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Purpose: Alzheimer’s disease (AD) is a complex neurodegenerative disorder, which is 
characterized by memory loss and cognitive deficits. The neuroprotective role of milrinone 
on the injury of spinal cord or cerebral ischemia-reperfusion has been confirmed. However, 
the accurate function of milrinone on AD pathogeny is still unclear.
Methods: APP/PS1 transgenic mouse was used to explore the role of milrinone in behaviour 
tests, and the effects on histopathologic features of AD such as the formation of neuronal 
amyloid-β (Aβ) plaque, microglial activation, tau protein hyperphosphorylation, oxidative 
stress, and neuroinflammation. Lipopolysaccharide (LPS)/Aβ-treated BV-2 cells were used to 
understand the anti-inflammation mechanism of milrinone on AD in vitro.
Results: Our in vivo results showed that milrinone ameliorates the memory functions of AD 
mice. Meanwhile, milrinone reduced Aβ deposits, repressed microglial activation and tau 
protein hyperphosphorylation, attenuated the oxidative stress, and decreased the levels of 
inflammatory cytokines. The in vitro results demonstrated that milrinone could inhibit the 
secretion of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α via regulation of 
NLRP3 inflammasomes and TLR4/MyD88/NF-κB signalling pathway.
Conclusion: Overall, milrinone could ameliorate the memory loss and cognitive deficits 
through repressing the multiple pathological processes of AD, suggesting that milrinone may 
be an underlying and effective drug for treating AD clinically.
Keywords: milrinone, Alzheimer’s disease, neuroinflammation, memory loss, cognitive 
deficit

Introduction
Alzheimer’s disease (AD) is a complex neurodegenerative disorder, which commonly 
results in hypomnesis and cognitive deficits.1 There are approximately 50 million 
people suffering from AD in 2017 all over the world, and this number is constantly 
increasing in the next 30 years.2 The histopathologic characterizations of AD include 
a series of interactive processes such as neuronal amyloid-β (Aβ) plaque formation, 
microglial activation, tau protein hyperphosphorylation, and neuroinflammation.3,4 Aβ 
deposits are considered to enrich the activation of microglial cells.5 The activated 
microglial cell is a crucial neuroinflammation factor to accelerate NLRP3 inflamma-
somes formation6 and promotes the secretion of inflammatory cytokines such as IL-1β 
and IL-6, which in turn increases the level of Aβ plaque.7,8 Meanwhile, tau hyperpho-
sphorylation especially the sites threonine 231 (T231) and serine 396 (S396) phos-
phorylated prematurely is an important hallmark for the occurrence of AD.9,10 
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Currently, only few drugs including Tacrine, Donepezil, 
Galantamine, Memantine, and Rivastigmine are confirmed 
to be used for treatment with AD.11–15 However, these 
therapies are generally used to control symptoms rather 
than alter the course of AD, or even lead to some severe 
side effects such as hepatotoxicity, gastrointestinal fatigue, 
and muscle cramps.11–15 Therefore, exploring clinical drugs 
based on inhibition of AD pathological features is particu-
larly important for improving AD.

