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A B S T R A C T

Background: Predicting cognitive decline and the eventual onset of dementia in patients with Mild Cognitive Impairment (MCI) is of high value for patient man-
agement and potential cohort enrichment in pharmaceutical trials. We used cognitive scores and MRI biomarkers from a single baseline visit to predict the onset of
dementia due to AD in an amnestic MCI (aMCI) population over a nine-year follow-up period.
Method: All aMCI subjects from ADNI1, ADNI2, and ADNI-GO with available baseline neurocognitive scores and T1w MRI were included in the study (n= 756). We
built a Naïve Bayes classifier for every year over a 9-year follow-up period and tested each one with Leave one out cross validation.
Results: We reached 87% prediction accuracy at five years follow-up with an AUC> 0.85 from two to seven years (peaking at 0.92 at five years). Both neurocognitive
scores and MRI biomarkers were needed to make the prognostic models highly sensitive and specific, especially for longer follow-ups. MRI features are more
sensitive, while cognitive features bring specificity to the prediction.
Conclusion: Combining cognitive scores and MRI biomarkers yield accurate prediction years before onset of dementia. Such a tool may be helpful in selecting patients
that would most benefit from lifestyle changes, and eventually early treatments that would slow cognitive decline and delay the onset of dementia.

1. Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative disease
(Association, 2013; Jack et al., 2011; McKhann et al., 2011). The pro-
dromal stage of AD dementia, known as Mild Cognitive Impairment
(MCI), is characterized by the gradual onset and evolution of cognitive
impairment beyond the levels expected for age and education of the
individual, but without interfering with a patient's everyday life
(Petersen et al., 1999). MCI patients with memory problems as their
main symptom are known as “amnestic MCI”, from which 10%−15%
are reported to progress to clinically probable AD each year
(Petersen, 2009). Since not all amnestic MCI (aMCI) patients progress to
AD, predicting if and when a subject with aMCI will have future de-
mentia will enable enrichment for clinical trials. More importantly,
Kivipelto's group (Ngandu et al., 2015) has demonstrated the potential

benefit of combining diet, exercise and cognitive training to prevent
cognitive decline. Early detection of prodromal disease (e.g., 5–10y in
advance) is key to intervene before the onset of cognitive decline due to
irreversible neurodegeneration.

Jack et al. (2010) well-known hypothetical biomarker model and its
successors (Sperling et al., 2011) describe the dynamics of biomarkers
during AD pathological process. The model proposes that cognition and
structural brain atrophy change with the sharpest slope in the MCI stage
(Sperling et al., 2011), making them potentially the most sensitive early
biomarkers of progression from aMCI to AD. According to this model,
anatomical atrophy, which can be captured by volumetric MRI, begins
ahead of cognitive decline (Sperling et al., 2011). Specifically, the en-
torhinal and hippocampal areas are known to be among the first af-
fected (Jack et al., 1997; Braak and Braak, 1991). Factoring the sharp
slope of atrophy, early stage volume loss and its widespread
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availability, MRI morphometric analyses is a promising candidate bio-
marker for earlier prediction.

To measure AD-related morphological changes in brain anatomy,
we have developed the Scores by Nonlocal Image Patch Estimator
(SNIPE) for both hippocampal and entorhinal areas (Coupé et al.,
2012b). SNIPE is a similarity metric that measures structural similarity
to either a library of cognitively normal subjects or a library of patients
with Alzheimer's dementia. We previously showed that using only
SNIPE scores for hippocampus, plus age and sex, one can reach an
overall accuracy of 71% for prediction of progression from aMCI to
dementia over a 3y follow-up period (Coupé et al., 2012b). In a more
recent work looking at a cohort of cognitively healthy older individuals,
we showed that our MRI-driven SNIPE biomarker was sensitive to AD-
related changes in a cognitively normal cohort on average seven years
before clinical diagnosis of AD dementia (Coupe et al., 2015).

While volumetric MRI measures have good prediction value, we
hypothesize that prediction performance can be improved using com-
plementary information of other features, in particular performance on
standardized cognitive tests. Indeed, previous studies showed that the
patient's current cognitive state can also predict future cognitive decline
in aMCI (Belleville, 2017, Belleville et al., 2008). The ACE-R (Adden-
brooke's Cognitive Examination - Revised) (Lischka et al., 2012), MOCA
(Montreal Cognitive Assessment) (Julayanont et al., 2014), verbal
memory measures and many language tests (Belleville, 2017) all have
shown promising performance to predict future dementia in persons
with aMCI. However, some models may have difficulty with short term
prediction as they found the likelihood of false negatives was increased,
resulting in decreased sensitivity to imminent onset of AD (Belleville,
2017). Furthermore, these studies either suffer from relatively short
follow-up periods, or have not used a combination of different scores
and biomarkers to benefit from their complementary information.
While a more recent study shows that combining both cortical thinning
measures and cognitive scores increases prediction accuracy
(Peters et al., 2014), this study too had a relatively short follow-up
period, and a limited number of subjects and did not investigate the
complementary effect of the different features; namely how and to what
extent each feature set contributes in the performance of the predictive
model (Peters et al., 2014).

