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Adsorbate chemical environment-based
machine learning framework for
heterogeneous catalysis

Pushkar G. Ghanekar1,3, Siddharth Deshpande 1,2,3 & Jeffrey Greeley 1

Heterogeneous catalytic reactions are influenced by a subtle interplay of
atomic-scale factors, ranging from the catalysts’ local morphology to the
presence of high adsorbate coverages. Describing such phenomena via com-
putational models requires generation and analysis of a large space of atomic
configurations. To address this challenge, we present Adsorbate Chemical
Environment-based Graph Convolution Neural Network (ACE-GCN), a
screening workflow that accounts for atomistic configurations comprising
diverse adsorbates, binding locations, coordination environments, and sub-
strate morphologies. Using this workflow, we develop catalyst surface models
for two illustrative systems: (i) NO adsorbed on a Pt3Sn(111) alloy surface, of
interest for nitrate electroreduction processes, where high adsorbate cov-
erages combined with low symmetry of the alloy substrate produce a large
configurational space, and (ii) OH* adsorbed on a stepped Pt(221) facet, of
relevance to the Oxygen Reduction Reaction, where configurational com-
plexity results from the presence of irregular crystal surfaces, high adsorbate
coverages, and directionally-dependent adsorbate-adsorbate interactions. In
both cases, the ACE-GCN model, trained on a fraction (~10%) of the total DFT-
relaxed configurations, successfully describes trends in the relative stabilities
of unrelaxed atomic configurations sampled from a large configurational
space. This approach is expected to accelerate development of rigorous
descriptions of catalyst surfaces under in-situ conditions.

Theoretical computational models have become indispensable in
elucidating the intricate molecular-level details of heterogeneous
catalysts. High-throughput material screening strategies, combined
with descriptor-based correlations such as scaling and Brønsted–
Evan–Polanyi relationships1–4, have played a central role in identifying
promising candidates for important oxygen, nitrogen, and carbon-
based chemistries. These approaches have been augmented by the
recent emergence of improved computational modeling algorithms,
some based on machine learning, which have made screening of
diverse materials classes, including oxides, perovskites, zeolites, and

metal-organic frameworks (MOFs), possible through the facile gen-
eration of diverse materials-specific structural motifs5–10. Accelerated
predictions of binding energies of reaction intermediates have further
contributed to the descriptor-based catalyst screening paradigm6,7,11–15.
These computational strategies, which iteratively improve through
experience, have enabled the (re)discovery of exciting catalytic
materials and chemical insights. In spite of these advances, however, it
remains challenging to predict the exact nature of heterogeneous
catalyst active sites under reaction conditions, as the catalyst proper-
ties are highly sensitive to the atomic-scale complexities arising from
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adsorbate-adsorbate interactions, the local morphology of the cata-
lysts, and environmentally induced variations in the catalyst’s surface
composition16–22. To successfully overcome these difficulties, efficient
generation and analysis of atomistic models is critical and requires
development of methods that can efficiently sample the large config-
urational spaceof surfaceatomic configurations resulting fromdiverse
catalyst compositions and surface structures23,24.

Motivated by the above challenges, a variety of studies have
developed machine learning-based surrogate models to predict the
adsorption energies of model adsorbates on low-index surface facets
of metal and oxide catalysts. However, although these studies have
contributed important insights, the proposed workflows are generally
customized for the examples being studied or for user-curated data-
sets comprised of a particular binding site or a particular unit cell
geometry. To permit the extension of machine learning-based
approaches to catalytic systems where one, or more, of the complex
phenomena described above are relevant, we propose a generalized
screening workflow that can describe diverse chemical environments,
independent of the shape and size of the unit cell, the nature and
number of binding sites, and the identity of the adsorbates. Such a
flexible framework, which is described in more detail below, has not
yet, to the best of our knowledge, been proposed for studying
adsorbate interactions with a catalyst surface6,13,15,25–31.

The proposed approach involves systematic enumeration of
atomic configurations using graph-based representations23. The rele-
vant chemical and geometric properties of the generated motifs are
then learned and mapped to the target property of choice using a
machine learning model based on a graph neural network
architecture32,33, which is termed the Adsorbate Chemical
Environment-based Graph Convolution Neural Network (ACE-GCN).
One of the key distinguishing factors of the ACE-GCN algorithm is the
utilization of subgraphs, which are flexible and powerful representa-
tions for probing adsorption energetics of high coverages of adsor-
bates in structurally diverse heterogeneous catalytic systems. Among
other benefits, the use of subgraphs leads to a compact representation
of surface environments, leading to enhanced efficiency that may
elude full graph representations. ACE-GCN serves as a surrogatemodel
for expensive electronic-structure optimization routines and effi-
ciently provides estimates for the target properties of catalyst sur-
faces, thereby facilitating high throughput evaluation of a large space
of complex surface site models.

This ability is demonstrated in the context of two catalytic sys-
tems that are relevant to practical electrocatalytic applications and
that represent the typical complexities encountered when developing
computationalmodels of heterogeneous catalysts. The first case treats
high coverage configurations of the adsorbate NO* on a Pt3Sn(111)
terrace surface, wherein a vast surface configurational space resulting
from both the reduction in the catalyst surface symmetry due to
alloying34–37 and the strong binding nature of NO* yields rich catalytic
behavior. This chemistry is of interest in electrocatalytic water treat-
ment strategies, and similar complexities arise in chemistries such as
Fischer-Tropsch synthesis and water-gas shift17,38. With our proposed
workflow, all high coverage NO* configurations (~3400) are analyzed
by performing a small fraction of DFT calculations (~350). In the sec-
ond case, the challenge of modeling irregular or defected crystal sur-
faces, together with strong, directionally dependent adsorbate-
adsorbate interactions, is addressed. High coverage configurations
of OH*, known to be stabilized through intermolecular hydrogen
bonds (H-bonding), are analyzed on the Pt(221) stepped and Pt(100)
square surfaces. These types of interactions can strongly impact the
energetics of electrocatalytic reactions such as hydrogen evolution,
oxygen reduction, and CO electro-oxidation39–42. An approach inspired
by transfer learning is employed, wherein explicit DFT calculations of
high coverage OH* configurations on Pt(100) terraces (~200) are
combined with selected calculations of OH* on Pt(221) (~400). Using

the ACE-GCN approach, and subsequently including amodest number
of additional high coverage geometries (~800) for incremental model
improvement, a comprehensive set of high coverage OH* configura-
tions on the Pt(221) surface (~11500) is explored to identify low energy
adsorbate structures. This generalized approach shows how multiple
datasetsmay be used to incorporate information from diverse catalyst
morphologies to efficiently describe complex, low symmetry surfaces
with large configurational spaces in the ACE-GCN framework43–45, and
weexpect that these techniques could, ultimately, be extended to treat
additional complexities, including the presence of multidentate
adsorbates and non-metallic frameworks such as zeolites and ionic
solids23. We close by briefly illustrating the utility of these approaches
for determining realistic, in-situ catalyst structures by analyzing the
state of the Pt(221) surface under electrochemical conditions via an ab
initio Pourbaix analysis.

