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Abstract
Significant differences in the aberrant methylation of genes exist among various histological

types of non-small cell lung cancer (NSCLC), which includes adenocarcinoma (AC) and

squamous cell carcinoma (SCC). Different chemotherapeutic regimens should be adminis-

tered to the two NSCLC subtypes due to their unique genetic and epigenetic profiles. The

purpose of this meta-analysis was to generate a list of differentially methylated genes

between AC and SCC. Our meta-analysis encompassed 151 studies on 108 genes among

12946 AC and 10243 SCC patients. Our results showed two hypomethylated genes

(CDKN2A andMGMT) and three hypermethylated genes (CDH13, RUNX3 and APC) in
ACs compared with SCCs. In addition, our results showed that the pooled specificity and

sensitivity values of CDH13 and APC were higher than those of CDKN2A,MGMT and

RUNX3. Our findings might provide an alternative method to distinguish between the two

NSCLC subtypes.

Introduction
Lung cancer remains the main contributor to cancer-related mortality, with 224,210 new cases
and 159,260 deaths in the United States in 2014, although the incidence rate of lung cancer has
been declining since the middle of 2000s [1,2]. Non-small cell lung cancer (NSCLC), account-
ing for almost 84% of lung cancer, includes two histological subtypes adenocarcinoma (AC)
and squamous cell carcinoma (SCC), which stem from epithelial cells that line the larger air-
ways and the peripheral small airways, respectively [2].

Differential diagnosis between AC and SCC is of clinical significance. Chemotherapy regi-
mens for AC and SCC are different according to the guidelines of National Comprehensive
Cancer Network (NCCN) for NSCLC. For instance, pemetrexed is a multiple-enzyme inhibi-
tor, which is utilized in AC patients rather than in SCC patients [3–5]. The current methods in
the differential diagnosis often involve in immunohistochemical stainings of complete surgical
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resection specimens. The staining proteins consist of AC positive markers (TTF-1, CK7, Muci,
and Napsin A) and SCC positive markers (CK5/6, HMWCK, NTRK1/2, and p63) [6]. The sen-
sitivity of the most widely used TTF-1 is only 62%, suggesting a need to develop new markers
for the differential diagnosis [6]. Moreover, almost 25% poorly differentiated NSCLC patients
cannot be classified by TTF-1, suggesting that complimentary markers are needed to enhance
the specificity [7–9].

Epigenetic modifications have been shown to be an important regulatory mechanism during
the multistep development of human cancers [10]. Different epigenetic modifications [11] and
different microRNA and gene expression profiles were found between AC and SCC [12], sug-
gesting that there were distinct molecular signatures between the two subtypes [13,14]. Several
studies have reported that the methylation rates of APC, CDH13, RARβ, LINE-1, RASSF1, and
RUNX3 were significantly higher in AC than in SCC [15,16], while higher methylation fre-
quencies of DAPK, TIMP3, TGIF and SFRP4 were more often observed in SCC compared to
AC [17,18]. In addition, there were significantly different chemotherapeutic outcomes between
AC and SCC [19].

Due to the increasing amount of evidence, it was necessary to establish a short list of methyl-
ated genes through a comprehensive literature review. Meta-analysis can overcome the limita-
tion of small-size samples in single study, and achieve more reliable and completed
consequences through the combination and quantitative assessment of various studies [20]. In
this study, we systematically reviewed the recent methylation studies and summarized the dif-
ferential gene methylation between AC and SCC, and aimed to provide a handful of epigenetic
clues to elaborate the molecular biomarkers of the different histological subtypes of NSCLC.

Materials and Methods

Identification of relevant studies
All the relevant studies, updated until January 11, 2016, were systematically searched for in the
PubMed, China National Knowledge Infrastructure and Wanfang literature databases. The
keywords were as follows: “(histolog� OR patholog� OR clinic�) AND lung cancer (methylation
OR epigene�)”. In addition, a manual search was performed to seek other potential studies in
the references of the retrieved publications.

Inclusion and exclusion criteria
All the eligible studies should meet the following criteria: (1) the study should refer to the mea-
surement of the gene methylation status in NSCLC patients rather than cancer cell lines; (2)
the study should have sufficient methylation information on the relative genes; and (3) the
study should provide detailed information on NSCLC, such as the pathological subtypes of
NSCLC and the number of NSCLC subtypes. In addition, neither reviews nor abstracts were
included in our analysis. Studies without detailed information on gene methylation or patho-
logical types of NSCLC data were also excluded from the current study. The current meta-anal-
ysis was reported based on the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) statement (S1 PRISMA Checklist).