While both SNIPE and cognition have shown potential to predict
conversion, it is uncertain if a combination of both measures would lead
to superior accuracy. In this study we have two main goals. First, we
investigate the ability of our model to predict progression to AD based
only on the baseline MRI and cognitive information over follow-up
periods ranging from one to nine years. Second, we investigate the
change over time in predictive power of each feature to investigate
whether, as previously suggested in Jack's model (Jack et al., 2010), the
MRI-driven biomarkers are better predictors than neurocognitive scores
for longer follow-up periods (as atrophy is hypothesized to precede
cognitive decline), and whether they can capture AD-related abnorm-
ality before cognitive scores do. This study further investigates the ef-
fect of combining neurocognitive scores and MRI makers throughout
different follow-up periods using a large dataset.

2. Methods

In this study, we train a Naïve Bayes classifier to predict the future
diagnosis of dementia in patients with aMCI in the ADNI1, ADNI2 and
ADNI-GO datasets. Our feature set contains age, sex, years of education,
neurocognitive (Alzheimer's Disease Assessment Scale – Cognitive
subscale [ADAS-cog], Rey Auditory Verbal Learning Task [RAVLT],
Mini-Mental State Examination [MMSE]), MRI-based scores (SNIPE
scores for hippocampus and entorhinal cortex), and disease severity
(CDR-SB [Clinical Dementia Rating Sum of Boxes]) from baseline data
that are used as input to the classifier. The classifier then attempts to
predict the future diagnosis for each patient. To train the classifier, we
need patient diagnostic information collected at later time points
during the study. The follow-up period is the time interval from base-
line to later time points for which we know the state of the subject: i.e.,
whether that subject has progressed to dementia or has maintained the
aMCI stage.

2.1. Dataset

2.1.1. Dataset selection
Data used in this study were obtained from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the pro-
gression of aMCI and early Alzheimer's disease (AD). The study was
approved by each participant sites’ Review Board. A written in-
formed consent was obtained from each participant at the time of en-
rolment that included permission for analysis and data sharing.

We used all amnestic MCI subjects from ADNI1, ADNI2, and ADNI-
GO for which the baseline cognitive scores and T1 MRI were present
(n = 756). We used MRI and cognitive data from the baseline visit to
predict the future clinical diagnostic status at follow-up at 12, 24, 36,
48, 60, 72, 84, and 108 months (See Table 1). (While 120-month data is
available, too small a number of subjects are available for model testing
and validation.)

At each visit of the ADNI study, patients are evaluated for AD based
on NINCDS-ADRDA criteria (McKhann et al., 2011). Amnestic MCI
participants are identified as those that have reported a subjective
memory concern either autonomously or via an informant or clinician;
have abnormal performance on the Wechsler Memory Scale Logical
Memory II test, however activities of daily living are preserved
(CDR = 0.5) and they do not meet criteria for a dementia diagnosis.

2.1.2. Dataset labeling
The subjects were labeled either stable MCI (sMCI) or progressive

MCI (pMCI) label based on the difference in diagnostic status between
the baseline visit and each follow-up time point. For example, at 24
months, we included all aMCI subjects for which the diagnostic state at

Table 1
Dataset information based on follow-up duration.

Baseline 12 months 24 months 36 months 48 months 60 months 72 months 84 months 96 months 108 months

pMCI subjects (#) 756 total 101 174 174 127 70 53 32 23 17
sMCI subjects (#) 619 431 325 200 97 50 44 33 21
pMCI:sMCI ratio 0.163 0.404 0.535 0.635 0.722 1.060 0.727 0.697 0.810
Mean Age at baseline (Standard Deviation) 73 (7) 73 (7) 73 (7) 73 (7) 72 (7) 72 (7) 74 (7) 74 (7) 74 (7) 73 (7)
Female Percentage (%) 40 39 40 38 38 35 35 34 29 34
Median education (First, third quartile) 16 (14,18) 16 (14,18) 16 (14,18) 16 (14,18) 16 (14,18) 16 (13,18) 16 (13,18) 16 (12,18) 16 (12,18) 16 (13,18)
Median MMSE (First, third quartile) 28 (26,29) 28 (26,29) 28 (26,29) 28 (26,29) 28 (27,29) 28 (27,29) 27 (26,29) 28 (27,29) 28 (27,29) 28 (27,29)