Milrinone is a kind of bipyridine with vasodilator 
properties, which is generally used in the therapies for 
cardiopulmonary diseases.16,17 For instance, Qasim and 
Jain revealed that milrinone can ameliorate persistent pul-
monary hypertension in newborn through the great 
improvement for cardiac function and the reduction for 
pulmonary vascular resistance.16 Tang et al performed 
a meta-analysis for the function of milrinone on patients 
with acute heart failure (AHF) or acute myocardial infarc-
tion (AMI); they uncovered that milrinone may be an 
effectively clinical drug for the treatment of AHF and 
AMI.17 More importantly, growing evidences uncovered 
the clinical use of milrinone in neurological and neurocri-
tical care patients, including subarachnoid hemorrhage 
(SAH) and stroke.18,19 For example, a clinical study of 
the application of milrinone on SAH patients in Montreal 
Neurological Hospital has indicated that intravenous mil-
rinone infusion and the maintenance of homeostasis is 
simple to use and requires less intensive monitoring and 
resources than the standard hypertension, hypervolemia, 
and hemodilution (triple-H) therapy for SAH.18 Labeyrie 
et al found that intravenous milrinone can effectively 
decrease the incidence of stroke.19 In addition, the neuro-
protective role of milrinone on nerve or brain injury- 
related diseases has been also confirmed in animal 
models.20–22 Arac et al reported that milrinone represses 
neurocytes apoptosis and inflammation in spinal cord 
injury (SCI) rats, thereby making valuable contributions 
on the function recovery of spinal cord tissues.20 Choi et al 
made the comparisons among the effects of milrinone, 
sodium nitroprusside, and nitroglycerin on patients with 
cerebral perfusion injury, and found that milrinone treat-
ment is more helpful for the cognitive function recovery 
relative to the other two treatments.21 Saklani et al further 
explored the protective effect of milrinone on cerebral 
ischemia-reperfusion injury (CI/RI) mice, and indicated 
that milrinone protect against memory loss after CI/RI 
through regulation of calcium level.22 As a novel drug 

treatment with brain diseases, however, there are relatively 
rare studies on the effects of milrinone for AD therapies.

In this study, the function of milrinone on the malig-
nant behaviors of AD and its detailed action mechanism 
on AD pathogenesis were investigated. Our results may 
provide an underlying drug to attenuate AD and not just 
control its clinical symptoms.

Materials and Methods
AD Mouse Model and Drug Treatment
All animal experiments in this study were in strict accor-
dance with the protocols stated in the Guide for the Care 
and Use of Laboratory Animals and approved by the 
ethical committee of The Third Affiliated Hospital of 
Qiqihar Medical University. Female APP/PS1 mice (30 
weeks) and age-matched female wild-type C57BL6/L 
mice (control group) were procured from Jackson 
Laboratory. The mice were allowed to adapt to the 
laboratory environment for 2 weeks before testing. 
Afterwards, the APP/PS1 mice (32 weeks) were further 
assigned into two groups randomly: the APP/PS1 and 
APP/PS1 + M groups (n = 6). The mice in APP/PS1 + 
M group were injected with milrinone (i.p., 0.5 mg/ 
kg),20 while the mice in the control and APP/PS1 groups 
were intraperitoneally injected with the equal saline. All 
mice were treated once a day for a month.

Passive Avoidance Test
Passive avoidance test (PAT) was performed according 
to the previous study.23 The experimental apparatus used 
in this study was purchased from Taimeng Tech 
(Chengdu, China), which was divided into two indepen-
dent compartments (one for light, and one for dark) 
connected together via an automatic guillotine door. 
This test included a training test and a formal test 
(one day after the training). For training test, the mice 
of the above groups were initially placed into the light 
compartment to habituate for 180 sec, and then the 
guillotine door was opened to allow the mice to enter 
the dark compartment, in which a footshock (0.5 mA, 2 
sec) was delivered. Ten sec later, the mice were removed 
from the dark compartment. Similar procedures were 
performed in the formal test except for footshock. The 
frequencies and latencies for the mice entering from the 
light compartment to the dark one were recorded with 
a maximum of 300 sec.
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Morris Water Maze Test
As the previous study mentioned,24 the Morris water maze 
test (MWMT) was conducted. Briefly, all the mice were 
initially placed into a water pool (temperature: 23 ± 1°C, 
diameter: 1.5 m, height: 0.6 m) for 1 min to adapt to the 
environment. Subsequently, a hidden platform (immersed 
1 cm below the water) was set in the middle of the plat-
form. The mice were placed into the pool to find the 
platform within 60 sec. Each mouse was tested three 
times a day at intervals of at least 15 min. The time 
required to find the hidden platform was recorded as the 
escape latency. To assess the memory ability, the invisible 
platform was removed and the mice were allowed to swim 
freely for 60 sec. The numbers of crossing the original 
position of the platform were recorded. All the data were 
obtained using a video tracking system (Taimeng Tech).