Results and discussion
Prediction of catalyst structures under realistic reaction conditions
requires addressing two primary sources of complexity: (i) the struc-
tural intricacies of the catalyst, stemming from variations in compo-
sitional and morphological properties, and (ii) adsorbate structures,
which may involve multiple adsorbed species and directionally
dependent adsorbate-adsorbate interactions such as hydrogen bond-
ing. These chemical complexities yield a large phase space of possible
atomic configurations, motivating the development of a systematic
computational framework to screen configurations with less expense
than is required by exhaustive first principles analysis.

Workflow and ACE-GCN framework
Figure 1(a) summarizes the proposed screening framework. The cyclic
workflow is divided into four parts: (i) systematic enumeration of
unique atomic configurations, (ii) (re)training of the surrogate model
with data of incremental complexity, (iii) accelerated screening using
the surrogate model to identify the most relevant configurations
amongst possible geometries, and (iv) electronic-structure relaxation
of selected structures, which can be used for in-depth mechanistic
analysis or to improve the surrogate model.

First, adsorbate configurations are generated by enumerating
adsorbate binding locations on the catalyst surface using the Surf-
Graph algorithm23. This algorithm utilizes graph-based representa-
tions to identify and create unique surface adsorbate configurations,
systematically accelerating the task of generating complex catalytic
model motifs23,24. Next, ACE-GCN is utilized as a surrogate model for
screening the generated motifs. The algorithm captures the geo-
metric and chemical properties of a given surface adsorbate’s local
environment and maps them to a target property of choice. In this
work, ACE-GCN is initially trained on a small subset of relaxed
adsorbate configurations, and then utilized as a surrogate model to
systematically rank the energies of a much larger number of unre-
laxed adsorbate configurations. The approach thus provides a fra-
mework to efficiently identify a subset of highly promising candidate
structures, as generated by SurfGraph, for subsequent electronic-
structure relaxation, therefore bypassing the computationally
expensive step of DFT analysis of all possible atomistic configura-
tions. After electronic structure optimization of the most promising
structures, the selected candidate configurations are used to further
improve the prediction capabilities of the ACE-GCN model by
including them in an expanded training pool. Ultimately, the result-
ing surrogate model can be applied in various ways, including in-
depth analysis of reaction mechanisms, evaluation of adsorbate
partition functions and associated configurational entropy effects, or
even training of user-defined Hamiltonians, such as cluster expan-
sions, for specific areas of application29,46,47. Below, additional
descriptions of the ACE-GCN framework, as well as two examples of
its application, are provided.
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Adsorbate chemical environment-based graph neural networks
The ACE-GCN framework is based on a graph neural network (GNN)
architecture32,48. Graph-based learning, wherein small molecules or
crystals are presented as undirected graphs with atoms described as
nodes and edges representing the connections between the atoms, has
been used to accurately account for the underlying structural and
chemical properties of a diverse class of materials, including small
molecules48, periodic materials32,49, metal-organic frameworks8, and
selected surfaces6. However, as discussed above, a successful imple-
mentation of such graph-based representations for complex surface
models, incorporating a combination of multiple adsorbates,
high coverage ensembles, and complex surface geometries (steps,
kinks, and other defects), remains highly challenging. The ACE-GCN
model constitutes a simple strategy for treating these sources of
complexity.

The schematic in Fig. 1b shows the steps involved in predicting a
target property using ACE-GCN. Each adsorbate surface configuration
is initially split into subgraphs (Fig. 1b(1)), which are in turn undirected
‘ego-graphs’ centered around a particular adsorbate generated using
the SurfGraph algorithm. These subgraphs explicitly account for the
local chemical and structural environment of the adsorbate and can

accurately represent the complexities arising from the presence of
local coadsorbates, defect sites, and compositional variations. They
provide theflexibility tomodel chemical environments independent of
the symmetry, shape, and size of the unit cell, making them useful
representations for understanding the influence of local structural
features and adsorbate-adsorbate interactions on the binding energy
of a given adsorbate. In addition, we note that, formetal systems, it has
generally been shown that local arrangement of atoms around the
binding site strongly influences thebinding energetics. Subgraphs, and
the associated connectivity in the graphs, are capable of naturally and
implicitly accounting for this effect, while other featurization schemes
must explicitly encode this information in the graph structure6,7,30,50,51.

After delineation of the subgraphs, every node and edge attribute
is expanded as a vector representation of the user-defined chemical
and geometric features (Fig. 1b(2)). To systematically capture the
geometric and chemical environment features surrounding every
node, the node feature vector for each node in a subgraph is iteratively
updated based on the neighboring environment through multiple
rounds of graph convolution (message-passing) steps (Fig. 1b(3)).
Next, hierarchical pooling-like operations are performed to condense
multiple arbitrary-sized subgraphs into a fixed-length vector

Fig. 1 | Catalyst screening workflow and overview of the ACE-GCN algorithm.
a Screening workflow for identifying stable surface adsorbate configurations. The
workflow demonstrates an incremental training approach to predict thermo-
dynamically stable catalytic configurations. The cyclic workflow includes the fol-
lowing steps: (1) Systematic enumeration: all possible and unique high coverage
surface adsorbate representations are generatedusing theSurfGraph algorithm, (2)
Model Training: the ACE-GCNmodel is (re)trained on selected structures utilizing
the relevant surface representations identified in the previous steps, (3) Acceler-
ated screening: the unrelaxed surface configurations generated in step 1 are ranked
using the ACE-GCNmodel, which is pre-trainedon a smaller subset of relevant DFT-
relaxed case, and (4) Electronic structure optimization: selected unrelaxed con-
figurations ranked by ACE-GCN are optimized using an electronic structure opti-
mization code of choice and then utilized either for subsequent analysis or to re-
train and improve the ACE-GCN model. b ACE-GCN algorithm to encode and train
high coverage adsorbate configurations. (1) Generate subgraphs: each

configuration is split into multiple subgraphs as identified by the SurfGraph algo-
rithm. A distinct ego-graph is generated for each adsorbate to encode local geo-
metric and chemical properties around the adsorbate in a subgraph representation,
(2) Subgraph featurization: each atom and its corresponding bond attribute in the
subgraph is expressed as a vector representationaccording to the chemical identity
(elemental properties) and spatial bond distance, termed as node and edge fea-
tures, respectively, (3) Subgraphconvolutions: everynode vector in the subgraph is
iteratively updated through multiple rounds of graph convolution operations,
which account for the atom’s geometric and chemical neighborhood using node
and edge vectors of the neighboring atoms, (4) Fingerprints: a hierarchical pooling
operation condenses all subgraphs for every adsorbate into one fingerprint vector,
(5) NN layer: the fingerprint vector is passed to a feed-forward neural network (NN)
which maps it to the target property of choice, such as the average adsorption
energy.
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fingerprint (Fig. 1b(4)). This strategy allows ACE-GCN to successfully
operate on cases containing arbitrary numbers of adsorbates and
associated neighbors. Finally, the fingerprint vector is used as an input
to a fully connected neural network to predict the property of interest,
such as the average adsorption energy (Fig. 1b(5)). Additional infor-
mation regarding the attributes considered for chemical and geo-
metric encoding, the graph convolution equation, supplemental
indexing, and hierarchical pooling operations is provided in the
Methods section.