Data extraction
For the eligible studies, we extracted the gene, the first author’s name, the published year, the
race of the study subjects, the methylation assessment method, the number of cases of AC and
SCC, and the frequency of gene methylation (S1 Table).

Methylation Profiles of Different Subtypes of NSCLC

PLOSONE | DOI:10.1371/journal.pone.0149088 February 10, 2016 2 / 13

Foundation (2014A610235). The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



Statistical analysis
Reviewmanager 5.2 software (Cochrane Collaboration, Oxford, UK) was used to calculate the
combined odds ratios (ORs) and the corresponding 95% confidence intervals (95% CIs) to esti-
mate the association in the meta-analysis. χ2 test was used to assess the significant heterogeneity
across studies, and the result of χ2 test was expressed by I2 metric. When I2 metric was more than
50%, we considered that obvious heterogeneity existed in the involved studies, and a random-
effect model was applied for the meta-analysis. Otherwise, a fixed-effect model was used. The
aggregated sensitivity, specificity, area under the receiver operating characteristic curve (AUC)
and their 95% CIs were calculated by STATA software (Stata Corporation, College Station, TX).

Results
As shown in Fig 1, a total of 2137 articles were initially retrieved from the literature databases.
A filtration removed 115 duplicated publications, 1685 studies that were not human studies or
full-text inaccessible studies, 77 studies without detailed information regarding pathological
types of NSCLC, 51 studies without methylation frequency data, 24 studies only including AC
methylation data, and 31 studies only including SCC methylation data as controls. Finally, a
total of 154 eligible studies on 111 genes were included in the current meta-analysis. Among
the identified genes, there were 75 genes reported by only one study, 20 genes involved in two
studies, and 16 genes covered by at least three studies. The 16 genes reported by at least three
studies were CDKN2A, RASSF1,MGMT,MLH1, CDH13, CDH1, DAPK, RUNX3, APC, FHIT,
SFRP1, RARB,WIF1, DLEC1, IGFBP7 and TFPI2 (Table 1). The genes with fewer than 3 stud-
ies were listed in S2 Table.

According to our systematic review, there were 5 aberrantly methylated genes (including
CDKN2A,MGMT, CDH13, RUNX3 and APC) associated with the pathological types of
NSCLC, and the remaining 11 gene methylation events showed no significant difference
between AC and SCC. As shown in Table 1, CDKN2A andMGMT were significantly less meth-
ylated in AC rather than in SCC, while CDH13, RUNX3 and APC genes were significantly
more methylated in AC than in SCC.

As shown in Fig 2, the meta-analysis of CDKN2Amethylation in 40 studies among 1609
ACs and 1392 SCCs revealed that CDKN2Amethylation was less frequently observed in AC
than in SCC (OR = 0.75, 95% CI = 0.63–0.89, P = 0.0008, I2 = 39%). Meta-analysis of 15 studies
among 680 ACs and 710 SCCs showed thatMGMT was significantly more methylated in SCC
than in AC (OR = 0.66, 95% CI = 0.52–0.82, P = 0.0003, I2 = 0%).

CDH13, RUNX3 and APC genes were shown to have significantly higher methylation fre-
quencies in AC. Specifically, our meta-analysis of 8 studies among 299 ACs and 211 SCCs
revealed that CDH13methylation was more frequently observed in AC than in SCC
(OR = 2.60, 95% CI = 1.73–3.90, P< 0.00001, I2 = 0%). Meta-analysis of 7 studies among 286
ACs and 201 SCCs showed that RUNX3 was more often methylated in SCC than in AC
(OR = 3.34, 95% CI = 2.10–5.31, P< 0.00001, I2 = 35%). The meta-analysis of APC in 7 studies
among 157 ACs and 94 SCCs showed that APCmethylation was more often methylated in AC
than in SCC (OR = 2.82, 95% CI = 1.72–4.62, P< 0.0001, I2 = 18%, Fig 3).

As shown in Table 1, the methylation of 11 genes (including RASSF1,MLH1, CDH1, DAPK,
FHIT, SFRP1, RARB,WIF1, DLEC1, IGFBP7 and TFPI2) could not distinguish between AC
and SCC. And as demonstrated in Figs 2 and 3, the funnel plots of CDKN2A,MGMT, CDH13,
RUNX3 and APC indicated no significant publication bias.