Brain Tissues Collection
After the above behavior tests, all the mice were anaes-
thetized by pentobarbital sodium (i.p., 50 mg/kg) and 
sacrificed by decapitation. The hippocampus and cortex 
tissues were collected and immediately frozen at −80°C 
for further analysis.

Cell Culture, Grouping, and Treatments
Mouse microglial cell line BV-2 (immortalized cell) was 
procured from Cobioer biotech (Nanjing, China) and cul-
tured in Dulbecco’s Modified Eagle’s medium (DMEM) 
with 5% fetal bovine serum and 1% streptomycin/penicil-
lin at 37°C with 5% CO2. Milrinone was dissolved in 0.3% 
carboxyl methyl cellulose sodium (CMC-Na), and Aβ1–42 

was dissolved in sterile phosphate buffered saline (PBS). 
Afterwards, the cells were initially pretreated with differ-
ent concentrations of milrinone (0, 10, 25, 50 μmol/L) for 
1 h, followed by the stimulation with Aβ1–42 (10 μmol/L) 
and lipopolysaccharide (LPS) (1 μg/mL). The cells treated 
with equal PBS were used as controls. Approximately 
1 day later, the levels of tumor necrosis factor (TNF)-α, 
interleukin (IL)-1β, and IL-6 were assessed by enzyme- 
linked immunosorbent assay (ELISA).

ELISA Analysis
According to the manufacturer’s protocol, the levels of the 
inflammatory factors (TNF-α, IL-1β, and IL-6) in mouse 
hippocampus, cortex, and BV-2 cells were measured using 
specific ELISA kits (MSK Biotech, Ltd., Wuhan, China), 
while the levels of superoxide dismutase (SOD), 

malondialdehyde (MDA) and glutathione (GSH) in mouse 
hippocampus, and the levels of Aβ40 and Aβ42 in mouse 
hippocampus and cortex tissues were measured using the 
corresponding commercial assay kits (MSK Biotech).

Western Blotting Analysis
RIPA buffer containing protease inhibitors was used to 
extract proteins from mouse brain tissues and BV-2 cells. 
Protein concentrations were then determined using a BCA 
Protein Assay Kit (Abcam, Cambridge, UK). Protein sam-
ples were separated via 10% sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis (SDS-PAGE) and the 
resolved proteins were transferred onto polyvinylidene fluor-
ide (PVDF) membranes. Membranes were blocked with 5% 
bovine serum albumin at room temperature. After blocking, 
membranes were incubated overnight at 4°C with primary 
antibodies against TLR4 (1:1000; Abcam), MyD88 (1:1000; 
Abcam), NF-κB (p65) (1:1000; Abcam), phospho-NF-κB 
(p-p65) (1:1000; Cell Signaling), NLRP3 (1:1000; Abcam), 
ASC (1:1000; Affinity Biosciences), caspase 1 (1:1000; 
Affinity Biosciences), IL-1β (1:1000; Abcam), IL-18 
(1:1000; Abcam), Iba-1 (1:1000; Abcam), p-Tau (S396) 
(1:1000; Abcam), p-Tau (T231) (1:1000; Abcam), and 
GAPDH (1:1000; Abcam). Thereafter, they were washed 
three times with Tris-buffered saline Tween-20. 
Subsequently, an HRP-conjugated IgG secondary antibody 
(1:5000; Santa Cruz, Waltham, MA, USA) was added and 
membranes were incubated at room temperature for 1 
h. GAPDH was used as the internal reference. An enhanced 
chemiluminescence detection kit (Thermo Fisher Scientific) 
was used to detect the bands, which were then quantified 
using Gel-Pro Analyzer software (version 4.0; Media 
Cybernetics, Silver Spring, MD, USA).

Statistical Analysis
SPSS 20.0 software (Chicago, USA) was used in analysis. 
One-way ANOVA, followed by Tukey’s multiple compar-
isons test was used to assess experimental data. Data were 
presented as means ± SD. P-value less than 0.05 indicated 
a statistically significant difference.

