12F) were similarly invasive in multiple strains. This

implies some serotypes may have a stronger effect on an isolate’s invasiveness than others.

The overall invasiveness estimate was plotted for each serotype-strain combination in the

full dataset, including low frequency types, to identify high-risk genotypes that might emerge

as common causes of IPD post-PCV (S30 Fig). The genotypes identified as most concerning in

the near-term were typically those expressing serotypes targeted by higher-valency PCVs and

regarded as highly invasive, such as 8 and 12F. Yet there were also examples of genotypes with

high invasiveness point estimates expressing serotypes not included in any planned PCVs (e.g.

15A, 18B, 25F, 28A, 33A and 33D), albeit these values were inferred from small sample sizes.

Most of these genotypes are likely to remain rare, else their invasiveness estimates may regress

to the population-wide mean as more data emerge. Ongoing surveillance will be required to

identify whether any represent a potentially problematic genotype post-PCV at an early stage

in their spread.

An additional genotyped dataset from Portugal (S31 Fig), in which the majority of disease

cases were isolated from adults [54], was analysed with the type-determined strain-modified

Poisson model (S32 Fig). There were few instances of multiple serotypes being isolated from

the same strain, but several serotypes were distributed across multiple genetic backgrounds

(S33 Fig). This found evidence of heterogeneity in invasiveness within serotypes 3, 6A and

23F. The elevated invasiveness of serotype 3 was associated with the GPSC6 strain, similarly

found to have high invasiveness when expressing multiple serotypes in children (Fig 6). For

serotype 6A, this heterogeneity involved strains that did not appear in the child dataset (Fig 6),

suggesting further within-serotype variation in invasiveness may emerge as studies include a

greater diversity of host age groups.

Discussion

This study describes novel models for using data from cases and carriers to estimate the hazard

of an asymptomatically carried pathogen causing a defined disease over a time period, previ-

ously defined as a progression rate [2]. This quantity is crucial for determining the efficacy of

partial coverage vaccines, such as the PCVs [28,29], and the flexible framework developed here

should be applicable to any diverse microbial population. These models calculate progression

rates as absolute quantities, rather than dimensionless ratios, as with previous meta-analyses

[29,36,38]. These estimates can enable the translation of alterations in microbial population

structures to changes in disease incidence, which is crucial for understanding the conse-

quences of strain- or type-specific interventions [29]. Furthermore, given suitable datasets for

multiple pathogens, these models could also be used to estimate changes in disease burdens for

alterations across microbiota.

When applied to S. pneumoniae serotype data, the best-performing model structures were

those in which type-specific progression rates were adjusted by dataset-specific scale factors.

In principle, these scale factors should correlate with the burden of disease in a given host pop-

ulation, representing a combination of socio-economic factors and co-morbidities that affect

IPD incidence [89,90]. Yet in practice, they will also represent the probability of an isolate

causing IPD being included in a study dataset. This is affected by multiple factors, including

the probability of attending a hospital participating in the study, the efficiency of retrieving

bacteria from blood cultures, and the consistency with which cultured isolates are collected by

research centres [89].

These model structures facilitate comparisons across populations by standardising progres-

sion rate estimates between datasets using all common serotypes or strains shared between
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them. Existing methods for meta-analysis typically standardise data relative to a single type,

required to be present in all datasets [36,38], or combine estimates derived from ratios calcu-

lated relative to variable mixes of types in different locations. The dataset-adjusted type-spe-

cific progression rate models are better suited to the extensive international variation in S.

pneumoniae population structures [37,40], particularly given their ongoing diversification fol-

lowing vaccine introduction [34]. Comparison with odds ratios showed that invasiveness esti-

mates were correlated at large sample sizes, demonstrating both methods converged on similar

conclusions when data were available on many isolates. However, this comes with the caveat

that 16 of the 21 studies in the meta-analysis originated from North America or Europe, with

most collected prior to PCV introduction. Hence there is a pressing need for paired case and

carrier studies from post-PCV settings, particularly from Asia and Africa. As more diverse

populations are combined, the improved standardisation across studies from these Bayesian

analyses will become more important.