Modeling complex heterogeneous catalytic systems using the
ACE-GCN scheme
We consider two representative heterogenous catalytic reactions to
illustrate the applicationof ACE-CGN. First, we analyze the stability of
high coverage configurations of NO* (‘*’ represents an adsorbed
moiety) adsorbed on a Pt3Sn(111) surface, and second, we determine
the most energetically favorable high coverage configurations of
OH* adsorbed on Pt(221) and Pt(100) surfaces. Below, we briefly
describe the features of the ACE-CGN algorithm that are highlighted
in each example, and in subsequent sections, we provide details of
the results.

Thefirst example demonstrates how the concepts of crystal graph
generation and neural network analysis can accelerate the study of the
large configurational spaces arising from the presence of high cov-
erages of adsorbates (in this case, NO*) on multi-elemental alloy sur-
faces. Both surface and bulk alloying introduce a plethora of surface
adsorption sites, thereby decreasing the symmetry of the surface and
increasing the number of distinct adsorption configurations. As shown
in Fig. 2a, for even a single NO* adsorbate, twice as many distinct
adsorption configurations exist on Pt3Sn(111) as on a pure Pt(111) sur-
face, and this configurational space increases exponentially as the
coverage of surface adsorbates increases (Fig. 2b, left). Considering
between 1 and 6 NO* molecules, corresponding to surface coverages
between 1/12 and 1/2ML (monolayers), and neglecting sites that
incorporate ‘Sn’ atoms, there are approximately 3400 unique adsor-
bate configurations. A recent publication explored this NO/Pt3Sn(111)
phase space using an evolutionary algorithm-based scheme, and the

present work leverages this prior experience to test and validate the
ACE-GCN workflow17,23.

The second example demonstrates how high coverage config-
urations of adsorbates may be enumerated on surfaces with defects,
such as steps and non-hexagonal geometries. This case, which focuses
on OH*, explicitly considers the effect of adsorbate directionality,
stemming from intermolecular hydrogen bonding, on the configura-
tional space. Figure 2a(iii) shows a top view of the Pt(221) step surface,
which has a three-atom wide terrace resembling the Pt(111) surface.
The number of possible OH* configurations on Pt(221) is significantly
larger than that on terracemodels suchasPt(100) (Fig. 2a(ii)) or Pt(111),
since each row of Pt atoms in Pt(221) has a unique coordination
environment, necessitating separate consideration of adsorption sites
on each row of Pt atoms parallel to the step edge. Additionally, for
given OH* positions on the surface, several hydrogen bonding net-
works are possible, and since each may have a distinct energy52, it is
important to explicitly enumerate all such networks (Fig. 2a(iv)). For
this purpose, we use directed graphs as an efficient means of incor-
porating adsorbate directionality and sampling unique H—bond
orientations for a given set of OH* adsorbates. Initially, all possibleO-O
pairs that can form hydrogen bonds are determined, following which
all unique hydrogen bonded networks amongst the different pairs are
estimated (see Methods section for additional information). Every
hydrogen bond, for the adsorbate-centered subgraphs, is explicitly
encoded as an additional edge attribute when generating the undir-
ected subgraph for the ACE-GCN. An illustrative example is presented
in Fig. 2a(iv), where two possible H-bonding configurations for 4-OH*
on Pt(221) are shown. Figure 2b (right), in turn, shows the histogram of
the number of configurations as a function of OH* coverage, which
were generated by considering both top and bridge sites for config-
urations with up to three OH* moieties per unit cell (coverage of 1/
4ML), while subsequently, for the cases of 4, 5, and 6 OH* per unit cell
(1/3, 5/12 and 1/2ML, respectively), only top sites are added to the top/
bridge configurations of the 1/2/3 OH* structures. The total config-
urations number approximately 12000, while 1834, 3768, and 5855
configurations are found for the 4, 5, and 6 OH* cases (1/3, 5/12 and 1/
2ML coverages), respectively. As described further below,weuse ACE-

(i) Pt3Sn (111) (iii) Pt (221)(ii) Pt (100)

Atom Legend: Site Legend:Pt Sn Pt-StepO H Top Bridge Hollow

(iv) H-bond

8 89 357

1834

3768

5855

1-OH 2-OH 3-OH 4-OH 5-OH 6-OH

5 29
131

644

1313 1261

1-NO 2-NO 3-NO 4-NO 5-NO 6-NO

NO/Pt3Sn (111) OH/Pt (221)

(a)

(b)

Fig. 2 | Catalyst configurations analyzed with ACE-CGN. a Structural motifs
considered in the catalyst models: (i) alloying (Pt3Sn(111)), (ii) diversity of binding
sites on Pt(100) and (iii) Pt(221) (terrace in gray, step in blue) surfaces, and (iv)
directionally dependent intermolecular interactions between adsorbates, such as

OH*. Green arrows show the direction ofH-bonding for each hydroxyl group.b The
total number of unique surface configurations, as a functionof adsorbate coverage,
for Pt3Sn(111) and Pt(221). All configurations are generated using the SurfGraph
algorithm. Source data are provided as a Source Data file.
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GCN to efficiently probe these complex configurational spaces, andwe
additionally illustrate how the approach can be used to combine
insights from diverse datasets, in a strategy reminiscent of transfer
learning43–45, by includingOH* adsorption on thegeometrically distinct
Pt(100) surface, to yield improved predictions.