Results
Milrinone Ameliorates the Memory 
Functions of APP/PS1 Mice
To explore the therapeutic efficacy of milrinone on AD, 
relevant behaviour tests were performed on APP/PS1 
mice. As presented in Figure 1A and B, we found that 
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APP/PS1 mice had a relatively higher frequency to enter 
the dark compartment and a shorter latency before entering 
the dark compartment than the mice of the WT group (P < 
0.01). However, these situations were all reversed in the 
milrinone treatment group (P < 0.05). Subsequently, the 
results of MWMT demonstrated that there seemed no 
significant differences among the three aforementioned 
groups on day 1 and 2. From day 3 to day 4, the escape 
latency of APP/PS1 mice was longer compared to that of 
the WT mice, while milrinone treatment remarkably shor-
tened the escape latency (Figure 1C, P < 0.01). Further 
probe experiments revealed that decreased frequency of 
crossing over the platform position was observed in APP/ 
PS1 mice by contrast to the WT mice (Figure 1D, P < 
0.01). On the contrary, it was increased in the treatment 
group (P < 0.05).

Milrinone Inhibits Aβ Plaque Formation, 
Microglia Activation, and Tau 
Hyperphosphorylation in APP/PS1 Mice
The formation of Aβ plaque is identified as an important 
hallmark of AD. Meanwhile, both microglia activation and 
tau hyperphosphorylation are also accompanied with the pro-
gression of AD. Therefore, the effects of milrinone on the 
above biological processes were further investigated. As illu-
strated in Figure 2A–D, we found that the levels of Aβ40 and 
Aβ42 in cortex and hippocampus of APP/PS1 mice were 
expected increased (P < 0.01). In contrast, the mice in the 
milrinone group had relatively low levels of Aβ plaque (P < 
0.05). In addition, the level of Iba-1 (microglia marker) was 
also elevated in APP/PS1 mice (Figure 2E and F, P < 0.01), 
whereas it was repressed in the milrinone treatment group (P < 

Figure 1 Milrinone ameliorates the memory functions of APP/PS1 mice. (A) The number of APP/PS1 mice entering the dark compartment during the passive avoidance test 
(PAT). (B) The latency of APP/PS1 mice in the PAT. (C) The escape latency of APP/PS1 mice in the Morris water maze test (MWMT). (D) The number of crossings through 
the original position of the platform in MWMT. **P < 0.01 vs the WT group; #P < 0.05, ##P < 0.01 vs the APP/PS1 group.

https://doi.org/10.2147/NDT.S312648                                                                                                                                                                                                                                  

DovePress                                                                                                                                    

Neuropsychiatric Disease and Treatment 2021:17 2132

Chen et al                                                                                                                                                            Dovepress

https://www.dovepress.com
https://www.dovepress.com


0.01). Similar patterns were observed in the protein levels of 
p-Tau (S396) and p-Tau (T231) (Figure 2G, P < 0.01).

Milrinone Attenuates the Oxidative 
Stress in APP/PS1 Mice
To further explore the effect of milrinone on oxidative 
stress, the levels of MDA, SOD, and GSH-Px were mea-
sured by Western blotting. We found that MDA level was 
increased, and both SOD and GSH-Px were decreased in 
hippocampus of APP/PS1 mice (Figure 3A–C, P < 0.01). 
Unsurprisingly, these situations were reversed in APP/PS1 
mice treatment with milrinone (P < 0.05).

Milrinone Represses the Inflammatory 
Responses in APP/PS1 Mice
Inflammatory responses occur in the development of AD. 
We then assessed the function of milrinone on AD inflam-
mation. As shown in Figure 4A–F, high levels of IL-1β, 
IL-6, and TNF-α were found in cortex and hippocampus 

tissues of APP/PS1 mice (P < 0.01), whereas milrinone 
repressed the release of these inflammatory cytokines from 
the damaged brain tissues (P < 0.05).