At smaller sample sizes, the Bayesian models were able to produce more informative esti-

mates of invasiveness than odds ratios. Information on types that are rare in individual data-

sets is particularly important for an opportunistic pathogen as diverse as S. pneumoniae, in

which serotypes can emerge and expand rapidly post-PCV [25,34,84]. A recent meta-analysis

using odds ratios highlighted the conclusion that 12F was the only non-PCV13 serotype to

have an invasiveness higher than 19A [36], the serotype responsible for much post-PCV7 IPD

[34,91]. However, this previous study limited its results to 25 serotypes, omitting less common

examples that could rise in frequency when serotype replacement is driven by higher-valency

vaccines [34,91]. The Bayesian analysis described in this work identified rare serotypes that

may be highly invasive in adults (e.g. 9L, 12B and 29) and children (e.g. 19C, 28A and 46),

based on small sample sizes. Serotype 46 has already been observed causing child IPD post-

PCV13 when expressed by the strain GPSC26, which is more commonly associated with the

highly-invasive serotype 12F [33]. These two capsule types are structurally similar [92], which

is common for serotypes expressed by isolates of the same strain [53]. Future post-PCV13 sur-

veillance will likely show whether 12F and 46 are truly similarly invasive. As higher-valency

PCVs become available, with the potential to remove commonly-carried serotypes such as 11A

and 15B/C [20,93], reducing the uncertainty in invasiveness estimates for remaining non-vac-

cine types will be of great importance in understanding the vaccine-associated changes in the

incidence of IPD.

The need for meta-analysis of multiple datasets is exacerbated by the model comparison in

this study that concluded that invasiveness is affected by both strain background and serotype.

This conclusion is consistent with the results of some individual studies [37,54,55], although

not all [31]. The within-serotype variation in invasiveness caused by differences in isolates’

strain background likely explains the superior fit of negative binomial, rather than Poisson,

distributions to the serotype-only datasets. Such a result raises the spectre of separately esti-

mating invasiveness for the hundreds of known S. pneumoniae strains, many of which are rare

in individual populations [37,87], in addition to the over 100 known serotypes. Yet the selected

model structure suggests serotype is the primary determinant of invasiveness. Consistent with

this conclusion, some serotypes (e.g. 1, 12F) exhibited high invasiveness across multiple strain

backgrounds, whereas others were consistently low (e.g. 15B/C, 35F).

By contrast, within some paediatric serotypes (6A, 6B, 23F and 23A), there was strong evi-

dence of strains with distinct invasiveness estimates (defined as estimates with non-overlap-

ping 95% credibility intervals). Weaker evidence for within-serotype variation in progression

rates (identified through median point estimates for one strain being outside the 95% credibil-

ity intervals of another) was observed in four further paediatric serotypes: 14, 19F, 19A and

23B. This may reflect paediatric serotypes having little effect on invasiveness, or their greater
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prevalence in the pre-PCV pneumococcal population providing greater power to detect varia-

tion between strains [32]. Heterogeneity has previously been noted in serotype 14, with both

GPSC6 (corresponding to PMEN3, or Spain9V-3 [88]) [54,74] and GPSC18 [31,37] identified

as highly invasive clones (S12 Table). In this analysis, both were estimated to be more invasive

than GPSC9 within the same serotype. This could result in heterogeneous vaccine impacts

between regions, as elimination of serotype 14 by PCVs will likely have a greater benefit across

Europe and South America, where it is often associated with the more invasive GPSC6

(https://microreact.org/project/gpsGPSC6), rather than Africa and India, where it is often

associated with the less invasive GPSC9 (https://microreact.org/project/gpsGPSC9).

Whether these models are useful long-term, or will ultimately be superseded by alternatives

based on genome-wide association studies, will depend on the extent to which progression

rates are affected by interactions between genetic loci [94]. It may prove possible to explain a

high proportion of the variation in invasiveness between microbes through a tractable number

of polymorphic loci that each independently contribute to a microbe’s invasiveness [47–50]. If

so, then the individual estimates for strains can be replaced with a simpler genome-based

approach, which would be capable of predicting the invasiveness of previously unseen geno-

types. However, if invasiveness depends on combinations of loci [94], it may only be possible

to estimate progression rates for extant common types from epidemiological studies. Other

alternative model structures include random effects models and multivariate regression analy-

ses, which can incorporate information on the host population characteristics [2,39,95]. How-

ever, these models typically require comprehensive surveillance of disease and detailed

information on host populations, which limits the range of studies that can be combined in

meta-analyses of diverse bacterial populations.