Estimating the most relevant high coverage configurations of
NO* on a Pt3Sn(111) alloy catalyst
As shown in Fig. 2b(i), the total number of unique initial configurations
for 1–6 NO* molecules adsorbed on a

ffiffiffiffiffi
12

p
×

ffiffiffiffiffi
12

p
Pt3Sn(111) unit cell

(coverage range of 1/12–1/2ML) is on the order of ~3400, with roughly
2500 configurations for the 5 and 6 NO* cases (5/12 and 1/2ML cov-
erages) alone. The goal of the proposed screening strategy is to
develop a surrogate model that describes the key interactions gov-
erning the stability of low coverage NO* configurations (1/2/3/4 NO*
per unit cell) and to use the resulting insights to efficiently screen the
vast number of higher coverage configurations (5/6 NO* per unit cell)
with minimal additional computational effort. First, an ACE-GCN
model is trained on the average NO* binding energies of all the low
coverage (1, 2, and 3 NO*, or 1/12 to 1/4ML), DFT-relaxed structures
(details of the 1–3 NO* model fit are provided in Supplementary
Information S4), and next, the model is used to predict binding ener-
getics for the 4 NO* (1/3ML) case. Based on these ACE-GCN predic-
tions, 100 energetically stable and 100 unstable candidates (200
in total) of the 644 possible 4 NO* configurations are then selected.
These configurations are relaxed using DFT and added to the incre-
mental model training. Figure 3a, b shows the parity plots for the
training and validation sets for the new 1/2/3/4NO* dataset. Themodel
fits the target property, the average NO* binding energy, with a mean
absolute error of 0.02 eV for training and validation sets and a mean

absolute error of 0.02 eV on the test set comprised of 4 NO* data
points not used in the training (Fig. S8), demonstrating that the ACE-
GCN architecture can distinguish amongst different coverages
through representations consisting of subgraph-based graph con-
volutions and hierarchical pooling. More information on the perfor-
mance is shown in Fig. S8 of the Supplementary Information. Next, the
modified ACE-GCN model, trained on the exhaustive 1/2/3 NO*
ensemble and some 4 NO* data points, is used to rank the unrelaxed
5NO* and 6NO* configurations (5/12 and 1/2ML coverages), generated
through SurfGraph, as shown in Fig. 3c. This dataset is comprised of
1314 and 1261 configurations for 5 and6NO*, respectively. In the figure,
the x-axis represents the ACE-GCN predicted average binding energy
of the initial, unrelaxed 5/6 NO* configurations, and the y-axis gives the
corresponding DFT-relaxed energy. For comparison, we also analyze
the performance of ACE-GCN on predicting the average binding
energies of the relaxed 5/6 NO* configurations when only the low
coverage 1, 2, and 3NO* cases are used for training (see Supplementary
Information Figs. S9, S10). We find that at least some 4 NO* points are
important for predicting the energies with reasonable accuracy, while
the proportion of 4 NO* points included in the training also has a
modest impact on the final model performance. We note that, for
clarity, only those NO* configurations whose binding locations did not
change after DFT relaxation are plotted; additional discussion is pro-
vided in Supplementary Information S4.

Importantly, the top 10% lowest energy unrelaxed configurations
identified by ACE-GCN include the most stable DFT-relaxed atomistic
configurations for both the 5 and 6NO* cases, and no additional stable
configurations were found after DFT relaxation that were not already
identifiedby SurfGraph (see Supplementary Information for additional
details). These results, taken together, strongly suggest that the

Fig. 3 | Screening high coverage NO* configurations on Pt3Sn(111). Configura-
tional analysis of NO* adsorption on Pt3Sn(111), where ACE-GCN is used to predict
energetics of the unrelaxed configurations generated using SurfGraph. (a) and (b)
correspond to training and validation parity plots for an ACE-GCNmodel with NO*
configurations consisting of 1–4 NO* molecules per unit cell. Test set performance
and training related to configurations with 4 NO* molecules per unit cell are dis-
cussed in the Supplementary Information, Fig. S8. (c) gives predictions of the ACE-
GCN model, trained on configurations of 1–4 NO* molecules per unit cell, for sta-
bility of unrelaxed 5 and 6 NO* configurations generated with SurfGraph. The

predicted average BE of the unrelaxed configurations is plotted on the x-axis, while
the final energy of the same configurations after DFT relaxation is plotted on the
y-axis. Only configurations where the binding location of the NO* did not change
after DFT relaxation are included. The ACE-GCN algorithm successfully predicts
trends in adsorption energies based solely on the unrelaxed configurations gen-
erated by SurfGraph. A representative area of chemical space relevant for unstable
and stable configurations is depicted on the scatter plot (c). Selected relaxed low-
and high-energy configurations are shown in insets (i) and (ii), respectively. Source
data are provided as a Source Data file.
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combination of SurfGraph and ACE-GCN is capable of efficiently
identifying all stable high coverage configurations for NO* adsorption.

The ACE-GCN model also captures important information
regarding the governing interactions dictating the adsorption geo-
metries of NO* on Pt3Sn(111). From our recent analysis23, it is known
that higher coverages of NO* are stable in mixed top and bridge con-
figurations on this surface, while combinations of bridge and threefold
sites are unstable. The ACE-GCN model captures this insight, without
any explicit user input, using only the low coverage (1/2/3/4 NO*, 1/12
to 1/3ML) data, and, as described above, efficiently identifies the
energetically most stable 5 NO* and 6 NO* (5/12 and 1/2ML) config-
urations. The low energy configurations, identified as the most nega-
tive adsorption energy configurations in the vicinity of region (i) in
Fig. 3c, consist of NO occupying the top and bridge sites on Pt3Sn. In
contrast, higher energy configurations, identified as the most positive
adsorption energy configurations in the vicinity of region (ii) in Fig. 3c,
consist of NO* occupying amixture of bridge and hollow sites, and are
also accurately identified by the ACE-GCN surrogate model.

Finally, it is interesting to note that the degree of restructuring of
the adsorbate site after DFT relaxation is directly correlated with the
stability of a given configurationaspredicted usingACE-GCN. The sites
predicted to be the most unstable by ACE-GCN underwent the largest
change in adsorbate positions after relaxation, and vice versa, sug-
gesting that ACE-GCN predictions of stable structures are likely to
remain stable, and largely unreconstructed, after DFT relaxation.
Additional discussions of these reconstructed configurations, as well
as details of the effect of different training sets on the model’s pre-
dictive capabilities, are included in Supplementary Information S4.

These results strongly suggest that, through selective incorpora-
tion of a small subset of data points of increasingly higher coverages,
the ACE-GCNmodel, trained primarily on low coverage configurations
(1–4 NO*, 1/12–1/3ML), successfully identifies stable high coverage
configurations (5/12–1/2ML) based solely on the unrelaxed geometries
generated from SurfGraph. In comparison to the evolutionary algo-
rithm (EA) scheme used in our previous work, the ACE-GCN model (i)
required fewerDFTcalculations (350 versus over 500data points) than
the EA23, and (ii) independently identifies key chemical and geometric
information affecting the adsorption energetics. This is an important
advantage that becomes even more significant for larger chemical
spaces, where careful analysis of individual configurations and devel-
opment of chemical intuition becomes less practical.