Milrinone Diminishes the Secretion of 
Inflammatory Cytokines and Inhibits the 
Formation of NLRP3 Inflammasomes in 
BV-2 Cells
As presented in Figure 5A–C, different concentrations of 
milrinone (0, 10, 25, 50 μmol/L) were assigned to explore 
its effect on inflammation in BV-2 cells. We found that LPS/ 
Aβ significantly promoted inflammation levels of BV-2 cells 
(P < 0.01). Different milrinone concentrations reduced the 
secretion of inflammatory cytokines to a certain extent (P < 
0.05). Meanwhile, we further demonstrated that there were 
no significant differences between the LPS/Aβ and LPS/Aβ 
+ M10 group, as well as between the LPS/Aβ + M25 and 
LPS/Aβ + M50 group in inflammation level. Therefore, M25 
was used to perform the subsequent trails. NLRP3 

Figure 2 Milrinone inhibits the formation of Aβ plaque, activation of microglia, and the hyperphosphorylation of tau in APP/PS1 mice. (A) The level of Aβ40 in APP/PS1 mice 
cortex was measured by ELISA analysis. (B) The level of Aβ42 in APP/PS1 mice cortex was measured by ELISA analysis. (C) The level of Aβ40 in APP/PS1 mice hippocampus 
was measured by ELISA analysis. (D) The level of Aβ42 in APP/PS1 mice hippocampus was measured by ELISA analysis. (E) The protein level of Iba-1 in APP/PS1 mice cortex 
was determined by Western blot assay. (F) The protein level of Iba-1 in APP/PS1 mice hippocampus was determined by Western blot assay. (G) The protein levels of p-Tau 
(Ser396) and p-Tau (Thr231) in APP/PS1 mice brain tissues were determined by Western blot assay. **P < 0.01 vs the WT group; #P < 0.05, ##P < 0.01 vs the APP/PS1 group.
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inflammasomes are commonly strongly correlated with 
neuroinflammation.25,26 The levels of NLRP3 inflamma-
somes-related proteins (ASC, NLRP3, active caspase 1, IL- 
1β, and IL-18) were assessed in LPS/Aβ-induced BV-2 cells. 
We found that the levels of the aforementioned proteins were 
all elevated in the LPS/Aβ group (Figure 5D–I, P < 0.01). In 
the LPS/Aβ + M25 group, however, the levels of ASC, 

NLRP3, active caspase 1, IL-1β, and IL-18 were suppressed 
compared to those of the LPS/Aβ group (P < 0.05).

Milrinone Inactivates the TLR4/MyD88/ 
NF-κB Signaling Pathway in BV-2 Cells
Finally, the interaction between milrinone and TLR4/ 
MyD88/NF-κB signaling pathway was investigated due 

Figure 4 Milrinone represses the inflammatory responses in APP/PS1 mice. (A) The level of IL-1β in APP/PS1 mice cortex was measured by ELISA analysis. (B) The level of 
IL-6 in APP/PS1 mice cortex was measured by ELISA analysis. (C) The level of TNF-α in APP/PS1 mice cortex was measured by ELISA analysis. (D) The level of IL-1β in APP/ 
PS1 mice hippocampus was measured by ELISA analysis. (E) The level of IL-6 in APP/PS1 mice hippocampus was measured by ELISA analysis. (F) The level of TNF-α in APP/ 
PS1 mice hippocampus was measured by ELISA analysis. **P < 0.01 vs the WT group; #P < 0.05, ##P < 0.01 vs the APP/PS1 group.