Even using more conventional approaches to estimating invasiveness, whole genome

sequencing clearly represents an important tool in future case-carrier studies of opportunistic

pathogen invasiveness. In addition to assigning isolates to strains, genomic data is a reliable

and cost-effective means of classifying microbes according to their capsular structures [96,97].

Furthermore, it also enables the extraction of additional clinically-relevant information, such

as antibiotic resistance loci [88,98], that may be incorporated into future extensions of these

models. However, the use of genomic data exacerbates an underlying problem with these mod-

els, as high-quality genome assemblies are not necessarily generated from all isolates recovered

from carriage. The model assumes there are no false negative swabs in carriage studies, mean-

ing there is an expectation that all carriage samples will be present in the genomic data. Hence

the omission of genomic data adds to a false negative rate that, even with serotype data, already

reflects the imperfect detection of colonisation by nasopharyngeal swabbing. This can be the

consequence of all resident bacteria being missed, or the difficulty of detecting lower preva-

lence types in instances of multiple carriage [99]. Unless there is variation in the ability to

detect carriage of different types, the underestimation of carriage means all progression rates

will be uniformly overestimated. However, if only a subset of datasets in a meta-analysis has a

lower sensitivity for detecting carriage, the model will adjust for this by increasing the associ-

ated scale factors. Hence the model structure is sufficiently flexible to account for such differ-

ences. This is necessary, as even with standardised protocols for detecting colonisation, the

population-wide estimates for carriage rates for a location will depend on the exact demo-

graphics sampled.

Some of these problems with detecting colonisation can be addressed using new techniques

with improved sensitivity for detecting multiple serotypes in carriage [100]. However, to

simultaneously obtain the genotyping information needed to precisely characterise an isolate’s

invasiveness using such mixed samples requires deep genome sequencing, or similar high-sen-

sitivity molecular genotyping techniques. Such data will not only improve the input to
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epidemiological models, such as those outlined here, but also potential future models based on

combinations of genetic loci. Yet meta-analyses of case-carrier studies can also be improved by

simple changes to reporting, without any alterations to current procedures. The data and mod-

els described in this work are made available for re-use, modification, and application to other

multi-strain microbes (see Methods). The fitting of the model to new datasets will require

studies to report their raw data in a standard format, and include the total number of swabs

included in the carriage study, as well as an informed estimate of the size of the population

under surveillance for IPD. To improve comparability between future studies, it would also be

ideal for studies to stratify these data by age category, to enable specific subsets to be employed

in different meta-analyses studying specific demographics. Therefore, as the repertoire of vac-

cines against diverse pathogens expands, we can hope to monitor and understand their impact

on population-wide microbial invasiveness using improved models, advances in sequencing

technology, and greater transparency of reporting.
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S1 Fig. Properties of the serotype data from child carriage and disease. (A) Stacked bar plot

showing the distribution of carriage and disease isolates between studies. (B) Stacked bar plot

showing the distribution of carriage and disease isolates between serotypes.

(PNG)

S2 Fig. Plots of estimated progression rate values from model fits to simulated data. Each

panel shows the fit of eight different models, indicated by colour, to data simulated from a sin-

gle model structure. Points represent the median estimate, and the error bars show the 95%

credible intervals. The models from which data were simulated were (A) null Poisson, (B) null

negative binomial, (C) type-specific Poisson, (D) type-specific negative binomial, (E) study-

adjusted Poisson, (F) study-adjusted negative binomial, (G) study-adjusted type-specific Pois-

son, and (H) study-adjusted type-specific negative binomial. For panels (A), (B), (E) and (F),

all types had the same progression rate, and therefore the dashed horizontal line represents the

single true value used in the simulations. For panels (B), (C), (G) and (H), each of the 20 types

had a different progression rate, which determines the horizontal position of the point on the

graph. In these four plots, the dashed line indicates the line of identity.