Identifying stable high coverage configurations of interacting
hydroxyl adsorbates on defected Pt surfaces
This case study illustrates the application of our proposedworkflow to
adsorbates with directionally dependent hydrogen bonding on the
non-hexagonally close-packed single crystal surfaces, Pt(100) and
Pt(221). The former is chosen as the simplest possible non-hexagonal
surface, while the latter represents model step defects that have been
shown to exert a significant influence on electrochemical oxygen
reduction rates on polycrystalline Pt electrocatalysts40,53. In addition to
discussing a comprehensive training/testing/extrapolation strategy
for the Pt(100) and Pt(221) surfaces, similar to that discussed for the
NO/Pt3Sn(111) case study, we additionally explore the ability of the
ACE-GCN framework to synergistically combine insights from training
datasets from these two surface morphologies (the benefit of con-
sidering such a mixed training dataset is further discussed in the
Supplementary Information S5). Such strategies will ultimately be key
to understanding adsorption configurations on highly complex cata-
lysts, such as polycrystalline nanoparticles, which encompass a variety
of different catalyst morphologies54,55.

The overall workflow is summarized here and described in more
detail in subsequent paragraphs. First, a comprehensive training
dataset, consisting of configurations with between 1 and 5 OH* mole-
cules per 8 Pt atoms on the Pt(100) surface (coverages of between 1/8

and 5/8ML), is generated, while a second training set of between 1 and
3OH* adsorbed per 12 Pt atomsonPt(221) (coverages of 1/12 to 1/4ML)
is also created. Although the coverages considered on the stepped
surface are much lower than those analyzed on Pt(100), the total
number of training data points is very similar in each case. These
datasets, through ACE-GCN, are then combined to efficiently identify
lowenergy adsorption configurations ofOH*onPt(221) atmuchhigher
coverages (4–6 OH*/12 Pt, coverages of 1/3–1/2ML), where the total
number of configurations is exponentially larger (Fig. 2c) than the
number of configurations associated with similar coverages
on Pt(100).

TheOH* configurations are generated using amodified SurfGraph
code that accounts for directional hydrogen bonds among different
OH* species (see Fig. 2a for anexample). Asmentioned above, the ACE-
GCN model is initially trained on the dataset comprised of configura-
tions between 1–3 OH* adsorbates per unit cell on Pt(221) and 1–5 OH*
per unit cell on Pt(100). Next, ACE-GCN is used to rank the unrelaxed
4OH* (1/3ML coverage)/ Pt(221) configurations (1834 in total), from
which 400 configurations, representing a range of energy values and
adsorbate binding configurations, are chosen for full DFT relaxation.
Figure 4a (left hand side plot) shows a comparison of the ACE-GCN
predicted average binding energies of the unrelaxed 4 OH* config-
urations and the corresponding DFT-relaxed energies. There is a
robust correlation between these two quantities, demonstrating that
configurations predicted to be low (or high) in energy based on the
ACE-GCN predictions of initial unrelaxed geometries track well with
post-DFT relaxation results. Shown on the right of the scatter plot are
selected 4 OH* configurations (marked as ‘i’ and ‘ii’), after DFT
relaxation, belonging to the low/high energy 4OH* arrangements. The
most stable structures, identified as the most negative adsorption
energy configurations in the vicinity of region (i) in theplot, have the Pt
step edge (marked in dark blue) completely occupied, with any addi-
tional OH* moieties have clustered around the Pt edge to increase the
level of hydrogen bonding. In contrast, the high energy structures,
identified as themost positive adsorption energy configurations in the
vicinity of region (ii) in the plot, are comprised of separated OH*
species, most of which are not directly adsorbed on the Pt step edge,
andwith relatively few hydrogen bonds. These results indicate that the
ACE-GCNmodel, trained on the diverse data from Pt(100) and Pt(221),
accurately learns the underlying features that stabilize the 4 OH*
configurations on Pt steps.

Following the scheme laid out in Fig. 1a, higher coverage (5 OH*,
5/12ML coverage) configurations are generated by using SurfGraph to
systematically add an additional OH* moiety to the exhaustive set of
unrelaxed -OH* configurations. These configurations are then ranked
using a retrained ACE-GCN model incorporating the previously DFT-
relaxed 4 OH* configurations in the training set. A few of the identified
configurations resulted indissociatedOH* species after relaxation, and
these cases have not been included in the analysis or model retraining
(see Supplementary Information S5). Analogous to the 4 OH* case, a
total of 400 unrelaxed configurations, 200 each chosen from high and
low energy zones as identified by the ACE-GCN predictions, are
selected for DFT relaxation. Finally, a similar strategy is applied when
searching for 6 OH* configurations (1/2ML of coverage), where the
emphasis is again placed on high- and low-energy structures. 3769 and
5855 possible OH* configurations exist for the 5 and 6 OH* cases,
respectively, of which only about 400 configurations each for 5 and 6
OH* cases areevaluatedusingDFT, and about 273 and213 cases remain
undissociated after DFT relaxation. The correlation between the sta-
bility of structures predicted via ACE-GCN and those after DFT opti-
mization is again quite reasonable (left side scatter plots in Fig. 4b, c).
The quasi-bimodal nature of the 5 and 6 OH* plots is simply the result
of our choice to sample high and low energy structures, as predicted
by ACE-GCN, for DFT optimization. Further, in line with the chemical
intuition developed with lower coverages, as shown in insets ‘i’ and ‘ii’
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on the right side of Fig. 4b, c, for both 5 and 6 OH* cases (5/12 and 1/
2ML coverages), the most stable configurations are comprised of
clustered OH* species on the Pt-step edge, whereas unstable cases
involve spatially separatedOH*with fewOH*moieties adsorbed on the
step edge. We note, however, that despite the reasonable energetic
and chemically intuitive predictions from the ACE-GCN analysis, there
can be non-trivial changes during relaxation of the unrelaxed struc-
tures, especially for the high coverage cases with 5 and 6 OH* adsor-
bates per unit cell (5/12 and 1/2ML). We attribute these relaxations to
the observation that multiple highly clustered OH* representations
may have similar average OH* interaction energies but may, never-
theless, undergo substantially different relaxation during DFT opti-
mization. In the future, we expect that classification algorithms, with
the ability to predict the initial configurations that could most likely
undergo restructuring or dissociation, could be developed to more
efficiently characterize the full configurational space.

The Pt(221) and Pt(100) analyses demonstrate the capability of
ACE-GCN to (i) learn important underlying interactions governing the
stability of adsorbates with directionally dependent interactions, such
as OH*, on irregular catalyst models by simulating only about 5–6% of
the total number of possible configurations, and (ii) combine data
having different catalytic morphologies, in a transfer learning-inspired
approach, to train surrogate models with high efficiency. Such an
analysis can aid in developing chemical intuition regarding the
underlying interactions that are crucial for stabilizing the adsorbates
and understanding the state of the system in realistic reaction envir-
onments. Although not attempted in the present study, we expect that
the method could be extended to leverage learning on the Pt(221)

surface to more efficiently predict OH* adsorption configurations on
Pt-based alloys, as well56.