Figure 3 Milrinone attenuates the oxidative stress in APP/PS1 mice. (A) The level of MDA in APP/PS1 mice brain tissues was measured by ELISA analysis. (B) The level of 
SOD in APP/PS1 mice brain tissues was measured by ELISA analysis. (C) The level of GSH-Px in APP/PS1 mice brain tissues was measured by ELISA analysis. **P < 0.01 vs 
the WT group; #P < 0.05, ##P < 0.01 vs the APP/PS1 group.
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to the important role of this pathway in microglial 
mediated inflammation of brain injury. As shown in 
Figure 6A–D, we discovered that the levels of TLR4, 
MyD88, and p-p65/p65 were upregulated in the LPS/Aβ 
group (P < 0.01), whereas milrinone reversed the 
increased levels of TLR4, MyD88, and p-p65/p65 
caused by LPS/Aβ inducement (P < 0.01).

Discussion
Alzheimer’s disease mainly occurs in the aged population 
and its important characterizations are memory loss and 
cognitive decline.1 The interactions among Aβ plaque, 
microglial activation, tau protein hyperphosphorylation, 
and neuroinflammation were the main histopathologic fea-
tures that affect the progression of AD.3,4 This study 

Figure 5 Milrinone diminishes the secretion of inflammatory cytokines and inhibits the formation of NLRP3 inflammasomes. (A) The level of IL-1β in LPS/Aβ-treated BV-2 
cells with different concentrations of milrinone (0, 10, 25, 50 μmol/L) was measured by ELISA analysis. (B) The level of IL-6 in LPS/Aβ-treated BV-2 cells with different 
concentrations of milrinone (0, 10, 25, 50 μmol/L) was measured by ELISA analysis. (C) The level of TNF-α in LPS/Aβ-treated BV-2 cells with different concentrations of 
milrinone (0, 10, 25, 50 μmol/L) was measured by ELISA analysis. (D) The Western blot assay images for the levels of ASC, NLRP3, active caspase 1, IL-1β, and IL-18 in LPS/ 
Aβ-treated BV-2 cells. (E) The protein level of ASC in LPS/Aβ-treated BV-2 cells was measured by Western blot assay. (F) The protein level of NLRP3 in LPS/Aβ-treated BV- 
2 cells was measured by Western blot assay. (G) The protein level of active caspase 1 in LPS/Aβ-treated BV-2 cells was measured by Western blot assay. (H) The protein 
level of IL-1β in LPS/Aβ-treated BV-2 cells was measured by Western blot assay. (I) The protein level of IL-18 in LPS/Aβ-treated BV-2 cells was measured by Western blot 
assay. **P < 0.01 vs the control group; #P < 0.05, ##P < 0.01, && P < 0.01 vs the LPS/Aβ group. ns: not significant.
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focused on the regulatory mechanisms of milrinone on Aβ 
deposits, microglial activation, tau phosphorylation, oxida-
tive stress, and inflammation, which demonstrated that 
milrinone could ameliorate memory deficits and cognitive 
decline caused by AD.

APP/PS1 transgenic mouse was generally used for AD 
researches.27,28 In this study, the analyses for PAT and 
MWMT demonstrated that milrinone treatment ameliorated 
cognitive deficits in learning and memory function in APP/ 
PS1 mice. We speculated milrinone may be an effective drug 
for AD therapy. The enrichment of Aβ deposits is the initial 
changes in brain tissues after AD and aggravates the toxicity to 
central neural system.29,30 Numerous studies further confirmed 
that inhibition of Aβ deposit levels in brain tissues is beneficial 
to the cognitive restoration of AD.27,28,31,32 In our study, rela-
tively high levels of Aβ40 and Aβ42 were found in both cortex 
and hippocampus of APP/PS1 mice, whereas they were 

repressed by injection of milrinone, suggesting that milrinone 
suppresses the accumulation of Aβ deposits in APP/PS1 mice.