(PNG)

S3 Fig. Plot of the estimated values of the precision parameter ϕ from model fits to simu-

lated data. The horizontal position of the point corresponds to the model that was both used

to generate the data, and to then infer the parameter value from these data. The vertical posi-

tion of the point indicates the median estimate of the parameter, and the error bars represent

the 95% credibility interval. The horizontal dashed line indicates the true value of the parame-

ter used to simulate data, ϕ = 0.1.

(PNG)

S4 Fig. Properties of the filtered serotype data from child carriage and disease, after

removing datapoints corresponding to observations of fewer than five isolates of a sero-

type from both carriage and disease in a given study. (A) Stacked bar plot showing the distri-
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bution of carriage and disease isolates between studies. (B) Stacked bar plot showing the distri-

bution of carriage and disease isolates between serotypes.

(PNG)

S5 Fig. Line plots showing the post-warmup MCMC traces for the logarithmic posterior

probabilities across two independent chains for models fitted to the filtered serotype data

from child carriage and disease. The horizontal axis shows the generation of the MCMC,

with values for the two chains shown by orange and purple lines. Each panel corresponds to a

different model: (A) null Poisson model; (B) null negative binomial model; (C) type-specific

Poisson model; (D) type-specific negative binomial model; (E) study-adjusted Poisson model;

(F) study-adjusted negative binomial model; (G) study-adjusted type-specific Poisson model;

(H) study-adjusted type-specific negative binomial model.

(PNG)

S6 Fig. Histograms of R̂ values calculated from the paired MCMCs for models fitted to the

filtered serotype data from child carriage and disease. Each panel corresponds to a different

model: (A) null Poisson model; (B) null negative binomial model; (C) type-specific Poisson

model; (D) type-specific negative binomial model; (E) study-adjusted Poisson model; (F)

study-adjusted negative binomial model; (G) study-adjusted type-specific Poisson model; (H)

study-adjusted type-specific negative binomial model.

(PNG)

S7 Fig. Violin plots showing the absolute deviations between observed and predicted values

across model fits to the filtered serotype data from child carriage and disease. Blue crosses

represent the individual observations.

(PNG)

S8 Fig. Graph showing the values of the negative binomial distribution’s precision parame-

ter, ɸ, from model fits to the filtered serotype data from child carriage and disease. The

points represent the median estimates from the MCMCs, and the error bars show the 95%

credibility intervals.

(PNG)

S9 Fig. Plots validating the fit of the study-adjusted type-specific negative binomial model

to the full serotype data from child carriage and disease. (A) Histogram showing the distri-

bution of R̂ values. (B) Post-warmup MCMC traces of the log posterior probability.

(PNG)

S10 Fig. Study-adjustment scale factors from the study-adjusted type-specific negative

binomial model fitted to the full serotype data from child carriage and disease. The refer-

ence study, for which the value was fixed at one, was the Navajo post-PCV7 dataset, which had

the greatest sample size in this meta-analysis (S1 Fig).

(PNG)

S11 Fig. Plots validating the fit of the study-adjusted type-specific negative binomial

model to the full serotype data from child carriage and disease, when distinguishing

between vaccine-type serotypes pre- and post-PCV. (A) Histogram showing the distribution

of R̂ values. (B) Post-warmup MCMC traces of the log posterior probability.

(PNG)

S12 Fig. Study-adjustment scale factors from the study-adjusted type-specific negative

binomial model fitted to the full serotype data from child carriage and disease, when
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distinguishing between vaccine-type serotypes pre- and post-PCV. The reference study, for

which the value was fixed at one, was the Navajo post-PCV7 dataset, which had the greatest

sample size in this meta-analysis (S1 Fig).

(PNG)

S13 Fig. Relationship between serotype invasiveness in children (as shown in Fig 2) and

carriage duration in a study of infant colonisation in Maela, Thailand. The carriage dura-

tion estimates were derived from a multi-variate lasso regression that included both serotype

and antibiotic resistance phenotypes. Values were available for 14 serotypes, all relative to the

carriage duration of serotype 6A/C, which was assigned a value of zero days.

(PNG)

S14 Fig. Properties of the serotype data from child carriage and adult disease. (A) Stacked

bar plot showing the distribution of carriage and disease isolates between studies. (B) Stacked

bar plot showing the distribution of carriage and disease isolates between serotypes.