Mechanistic implications of high OH* coverages for electro-
chemical reactions on Pt
Based on the identifiedOH* configurations on the irregular Pt surfaces,
a detailed thermodynamic analysis to investigate the state of the cat-
alyst surface under electrochemical reaction conditions, such as those
relevant to the oxygen reduction reaction (ORR), can now be under-
taken. Previous reports have demonstrated that (111) terraces on Pt
catalysts are among the most active facets for ORR, and recent inves-
tigations on irregular crystal facets of Pt, having variable step sizes
((221), (331) and (211)), suggest high ORR activity on these surfaces, as
well40,53,57. A mechanistic analysis incorporating the effects of catalyst
morphology andOH* coverages is, in turn, needed tounderstand these
experimentally observed trends. However, the large phase space of
possible atomic configurations, especially for the case of stepped
catalyst surfaces, makes the analysis highly non-trivial.

Utilizing the results generated in the previous section, an ab initio
surface Pourbaix diagram is generated (Fig. 5) to explain the state of
the Pt(221) surface under ORR-relevant conditions. For simulations
reported in Fig. 5, larger unit cells, along with higher energy cutoffs
and k-points, are utilized, with additional details reported in the
Methods section. The formation free energies of the identified high
coverage structures (4–6 OH* on Pt(221)) are plotted as a function of
the applied external potential vs. the Standard Hydrogen Electrode
(SHE). The formation free energy for each OH* coverage is presented
as an energy band, which is approximately 0.25 eV wide, starting from
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Fig. 4 | Screening high coverage OH* configurations on Pt(221). Subfigures (a),
(b), and (c) show scatter plots for average OH* binding energies of unrelaxed
configurations, as predicted by ACE-GCN (x-axis), with respect to DFT-relaxed
energies of the corresponding structures (y-axis). A representative area of chemical
space relevant for unstable and stable configurations is depicted on the scatter
plots (marked ‘i’ and ‘ii’). Numbers in the inset show the total number of DFT-
relaxed configurations compared to the total possible structures enumerated by
SurfGraph. The ACE-GCNmodel for each succeeding coverage (4/5/6 OH* per unit

cell, 1/3 to 1/2ML) is trained on configurations with lower coverages (see text for
details). On the right side of the scatter plots, representative stable and unstable
atomic configurations, from regions ‘i’ and ‘ii’ depicted in the scatter plots, are
shown. A few relaxed configurations showing OH* species dissociation after DFT
relaxation were not included in the plots or model retraining (analysis of dis-
sociated configurations is discussed in the Supplementary Information S5). Source
data are provided as a Source Data file.
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the energy of the most stable configuration identified using the
workflow shown in Fig. 1. The schematics on the right side of the
Pourbaix diagram show the most stable and selected metastable
(approximately 0.25 eV higher in energy) configurations. It is observed
that the relative shift in energetics between the most stable and the
corresponding metastable structures is on the order of 0.05 eV when
comparing the simulations performed on smaller cells, with fewer k-
points, and a lower plane-wave energy cutoff, with thoseperformedon
larger cells, higher k-point density, and higher planewave energy cut-
off. In addition, the free energy of the most stable 3 OH* configuration
on the Pt(221) facet, together with that of a single OH* moiety on
Pt(111), is plotted for reference. The 3 OH* ensemble on Pt(221), where
the OH* species occupy the Pt step edge, is identified as the most
stable OH* configuration. This result suggests that the Pt edge might
be completely poisoned under ORR-relevant conditions (red inset and
line in Fig. 5). Additional population of OH* on the surface of the cat-
alyst (4, 5, and 6 OH*) shows competition amongst different config-
urations, especially above applied potentials of 0.8 V vs. SHE. An
interesting feature of the identified high coverage configurations on
Pt(221) is the presence of the OH* adsorbed on the terrace sites that lie
adjacent to, and below, the Pt step edge. Such a binding configuration
is a result of the unique spatial arrangement of Pt(221) step sites (a
representative configuration is shown in Fig. 5, right side, top inset).
Discovering such a unique OH* binding arrangement, which, to the
best of our knowledge, has not been reported elsewhere, speaks to the
value that data-driven screening workflows such as ACE-GCN can add
in helping to identify interesting regions in the chemical phase space
that can then be further explored to better understand the complex
reaction systems.

It is interesting to observe that multiple possible H-bonding
arrangements can possess comparable energies. The most stable OH*
arrangements often exhibit hydrogen bonding between the OH* moi-
ety on the lower terrace and the OH* adsorbed on the Pt edge (Fig. 5,
inset for 4 OH* case), or they possess a combination of OH* adsorbed
on both bridge and top sites in chain-like structures near the step on
the upper terrace (Fig. 5, inset for 5 and 6 OH*).

It is important to note that, while the identified structural motifs
for high coverage adsorbed OH* may be relevant to practical ORR
catalysis, these configurations only consider stabilization due to

adsorbate-adsorbate and adsorbate-substrate interactions and do not
explicitly account for interactions between adsorbed hydroxyl groups
and ambient water solvent molecules, which can have energies on the
order of 0.5–0.6 eV per OH*52,58,59. To illustrate the effect of such cor-
rections, a black dashed line, representing the OH* adsorption energy
on Pt(111), is plotted in Fig. 5. At an applied potential of 0.8 V vs SHE,
the formation free energy for 1 OH* adsorbed on a top site of Pt(111) is
0.55 eV, excluding any solvent corrections, which is consistent with
previous reports. It is only the solvent stabilization that reduces the
energy of OH* to near zero on Pt(111) (at 0.8V vs. SHE) and hence
promotes its reactivity. Since the energy of 1-OH* on Pt(111), devoid of
any solvent correction, is comparable to the uncorrected energy of the
4/5/6 OH* ensembles on Pt(221), one might expect that some of these
ensembles on Pt(221) would be stabilized under ORR condition and
contribute to the ORR activity. Further, it is possible that the solvation
correction for the high coverage 4/5/6OH* cases (1/4 to 1/2MLof OH*)
on Pt(221) could be different compared to the correction for the low
coverage OH* ensembles on Pt(111). To fully capture the impact of
solvent-adsorbate interactions on ORR chemistry, further analysis,
rigorously incorporating explicit solvent molecules (H2O), along with
ab initio molecular dynamics analysis to understand the electrode-
electrolyte double layer structure, would be necessary (it might,
indeed, be possible to combine the ACE-GCN frameworkwithmachine
learning-based force fields to understand such dynamical effects)60–62.
The identified 4/5/6 OH* high coverage configurations provide a
strong foundation for undertaking such an analysis, and it is not dif-
ficult, in principle, to add water molecules as coadsorbates amongst
the OH* moieties. Nevertheless, given that OH-OH and OH-H2O inter-
actions are of comparable magnitude, many of the key qualitative
conclusions from the analysis, such as the favorable adsorption ofOH*
on the step edges and the preference for OH* on the lower terrace to
interact with the step-adsorbed OH* groups, are unlikely to be altered
by the presence of additional water molecules52.