Subsequently, we performed sensitivity meta-analyses of the five significant genes (Table 2).
Our results showed that the pooled specificity values as differential diagnostic markers between
AC and SCC for CDH13, APC, CDKN2A,MGMT and RUNX3 were 0.74 (0.65–0.81), 0.65
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(0.55–0.74), 0.55 (0.47–0.63), 0.60 (0.52–0.68) and 0.86 (0.75–0.92), respectively. The aggre-
gated sensitivity values of CDH13, APC, CDKN2A,MGMT and RUNX3 were 0.49 (0.38–0.59),
0.60 (0.44–0.74), 0.37 (0.29–0.45), 0.32 (0.27–0.37) and 0.47 (0.42–0.51), respectively

Discussion
Some chemotherapeutic regimens were more effective in SCC, while other drugs were more
effective in non-squamous histological types [3–5]. Thus, it is necessary to differentiate the two

Fig 1. Flow diagram. The flow diagram of the stepwise selection from relevant studies.

doi:10.1371/journal.pone.0149088.g001
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major types of NSCLC (AC and SCC). Generally, well-differentiated AC can be identified
according to the immunohistochemical staining results of TTF-1, napsin-A, and other markers
[6]. However, some studies have reported that a minor fraction of poorly differentiated SCC
still reacted with TTF-1 [7–9]. Our results showed that the pooled specificity and sensitivity
values of CDH13 and APC were higher than those of CDKN2A,MGMT and RUNX3. The joint
effect of these methylation markers is of interest to be explored in the future.

Epigenetic modifications have been shown to account for the mechanisms in the develop-
ment of different histological subtypes of cancers [21]. Besides, other studies have identified
genes with significantly different methylation between different subtypes, and the differentially
methylated genes (including CDKN2A, APC, CDH13, THBS2 and ERG) have been utilized to
distinguish these different histological subtypes of cancers [22,23]. Previous study has identi-
fied that CDKN2A, APC and CDH13 have significantly different methylation frequencies
between AC and SCC [23]. Another study observed that RUNX3methylation was significantly
more often in AC than in SCC [15]. The above findings were also confirmed in the current
meta-analyses. However,MGMTmethylation frequency was not different between 77 AC and
38 SCC in the previous study [23], and this might be due to a lack of power [23]. In contrast,

Table 1. Meta-analyses of 16 genemethylation frequencies between AC and SCC.

Gene Studies Overall OR
[95% CI]

I2 P Value Median Methylation
(AC/SCC, %)

25% Methylation Quartile
(AC/SCC, %)

50% Methylation Quartile
(AC/SCC, %)

75% Methylation Quartile
(AC/SCC, %)

CDH13 8 2.60 [1.73,
3.90]

0% < 0.00001 40/25 36/19 44/25 66/36

RUNX3 7 3.34 [2.10,
5.31]

35% < 0.00001 36/11 27/7 36/11 41/26

APC 7 2.82 [1.72,
4.62]

18% < 0.0001 62/37 43/30 63/37 73/57

MGMT 15 0.66 [0.52,
0.82]

0% 0.0003 32/36 29/27 32/36 40/53

CDKN2A 40 0.75 [0.63,
0.89]

39% 0.0008 36/49 23/33 37/49 58/57

WIF1 4 0.67 [0.43,
1.02]

0% 0.06 32/39 8/3 25/16 35/30

RASSF1 19 1.15 [0.94,
1.40]

33% 0.16 39/36 14/5 17/15 26/22

FHIT 6 0.82 [0.57,
1.17]

25% 0.27 27/31 7/10 14/18 23/29

SFRP1 5 1.23 [0.81,
1.86]

0% 0.33 37/31 9/4 11/10 36/19

DLEC1 4 0.80 [0.42,
1.55]

53% 0.51 34/40 8/16 12/19 25/31

CDH1 8 1.06 [0.63,
1.78]

22% 0.82 39/33 4/3 5/5 13/6

DAPK 8 1.02 [0.69,
1.51]

0% 0.92 35/36 7/6 12/9 16/12

MLH1 9 0.98 [0.53,
1.78]

63% 0.94 57/55 6/10 11/19 33/36

TFPI2 3 0.99 [0.50,
1.94]