(PNG)

S15 Fig. Properties of the filtered serotype data from child carriage and adult disease after

removing datapoints corresponding to observations of fewer than five isolates of a sero-

type from both carriage and disease in a given study. (A) Stacked bar plot showing the distri-

bution of carriage and disease isolates between studies. (B) Stacked bar plot showing the

distribution of carriage and disease isolates between serotypes.

(PNG)

S16 Fig. Line plots showing the post-warmup MCMC traces for the logarithmic posterior

probabilities across two independent chains for models fitted to the filtered serotype data

from child carriage and adult disease. The horizontal axis shows the generation of the

MCMC, with values for the two chains shown by orange and purple lines. Each panel corre-

sponds to a different model: (A) null Poisson model; (B) null negative binomial model; (C)

type-specific Poisson model; (D) type-specific negative binomial model; (E) study-adjusted

Poisson model; (F) study-adjusted negative binomial model; (G) study-adjusted type-specific

Poisson model; (H) study-adjusted type-specific negative binomial model.

(PNG)

S17 Fig. Histograms of R̂ values calculated from paired MCMCs for models fitted to the

filtered serotype data from child carriage and adult disease. Each panel corresponds to a dif-

ferent model: (A) null Poisson model; (B) null negative binomial model; (C) type-specific Pois-

son model; (D) type-specific negative binomial model; (E) study-adjusted Poisson model; (F)

study-adjusted negative binomial model; (G) study-adjusted type-specific Poisson model; (H)

study-adjusted type-specific negative binomial model.

(PNG)

S18 Fig. Comparison of observed and predicted counts of each serotype within each study

of adult disease relative to carriage in children. The plots in the left column display data on

carriage in children (values of ci,j). The plots in the right column display data on disease in

adults (values of di,j). The points are coloured by the study to which they correspond, and rep-

resent the observed value on the horizontal axis, and the median predicted value on the vertical

axis. The error bars show the 95% credibility intervals. The red dashed line shows the line of

identity, corresponding to a perfect match between prediction and observation. Each row cor-

responds to a different model: (A) null Poisson model; (B) null negative binomial model; (C)

type-specific Poisson model; (D) type-specific negative binomial model; (E) study-adjusted
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Poisson model; (F) study-adjusted negative binomial model; (G) study-adjusted type-specific

Poisson model; (H) study-adjusted type-specific negative binomial model.

(PNG)

S19 Fig. Plots validating the fit of the study-adjusted type-specific negative binomial

model to the full serotype data from child carriage and adult disease. (A) Histogram show-

ing the distribution of R̂ values. (B) Post-warmup MCMC traces of the log posterior probabil-

ity.

(PNG)

S20 Fig. Study-adjustment scale factors from the study-adjusted type-specific negative

binomial model fitted to the full serotype data from child carriage and adult disease. The

reference study, for which the value was fixed at one, was the Navajo post-PCV7 dataset,

which had the greatest sample size in this meta-analysis (S15 Fig).

(PNG)

S21 Fig. Properties of the strain and serotype data from child carriage and disease. (A)

Stacked bar plot showing the distribution of carriage and disease isolates between studies. (B)

Stacked bar plot showing the distribution of carriage and disease isolates between serotypes.

(PNG)

S22 Fig. Properties of the filtered strain and serotype data from child carriage and disease

after removing datapoints corresponding to observations of fewer than five isolates of a

serotype-strain combination from both carriage and disease in a given study, then retain-

ing only serotypes associated with at least five different strains, and strains associated with

at least five different serotypes. (A) Stacked bar plot showing the distribution of carriage and

disease isolates between studies. (B) Stacked bar plot showing the distribution of carriage and

disease isolates between serotypes.