In conclusion, we present a machine learning-based hierarchical
screening workflow to systematically estimate surface adsorption
structures for complex heterogeneous surface catalytic reactions. The
proposed workflow utilizes the graph theory-based SurfGraph algo-
rithm for systematic enumeration and generation of surface adsorbate
representations with variable coverages. The generated models are
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Fig. 5 | Ab initio Pourbaix diagram based on binding energies of various OH*
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for ORR, 0.8–0.9 V, competition between ensembles having 4, 5, and 6 OH*
adsorbates per unit cell on Pt(221) (1/4 to 1/2ML OH* coverage) is predicted and is
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terrace” in our discussion) has a favorable hydrogen bond with the OH* absorbed
on the edge. Such an arrangement of OH*moieties is possible due to the particular
geometry of the step and edge sites. This arrangement results in appreciable sta-
bilization compared to the scenario where no such hydrogen bonding exists
(shown in the 4 OH* inset, right side). Representative surface configurations for 5
and 6 OH* are also indicated on the insets to the right of the figure, with the most
stable configurations on the left of the insets. Source data are provided as a Source
Data file.
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screened using the Adsorbate Chemical Environment-based Graph
Convolution Neural Network (ACE-GCN), a graph neural network-
based framework, which utilizes the chemical and structural environ-
ment of a given adsorbate as the input and maps these features to the
target property of choice. Using this workflow, we demonstrate the
identification of relevant surface models for heterogeneous catalytic
systems comprised of strong binding adsorbates on low symmetry
alloyed surfaces and for directionally dependent adsorption on defect
surface structures. In both cases, our model successfully identifies
trends in the relative stability of different atomic configurations at a
fraction of the computational cost (~10%) of exhaustive DFT calcula-
tions, thereby providing a framework to identify relevant atomic
configurations for surface environments with large and complex
configurational spaces. In addition to reducing the overall computa-
tional cost, this automated approach reduces the possibility of sys-
tematic bias resulting from the use of chemical intuition alone to
identify structures with target properties. This approach can therefore
serve as a starting point for developing a detailed atomic description
of complex catalyst surfaces under in-situ conditions, and help identify
interesting regions of the chemical solution space to be investigated
with rigorous state-of-the-art methods, ultimately leading to funda-
mental insights into factors that govern heterogeneous catalysis in
structurally and chemically complex environments. In the future, such
an approach, combined with configuration sampling schemes
deploying uncertainty-driven predictions andworkflows inspired from
active-learning strategies, would aid in evenmore efficient selection of
relevant atomistic configurations63,64.

Methods
Dataset
The dataset used for model training and prediction is a collection of a
diverse set of calculations corresponding to 1) NO*, varying from 1–6
adsorbates (coverages of 1/12 to 1/2ML), on a Pt3Sn(111) surface, and 2)
OH* surface configurations on Pt(100) and Pt(221), also encompassing
1–6 adsorbates per unit cell (coverages of 1/12 to 1/2ML)—seebelow for
unit cell details). The graph enumeration code, SurfGraph23, is used to
identify the binding sites and to generate the high coverage config-
urations which are converted to a graph object through ACE-GCN for
property prediction. The target property of choice is the binding
energy of the adsorbates, normalized to the number of adsorbates
considered in the facet:

BENO =
En-NO=Slab � ESlab � nENO gð Þ

nNO
ð1Þ

BEOH =
En-OH=Slab +

n
2 EH2 gð Þ � ESlab � nEH2O gð Þ

nOH
ð2Þ

DFT methods
The simulations for NO* on Pt3Sn(111) were adopted from the previous
publications23. For the case of OH* adsorption on Pt(221), the simula-
tions are performed within the framework of periodic density func-
tional theory with the Vienna Ab Initio Simulation Package (VASP)65.
The energies and geometries of the most stable configurations of OH*
on the Pt(221) surface are obtained through minimization of the total
energy with respect to geometry by spin-polarized generalized gra-
dient approximation calculations (GGA-PBE)66. The projected aug-
mented wave (PAW) method is used to account for the effect of core
electrons on the valence electron density67. A PBE-calculated lattice
constant of 3.97 Å for pure Pt is employed. The Pt(221) surface is
represented by a 3 × 3 unit cell with 4 layers (total of 33 atoms per unit
cell). A vacuum equivalent to 13 Å is applied between any two suc-
cessive slabs, and surface relaxation is allowed in the top three layers. A
planewave energy cutoff of 300 eV is used for the high-throughput

calculations. Aminimumk-point grid sampling of 3 × 3 × 1 is employed.
For selected cases reported in the phase diagram in Fig. 5, a larger unit
cell containing 60 Pt atoms is utilized, and a planewave energy cutoff
of 400 eV, along with k-point grid sampling 4 × 4 × 1, is employed. It is
observed that between the two different kinds of models and simula-
tion parameters utilized, the trends in the adsorption energies of OH*
remains the same, with minimal (~0.1 eV) change in differential
adsorption energies between any two subsequent coverages, and a
change in the order of 0.05 eV between relative adsorption energies of
different configurations for a given coverage. The electronic occu-
pancies are determined according to a Methfessel− Paxton scheme
with an energy smearing of 0.2 eV. Dipole corrections are used in all
cases to decouple the electrostatic interactions between the periodi-
cally repeated slabs. Structures are fully relaxed until the Hellmann−
Feynman forces acting on the atoms are smaller than 0.05 eV/Å.
Atomic configrations are visualized using Atomic Simulation Environ-
ment (ASE) and Ovito68,69.

Adsorbate subgraph generation
Adsorbate subgraphs are generated using the SurfGraph algorithm23.
Initially, for a given unit cell, a full graph incorporating all the atoms in
the cell is generated. Adsorbate nodes are then identified, and a sub-
graph is generated with each identified adsorbate node as the center.
The subgraphs are generated such that they incorporate the informa-
tion of the surface atoms immediately adjacent to the adsorbate along
with other adsorbate atoms interacting with these surface atoms.

Hydrogen bond generation with directed graphs
All hydrogen atoms with a bond distance greater than 1.3 Å and less
than 2.1 Å to a given oxygen atom are classified as hydrogen bonds. To
construct combinations of possible pairs of hydrogen bonds between
a set of oxygen atoms, all such possible bonds are identified using the
rule explained in the previous sentence. Then, all possible directed
graphs are generated between the identified pairs, using the rule that
each OH adsorbate can only donate one hydrogen bond and accept
multiple hydrogen bonds. The directed graph combinations with the
maximum number of hydrogen bond pairs are then selected for
property prediction or to perform DFT simulations.