0% 0.97 26/29 2/6 15/7 NA/NA

RARB 5 1.00 [0.40,
2.46]

82% 0.99 50/49 7/10 32/17 45/55

IGFBP7 3 1.00 [0.50,
2.00]

0% 0.99 47/47 3/1 25/4 NA/NA

NA stands for not available. From the overall OR values, CDH13, RUNX3 and APC were significantly more methylated in AC than in SCC; MGMT and

CDKN2A were significantly less methylated in AC than in SCC.

doi:10.1371/journal.pone.0149088.t001
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our meta-analyses among 680 ACs and 710 SCCs foundMGMTmethylation was significantly
less in AC than in SCC.

In the current study, we identified five differentially methylated genes between AC and
SCC. These five methylated genes could also be found in many other cancers. Loss of CDH13
expression caused by promoter hypermethylation was observed in breast [24], lung [24], colo-
rectal [25,26], prostate [27], and nasopharyngeal [28] cancers. Besides, Methylated CDH13
could serve as a potential diagnostic and prognostic biomarker in nasopharyngeal carcinoma
[28] and cervical cancer [29], respectively. Aberrantly methylated levels of APC andMGMT
were also observed in colorectal cancer tissues [30]. Methylated APC was shown to be associ-
ated with prognostic outcomes in gastric carcinomas [31], breast cancer [32], and hepatocellu-
lar carcinoma [33].MGMT was a DNA-repair gene, which greatly contributed to the
microsatellite instability (MSI) in colorectal cancer [34]. Studies demonstrated thatMGMT
methylation triggered the incidence of MSI [35,36]. CDKN2A was a well-established gene,
which played a critical role in cancer progression [37]. The inactivation of CDKN2A by pro-
moter hypermethylation was observed in leukemia [38], colorectal [39], gastric [40], esophagus
[41], and lung cancers [42]. Aberrantly methylated RUNX3 was found to be associated with the
risk of multiple cancers, such as hepatocellular carcinoma [43], esophageal cancer [43], gastric
carcinoma [44] and NSCLC [44].

Fig 2. Forest and funnel plots ofCDKN2A andMGMT. The forest plots of CDKN2A andMGMT displayed the effect size and 95%CIs for the included
studies. Funnel plots suggested no publication bias in the meta-analyses of CDKN2A andMGMT genes. Our results showed that the total ORs for CDKN2A
andMGMTwere less than1, which demonstrated the methylation of CDKN2A andMGMT in AC were relatively higher than in SCC. Funnel plots of meta-
analyses of CDH13, RUNX3 and APC demonstrated no publication biases in the included studies. In addition, M-H denotes Mantel-Haenszel statistical
method to calculate the combined odds ratios (ORs) and the corresponding 95% confidence intervals (95% CIs). Weight denotes the weighted average of the
intervention effect estimated in each study. SE denotes standard errors.

doi:10.1371/journal.pone.0149088.g002
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Cyclin-dependent kinase inhibitor 2A (CDKN2A) is known to be an important tumor sup-
pressor gene with regulatory roles affecting CDK4 and p53 in cell cycle G1 control. This gene is
frequently mutated or deleted, as well as hypermethylated, in a wide variety of tumors includ-
ing NSCLC [45–47]. Interestingly, previous studies reported that the methylation status of
CDKN2Amight correlate with the response to certain chemotherapeutic drugs in breast cancer
[48]. Cell line studies demonstrated that the usage of demethylating agents could reactivate

Fig 3. Forest and funnel plots ofCDH13, RUNX3 and APC. The forest plots of CDH13, RUNX3 and APC displayed the effect size and 95%CIs for the
included studies. Our results showed that the total ORs of CDH13, RUNX3 and APC demonstrated that the methylation of CDH13, RUNX3 and APC in AC
were significantly more frequent than in SCC. Funnel plots of meta-analyses of CDH13, RUNX3 and APC demonstrated no publication biases in the included
studies. The details of abbreviations (M-H, ORs, CIs, and SE) and weight were shown in the legends of Fig 2.

doi:10.1371/journal.pone.0149088.g003

Table 2. Specificity and sensitivity of five differentially methylated genes between AC and SCC.