(PNG)

S23 Fig. Line plots showing the post-warmup MCMC traces for the logarithmic posterior

probabilities across two independent chains for models fitted to the filtered strain and

serotype data from child carriage and disease. Each panel corresponds to a model with a dif-

ferent method of associating isolates with an invasiveness estimate: (A) serotype-determined,

Poisson-distributed invasiveness; (B) serotype-determined, negative binomially-distributed

invasiveness; (C) strain-determined, Poisson-distributed invasiveness; (D) strain-determined,

negative binomially-distributed invasiveness; (E) serotype-determined, strain-modified Pois-

son-distributed invasiveness; (F) serotype-determined, strain-modified negative binomially-

distributed invasiveness; (G) strain-determined, serotype-modified Poisson-distributed inva-

siveness; (H) strain-determined, serotype-modified negative binomially-distributed invasive-

ness; (I) strain- and serotype-determined Poisson-distributed invasiveness; (J) strain- and

serotype-determined negative binomially-distributed invasiveness.

(PNG)

S24 Fig. Histograms of R̂ values calculated from paired MCMCs for models fitted to the

filtered strain and serotype data from child carriage and disease. Each panel corresponds to

a different model: (A) serotype-determined, Poisson-distributed invasiveness; (B) serotype-

determined, negative binomially-distributed invasiveness; (C) strain-determined, Poisson-dis-

tributed invasiveness; (D) strain-determined, negative binomially-distributed invasiveness; (E)

serotype-determined, strain-modified Poisson-distributed invasiveness; (F) serotype-deter-

mined, strain-modified negative binomially-distributed invasiveness; (G) strain-determined,

serotype-modified Poisson-distributed invasiveness; (H) strain-determined, serotype-
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modified negative binomially-distributed invasiveness; (I) strain- and serotype-determined

Poisson-distributed invasiveness; (J) strain- and serotype-determined negative binomially-dis-

tributed invasiveness.

(PNG)

S25 Fig. Comparison of observed and predicted counts of isolates, categorised by both

their serotype and strain background, within each study. The points are coloured by the

study to which they correspond, and represent the observed value on the horizontal axis, and

the median predicted values on the vertical axis. The error bars show the 95% credibility inter-

vals. The red dashed line shows the line of identity, corresponding to a perfect match between

prediction and observation. The left column shows the correspondence for carriage data (val-

ues of ci,j,k), and the right column shows the correspondence for disease isolates (values of di,j,
k). Each row corresponds to a different model: (A) serotype-determined, Poisson-distributed

invasiveness; (B) serotype-determined, negative binomially-distributed invasiveness; (C)

strain-determined, Poisson-distributed invasiveness; (D) strain-determined, negative binomi-

ally-distributed invasiveness; (E) serotype-determined, strain-modified Poisson-distributed

invasiveness; (F) serotype-determined, strain-modified negative binomially-distributed inva-

siveness; (G) strain-determined, serotype-modified Poisson-distributed invasiveness; (H)

strain-determined, serotype-modified negative binomially-distributed invasiveness; (I) strain-

and serotype-determined Poisson-distributed invasiveness; (J) strain- and serotype-deter-

mined negative binomially-distributed invasiveness.

(PNG)

S26 Fig. Graph showing the values of the negative binomial distribution’s precision param-

eter, ɸ, from model fits to the filtered strain and serotype data from child carriage and dis-

ease. The points represent the median estimates from the MCMCs, and the error bars show

the 95% credibility interval.

(PNG)

S27 Fig. Violin plots showing the absolute deviations between observed and predicted val-

ues across model fits to the filtered strain and serotype data from child carriage and dis-

ease. Blue crosses represent the individual observations.

(PNG)

S28 Fig. Study-adjustment scale factors from the study-adjusted type-determined strain-

modified Poisson model fitted to the full serotype and strain data from child carriage and

disease. The reference study, for which the value was fixed at one, was the South Africa post-

PCV7 dataset, which had the greatest sample size in this meta-analysis, and was associated

with a known carriage sample size (S2 Text).

(PNG)

S29 Fig. Plots validating the fit of the study-adjusted type-determined strain-modified

Poisson model to the full strain and serotype data from child carriage and disease. (A) His-

togram showing the distribution of R̂ values. (B) Post-warmup MCMC traces of the log poste-

rior probability.

(PNG)

S30 Fig. Point estimates of invasiveness for all strain and serotype combinations in the full

dataset from child carriage and disease. The shape of each point represents the number of

isolates of each combination observed across carriage and disease samples. The serotype-strain
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combinations with the highest combined invasiveness that are not targeted by current PCV

designs are labelled.