Previous study has revealed that the accumulated Aβ trig-
gered the activation of microglia, in which process is accom-
panied with the release of inflammatory cytokines.33 

Therefore, inflammation reactions in APP/PS1 mice with or 
without milrinone treatment were initially studied. We discov-
ered that the levels of IL-1β, IL-6, and TNF-α in LPS/Aβ- 
treated BV-2 cells and APP/PS1 mice brain tissues (cortex and 
hippocampus) were elevated. By contrast, milrinone restrained 
the inflammation responses. Similarly, a recent study on milri-
none for SCI therapy has indicated that the inflammation 
caused by SCI can be attenuated by milrinone treatment.20 

The results implied that milrinone may function as an anti- 
inflammatory role in AD pathogenesis. It has been confirmed 
that NLRP3 inflammasome serves as a vital factor in the 
progression of neuroinflammation.34–36 We further speculated 

Figure 6 Milrinone inactivates the TLR4/MyD88/NF-κB signaling pathway in BV-2 cells. (A) The Western blot assay images for the levels of TLR4, MyD88, p65, and p-p65 in 
LPS/Aβ-treated BV-2 cells. (B) The protein level of TLR4 in LPS/Aβ-treated BV-2 cells was measured by Western blot assay. (C) The protein level of MyD88 in BV-2 cells was 
measured by Western blot assay. (D) The protein level of p-p65/p65 in BV-2 cells was measured by Western blot assay. **P < 0.01 vs the control group. ##P < 0.01 vs the 
LPS/Aβ group.
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NLRP3 inflammasomes-related proteins (ASC, NLRP3, 
active caspase 1, IL-1β, and IL-18) may be also inhibited by 
milrinone. The experimental data that the levels of ASC, 
NLRP3, active caspase 1, IL-1β, and IL-18 in LPS/Aβ- 
treated BV-2 cells were suppressed by milrinone inducement 
validated this hypothesis. In addition, numerous studies 
demonstrated that Aβ deposits can enter the mitochondria to 
induce oxidative stress and result in toxicity to the 
neurocytes.37,38 Interestingly, in this study, we found milrinone 
reversed the toxic effects of oxidative stress on AD mice, 
which process may attenuate the oxidative stress damages to 
neurons. Furthermore, the sites T231 and S396 phosphorylated 
earlier are considered as important hallmarks for the occur-
rence of AD.9,10 In the current study, the levels of p-Tau (S396) 
and p-Tau (T231) were unsurprisingly elevated in the brain 
tissues of AD mice, while were restrained by milrinone. 
Meanwhile, we also uncovered that the protein level of Iba-1, 
a marker of microglial activation, was inhibited by milrinone, 
pointing out that milrinone is an inhibitor for the activation of 
microglia. All the above results suggested that milrinon may 
ameliorate AD via repression of neuroinflammation, oxidative 
stress, and tau hyperphosphorylation as well as regulation of 
Aβ burden and microgliosis.

The activation of TLR4/MyD88/NF-κB signalling path-
way is closely correlated with several inflammation diseases, 
such as coronary microembolization,39 acute lung injury,40 

and knee osteoarthritis.41 In the course of AD, the occurrence 
of neuroinflammation has been confirmed in our above con-
clusions. Therefore, we speculated TLR4/MyD88/NF-κB 
signalling may also involve in the regulation of neuroinflam-
mation in AD. As shown in Figure 6, relevant protein levels 
were measured. We found that in cellular model, AD may 
activate the TLR4/MyD88/NF-κB signalling. Meanwhile, 
milrinone treatment expectedly repressed the expression of 
this pathway. Some previous studies on AD inflammation 
suggested that the inhibition of TLR4/MyD88/NF-κB signal-
ling is crucial for the reduction of neuroinflammation 
in AD,42,43 which validated our experimental data that milri-
none inhibited neuroinflammation through suppression of 
TLR4/MyD88/NF-κB signalling pathway.

Conclusion
In a word, our in vivo experimental data revealed the 
neuroprotective role of milrinone on AD pathogenesis 
via the regulation of AB plaque enrichment, microglial 
activation, tau protein hyperphosphorylation, oxidative 
stress, and inflammation reactions. At the same time, the 
in vitro model results uncovered the inhibitory effect of 

milrinone on the inflammatory-related TLR4/MyD88/NF- 
κB signalling pathway. Our findings may provide 
a promising therapeutic drug for the amelioration of AD.
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