Gene Specificity [95% CI] Sensitivity [95% CI] AUC [95% CI]

CDH13 0.74 [0.65, 0.81] 0.49 [0.38, 0.59] 0.68 [0.64, 0.72]

APC 0.65 [0.55, 0.74] 0.60 [0.44, 0.74] 0.66 [0.62, 0.70]

CDKN2A 0.55 [0.47, 0.63] 0.37 [0.29, 0.45] 0.45 [0.41, 0.49]

MGMT 0.60 [0.52, 0.68] 0.32 [0.27, 0.37] 0.40 [0.35, 0.44]

RUNX3 0.86 [0.75, 0.92] 0.47 [0.42, 0.51] 0.47 [0.42, 0.51]

doi:10.1371/journal.pone.0149088.t002
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CDKN2A, which was able to be silenced by hypermethylation [49]. Other clinical studies
reported that NSCLC patients who underwent epigenetic therapy tended to have improved
overall survival with statistical significance [46]. Our systematic review concluded that the
methylation of CDKN2A was significantly more common in SCC than in AC.

MGMT plays a key role in regulating DNA repair via removing a methyl group from muta-
genic O6-methylguanine, which can lead to a transition mutation through DNA replication
[50]. Thus, inactivation of the O6-methylguanine-DNA methyltransferase (MGMT) gene plays
an important role in the progression of cancer characterized by the accumulation of genetic
changes. In addition, the epigenetic silencing ofMGMT was shown to play a pivotal role in
DNA repair pathway that was associated with cisplatin sensitivity [51].MGMT promoter
methylation was shown to be inversely correlated withMGMT expression, and silenced
MGMT by promoter hypermethylation was observed in NSCLC [52]. Our meta-analysis found
that the hypermethylation ofMGMT was more common in SCC than in AC.

Cadherin 13 (CDH13), also known as T-cadherin or H-cadherin (heart), is a unique mem-
ber of the cadherin superfamily [53,54]. CDH13 proteins play important roles in cell differenti-
ation and in anti-apoptosis [55]. However, CDH13 expression was generally down regulated by
CDH13 promoter hypermethylation in human cancers [56,57]. CDH13methylation was a
common event in NSCLC, and it was also associated with its clinicopathological features.
CDH13 hypermethylation was observed at higher frequency in AC than in SCC [23]. Patients
with CDH13 hypermethylation tended to have lower survival [58], suggesting that CDH13
hypermethylation could serve as a prognostic biomarker in NSCLC. The current meta-analysis
also confirmed this observation.

The RUNX3 proteins belong to the runt domain-containing family of transcription factors
in the regulation of gene expression [59]. Transcriptional silencing of RUNX3 by hypermethy-
lation was associated with various human cancers, including NSCLC [60–62]. Low RUNX3
mRNA expression level was found to be associated with RUNX3 promoter hypermethylation
[62]. RUNX3 hypermethylation was mostly detected in AC [53]. Further studies demonstrated
that patients with higher RUNX3 hypermethylation in AC had shorter survival even when
undergoing positive treatment [63]. Our analysis indicated that RUNX3 hypermethylation
might have the potential to predict treatment outcome as a differential diagnostic marker for
NSCLC subtypes.

The tumor suppressor gene adenomatous polyposis coli (APC) is correlated with inhibition
of the Wnt signaling pathway [64]. Mutation of APC was shown to be associated with the
emergence of colorectal cancer [65]. Decreased expression of APC by its promoter hyper-
methylation was also often observed in NSCLC [66]. Aberrant epigenetic modification of APC
was also observed in colorectal cancer as well as in NSCLC [66,67]. The current analysis
revealed that APC hypermethylation was more frequent in AC than in SCC.

Although our meta-analyses were performed through carefully screening numerous relevant
studies, several limitations should not be underestimated. Above all, conference abstracts and
inaccessible full-text articles were excluded from our meta-analyses because we were unable to
retrieve relevant data for the meta-analysis. Moreover, only reports in the English or Chinese
languages were chosen, and this might introduce bias in the literature selection. Meanwhile,
the majority of the harvested genes with only one or two studies were excluded from this analy-
sis. It was possible that some of them were certain specific-histology genes. Thus, future analy-
ses of these genes in larger sample sizes were needed to confirm our findings.

In summary, our meta-analysis provided a list of differently methylated genes between AC
and SCC and identified two hypomethylated (CDKN2A andMGMT) and three hypermethy-
lated genes (CDH13, RUNX3 and APC) that might help distinguish between AC and SCC.
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