(PNG)

S31 Fig. Bar plot showing the distribution of carriage and disease isolates between sero-

types for the dataset from Portugal comparing child carriage with primarily adult disease.

(PNG)

S32 Fig. Plots validating the fit of the type-determined strain-modified Poisson model to

the strain and serotype data from child carriage and primarily adult disease. (A) Histogram

showing the distribution of R̂ values. (B) Post-warmup MCMC traces of the log posterior prob-

ability.

(PNG)

S33 Fig. Invasiveness estimates for strain and serotype combinations represented by at

least ten isolates in the study of child carriage and primarily adult disease. Points represent

the median estimates, and are coloured by the vaccine formulations in which the correspond-

ing serotype is present. The error bars represent 95% credibility intervals. The shape of the

point represents the sample size on which the estimate is based. (A) Estimates of the invasive-

ness associated with serotypes, arranged by the strains in which they are found. Only strains

expressing multiple serotypes are displayed. (B) Estimates of the coefficient by which strains

modify the invasiveness of their expressed serotype, arranged by the serotypes with which they

are associated. Only serotypes associated with multiple strains are displayed.

(PNG)

S1 Table. Study populations used for the analysis of serotype invasiveness in children and

adults.

(DOCX)

S2 Table. Model fit comparison with leave-one-out cross-validation (LOO-CV) using the

serotype data from child carriage and disease. These values were generated using the logarithm

of the likelihoods calculated within the models. Models are ranked by their expected log pointwise

predictive density (ELPD), calculated from the individual pointwise log predictive densities across

all observed data points. The ELPD difference column shows the difference between the ELPD of

a model and that of the most likely model (this value is zero for the first row, corresponding to the

most likely model given the data). The ELPD difference standard error is calculated from the dis-

tribution of individual pointwise log predictive densities from the same comparison.

(DOCX)

S3 Table. Model fit comparison with LOO-CV using the serotype data from child carriage

and disease using a subset of likelihood values. These values were generated using the loga-

rithm of the likelihoods calculated for the observations of isolates from disease only, as these

were more constrained than the modelling of isolate counts from carriage. The table is dis-

played as described for Table S2.

(DOCX)

S4 Table. Comparison of model fits to simulated data using bridge sampling. Each row cor-

responds to data simulated from the specified model. All eight models were fitted to each set of

simulated data. The table shows the models adjudged to be the first and second best-fitting to

each dataset, using bridge sampling. The final column shows the logarithm of the Bayes factor

by which the best-fitting model was favoured over the second best-fitting model.

(DOCX)
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S5 Table. Comparison of model fits to child carriage and disease serotype data using Bayes

factors calculated with bridge sampling. Models are ranked by their logarithmic marginal

likelihoods. The logarithmic Bayes factors were calculated for each model relative to

that which was found to be the most likely given the data; hence the value is zero for the first

row.

(DOCX)

S6 Table. Comparison of model fits to child carriage and adult disease serotype data using

Bayes factors calculated with bridge sampling. The table is displayed as described for

Table S5.

(DOCX)

S7 Table. Study populations used for the analysis of strain and serotype invasiveness. The

disease isolates from Portugal came from a mixture of infants and adults, but are tabulated

based on them primarily arising from the latter age category.

(DOCX)

S8 Table. Model fit comparison with LOO-CV using the child strain and serotype data on

carriage and disease. These values were generated using the logarithm of the likelihoods cal-

culated for the observations of isolates from carriage and disease. The table is displayed as

described for Table S2.

(DOCX)

S9 Table. Model fit comparison with LOO-CV using the child strain and serotype data on

carriage and disease using a subset of likelihood values. These values were generated using

the logarithm of the likelihoods calculated for the observations of isolates from disease only.

The table is displayed as described for Table S2.

(DOCX)

S10 Table. Comparison of model fits to strain and serotype data from child carriage and

disease using Bayes factors calculated with bridge sampling. The table is displayed as

described for Table S5.

(DOCX)

S11 Table. Comparison of model fits to strain and serotype data from child carriage and

disease with modified carriage sample sizes using Bayes factors calculated with bridge

sampling. In this analysis, the carriage sample size for three studies (Finland pre-PCV, Oxford

pre-PCV and Stockholm pre-PCV) was increased 100-fold, to test the sensitivity of the model

comparisons to the uncertainty in this parameter (Text S2). The table is displayed as described

for Table S5.