Model architecture and implementation
Graph neural networks (GNN), also known as message-passing neural
networks70, have been previously proposed for computer vision, nat-
ural language processing, generating molecular fingerprints, predict-
ing crystal bulk properties, and predicting binding energy on surface
slab models. The network developed in this work is the extension of
the graph convolution neural network (GCN) approach introduced by
Xie et al32. The GCN framework is coupled with a subgraph generation
routine to systematically encode complex high coverage surface
configurations. The subgraphs capture important features of the high
coverage geometries, and at the same time, the versatility of the neural
networks provides nonlinear mapping between the chemical finger-
prints and the target property. In this work, the subgraphs are selected
to encode interactions out to the second nearest neighbor for a given
adsorbate, including the interactions with the active site (1st neighbor)
and with the catalyst and adsorbate atoms surrounding the active site
(2nd nearest neighbor). These boundaries are chosen since only short-
range interactions are important for the adsorbates considered in
these cases, but we note that the representations are sufficiently flex-
ible to account for other long-range interactions, as needed. A few,
initial, DFT simulations may be required to calibrate the spatial extent
of adsorbate-adsorbate interactions and hence determine the size of
subgraphs needed for initial model training, but the number of such
calculations is generally very small compared to the computational
savings derived from the overall machine learning framework. With
these approaches, it is possible to strike a balance between end-to-end
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feature learning, provided by deep neural networks, and chemical
intuition found in ‘hand-engineered’ features.

Each crystal lattice entry is split into smaller network motifs
(subgraphs) as per the number of unique adsorbates identified by
SurfGraph23. Each subgraph is an adsorbate-centered undirectedgraph
(ego-graph) with nodes representing the atoms and edges represent-
ing the connection between the neighboring atoms in the lattice. The
chemical identity of each node in this subgraph is represented by a
feature vector generated based on its elemental identity using a
combination of chemical and geometric features. These attributes are
encoded as one-hot encoding. The edge connecting two nodes is
described by edge attributes based on the spatial pairwise atom dis-
tance. This feature can be expressed either as a Gaussian feature
expansion, as proposed in the original implementation32, or as one-hot
encoding, as implemented in the current version. The reason for using
the one-hot encoding expression of the spatial bond distance is to
modulate model’s sensitivity to bond fluctuations arising out of
structure optimization. A full list of chemical and geometric properties
used is provided in Supplementary Information S2. Next, the bond
distance and the one-hot encoding are used to create an adjacency
matrix for each subgraph. An indexing scheme is generated to account
for various neighbors of a given node; each node index is superseded
by the adsorbate index based on the number of unique adsorbates in
each crystal entry. Likewise, for every node atom and its correspond-
ing neighbors, the atom indices are superseded by supplemental
indexing linking the neighboring atoms to its parent node. This
indexing strategy facilitates the subsequent hierarchical pooling
operations, enabling the network to account for arbitrary-sized sub-
graphs. A schematic of this pooling operation strategy is provided in
Supplementary Information S2. Model training starts by embedding
node attributes in subgraph embeddings. The graph convolution lay-
ers iteratively update the node feature vectors by performing con-
volutions with surrounding nodes in the subgraphs using

Z tð Þ
i,jð Þk = v

tð Þ
j � u i,jð Þk ð3Þ

vðt + 1Þi = gact

XNðviÞ, EðviÞ

j,k

W ðtÞ
c Zt

ði,jÞk

0
@

1
A+W ðtÞ

s vðtÞi +bðtÞ

2
4

3
5 ð4Þ

gact xð Þ= ln ln 1 + ex
� � ð5Þ

VG =
1
NP

XNP

P

V ðPÞ
G ð6Þ

Equation (3) is the new fingerprint vector formed by concatena-
tion of corresponding neighbor and edge features for each node.
Equation (4) shows the graph convolution equation used for iterating
the node features in each message-passing round. This equation is
inspired from work for predicting small molecule and bulk crystal
properties32. Here,Wx and b are the shared weights and biases for the
graph convolution module, while gact (Eq. 5) is the softplus activation
function, a smooth approximation of the ReLU (rectified linear unit).
Equation (6) shows the read-out phase of the learning, wherein the
node embeddings for different subgraphs for every adsorbate are
combined into a single vector.

The hierarchical pooling is implemented using PyTorch- scatter
module’s scattermethod71. Through thismethod, elements in the input
matrix of known dimensions can be reduced (summed or normalized)
by explicitly specifying the indices which have been used for said
reduction. As a result, arbitrarily sized subgraphs are collapsed into a
single user-defined n-sized vector fingerprint equivalent to the atom
embeddings defined for each atom node at the start. Following the

convolution and mean pooling operations, the fingerprint vector is
supplied to fully connected layers to capture the mapping of config-
uration to the target property. The creation of graph objects for the
high coverage configurations is parallelized across multiple CPU cores
using DASK72.

Model training
The network performance is evaluated using three common metrics
based on the model’s residuals, the mean absolute error (MAE), the
root mean-squared error (RMSE), and the mean absolute percentage
error (MAPE). A (80/10/10) train-validation-test scheme is adopted for
choosing the best model for prediction. During the training phase, the
data is randomly split into a train-validation-test split where the test set
is kept aside for final evaluation. Data drift and split stochasticity were
analyzed by considering different random seeds in the data splitting,
but there was no discernable impact on the model performance. The
model weights are iteratively updated by minimizing the loss function
(MSE in this case) associated with predicting the target in the training
data, and the validation set is scored after each epoch (as per theMAE).
The Adam optimizer as implemented in PyTorch is used for the train-
ing. After model training for predefined epochs, the model with the
best validation score is selected for evaluation on the test set. In-house
implementation of a grid search method was used to find the best set
of hyperparameters for each ACE-GCN instance. The initial estimates
for the parameters were adopted from Xie et al.32. A complete list of
hyperparameters is provided in Supplementary Information S3. Model
training and validation were carried on local CPU cores and Tesla P100
GPU cores provided by Purdue’s Research Computing Facility.

Data availability
The optimized high coverage configurations in form of raw file and
process datasets for NO-Pt3Sn(111), OH-Pt(100) and OH-Pt(211) are
available at: Pushkar Ghanekar, Siddharth Deshpande, Jeffrey Greeley,
Adsorbate chemical environment-based machine learning framework
for heterogeneous catalysis, Materials Cloud Archive 2022.50 (2022),
https://doi.org/10.24435/materialscloud:td-hf.

Code availability
The ACE-GCN code as implemented using PyTorch 1.773 is available
from: https://gitlab.com/jgreeley-group/ace_gcnmade available under
MIT license.

Ghanekar, Pushkar, Deshpande, Siddharth, & Greeley, Jeffrey
(2022). Adsorbate chemical environment-based machine learning fra-
mework for heterogeneous catalysis. Zenodo. https://doi.org/10.5281/
zenodo.7023990
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