(DOCX)

S12 Table. Comparison of previously-identified within-serotype differences in strain inva-

siveness with the results of this analysis. The exclusion of strain and serotype combinations

represented by fewer than ten isolates, summed across carriage and disease, meant that some

within-serotype differences between strains were not tested in this analysis.

(DOCX)

S1 Dataset. Invasiveness estimates for serotypes in children. The median estimates, and

lower and upper bounds of the 95% credibility interval, are listed for each serotype.

(XLSX)
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S2 Dataset. Invasiveness estimates for serotypes in adults. The median estimates, and lower

and upper bounds of the 95% credibility interval, are listed for each serotype.

(XLSX)

S3 Dataset. Invasiveness estimates for serotypes and strains, calculated from genotyped

isolates from child disease and carriage. Each row corresponds to a serotype-strain combina-

tion. Both the invasiveness associated with the serotype, and the invasiveness coefficient asso-

ciated with the strain, are listed, along with the corresponding lower and upper bounds of

their 95% credibility intervals.

(XLSX)
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44. Hathaway LJ, Grandgirard D, Valente LG, Täuber MG, Leib SL. Streptococcus pneumoniae capsule

determines disease severity in experimental pneumococcal meningitis. Open Biol. 2016; 6: 150269.

https://doi.org/10.1098/rsob.150269 PMID: 27009189

45. Hu FZ, Eutsey R, Ahmed A, Frazao N, Powell E, Hiller NL, et al. In vivo capsular switch in Streptococ-

cus pneumoniae—Analysis by whole genome sequencing. PLoS One. 2012; 7: e47983–e47983.

https://doi.org/10.1371/journal.pone.0047983 PMID: 23144841

46. Mizrachi Nebenzahl Y, Porat N, Lifshitz S, Novick S, Levi A, Ling E, et al. Virulence of Streptococcus

pneumoniae may be determined independently of capsular polysaccharide. FEMS Microbiol Lett.

2004; 233: 147–152. https://doi.org/10.1016/j.femsle.2004.02.003 PMID: 15043881

47. Obert C, Sublett J, Kaushal D, Hinojosa E, Barton T, Tuomanen EI, et al. Identification of a candidate

Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococ-

cal disease. Infect Immun. 2006; 74: 4766–4777. https://doi.org/10.1128/IAI.00316-06 PMID:

16861665

48. Blomberg C, Dagerhamn J, Dahlberg S, Browall S, Fernebro J, Albiger B, et al. Pattern of Accessory

Regions and Invasive Disease Potential in Streptococcus pneumoniae. J Infect Dis. 2009; 199: 1032–

1042. https://doi.org/10.1086/597205 PMID: 19203261

49. Lees JA, Ferwerda B, Kremer PHC, Wheeler NE, Serón MV, Croucher NJ, et al. Joint sequencing of

human and pathogen genomes reveals the genetics of pneumococcal meningitis. Nat Commun. 2019;

10: 2176. https://doi.org/10.1038/s41467-019-09976-3 PMID: 31092817

50. Cremers AJ, Mobegi F, van der Gaast–de Jongh C, van Weert M, van Opzeeland F, Vehkala M, et al.

The contribution of genetic variation of Streptococcus pneumoniae to the clinical manifestation of inva-

sive pneumococcal disease. Clin Infect Dis. 2019; 68: 61–69. https://doi.org/10.1093/cid/ciy417 PMID:

29788414

51. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli S V, et al. Structure and dynamics of

the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 2010; 11:

R107–R107. https://doi.org/10.1186/gb-2010-11-10-r107 PMID: 21034474

52. Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of

bacterial genome content through distinct mechanisms over different timescales. Nat Commun. 2014;

5: 5471. https://doi.org/10.1038/ncomms6471 PMID: 25407023

53. Croucher NJ, Kagedan L, Thompson CM, Parkhill J, Bentley SD, Finkelstein JA, et al. Selective and

Genetic Constraints on Pneumococcal Serotype Switching. PLoS Genet. 2015; 11: e1005095. https://

doi.org/10.1371/journal.pgen.1005095 PMID: 25826208
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