Note: sMCI shows stable MCI subjects, while progressive MCI population are referred to as pMCI. All information reported is based on baseline visit for each follow-up
cohort.
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24 months was present, and their clinical status remained unchanged or
worsen during the follow-up period. The subjects who maintained their
baseline amnestic MCI state were labeled sMCI. Subjects that pro-
gressed to a dementia due to AD diagnosis at any time up to and in-
cluding the follow-up time point received the pMCI label. We do not
consider later time points, as our goal is to match the clinical status at
the given time point. It is important to note that some subjects may
return to a normal cognitive state at later follow-up visits. However, we
do not use this information at the earlier time point, as this information
is not available at that time and we wish to evaluate the classifier, as it
would perform in a prospective context. When a subject did not have a
diagnostic label for a time point, that subject was dropped from the
analysis for that follow-up time point only. The detailed aMCI dataset
information is given in Table 1. During long, large studies such as ADNI
drop-outs can occur due to many reasons, which could potentially bias
the outcome of studies. In order to prevent such biases, we limited
ourselves to subjects for whom the clinical status is known and data is
present in both clinical groups (stable and progressive MCI at every
time point). We believe that such a strategy is more robust to dropout
biases in comparison to including the most recent clinical status as the
clinical status for each given follow-up period. Therefore, the strategy
used here to categorize the data prevents the bias that could have been
introduced to the analyses due to the clinical status of the subjects who
dropped out from the study.

2.2. Measures

2.2.1. MRI derived biomarker
Hippocampal and entorhinal SNIPE grading scores were used as the

only MRI biomarker features in the predictive classifier. The SNIPE
score is described fully in (Coupe et al., 2015, 2012a). In short, after
preprocessing with our in-house pipeline that includes denoising
(Coupe et al., 2008), N3 inhomogeneity correction (Sled et al., 1998),
linear intensity normalization based on histogram matching between
the image and the average template, and affine registration to ICBM152
template space with 1 × 1 × 1 mm3 resolution (Collins et al., 1994),
SNIPE assigns a similarity metric to each voxel, which shows how much
that voxel's neighbourhood resembles the anatomy of either, a group of
patients with Alzheimer's dementia or a group of normal controls. The
final SNIPE score is an average of all the voxels in the desired anato-
mical structure in each hemisphere (Coupé et al., 2015). For this study
the SNIPE scores are corrected for age and sex using the method pre-
sented in Dukart et al. (2011). The scores are corrected based on a
linear regression model fitted only on the cognitively normal popula-
tion to correct for the effect of normal aging and preserve the effect of
disease-related changes. All processed MRI was submitted to visual
quality control. No datasets needed to be excluded for insufficient
quality.

2.2.2. Neurocognitive scores
As mentioned before, previous studies showed that the prognostic

value of neurocognitive scores can vary depending on remaining time
to future onset of dementia (Belleville, 2017). Here, we included the
baseline neurocognitive scores available within the ADNI study. These
included the total score of ADAS-cog (both ADAS-cog-11 and ADAS-
cog-13), the Rey Auditory Verbal Learning Task (RAVLT) scores of
immediate recall, learning and forgetting, and MMSE. RAVLT is ad-
ministered by presenting a list of 15 words across five consecutive
trials. The performance of the participant is measured by the ability to
recall the words immediately after each trial (immediate – recall), or
recalling the words after presenting the participant with different set of
words and a time delay (learning), and number of the words that the
participant forgets from the initial list (forgetting). We also included
baseline CDR-SB. The values are corrected for age, sex and education
using the method presented by Dukart et al. (2011).

2.3. Procedures and statistical analysis

2.3.1. Classification and validation
We trained three classifiers based on the following features: first,

using only four MRI-driven biomarkers (both left and right entorhinal
and hippocampal SNIPE score) and age, sex and years of education;
second, using only seven neurocognitive scores plus age, sex and edu-
cation; and third, using all MRI driven and cognitive scores together
plus age, sex and education. All features are drawn only from the
baseline visit. For each follow-up, we trained a specific Naïve Bayes
classifier, for which the baseline information is used as features and the
stable/progressing state of a patient at that specific follow-up period is
regarded as the desired output. All classifiers are tested with a Leave
One Out (LOO) cross-validation technique. This means that in each
step, the classifier is trained on all the subjects from the dataset for that
specific follow-up except one specific subject that is used as the test
subject. This process is repeated so that all subjects are used for testing.
Therefore, we have a completely separate testing and training sets.

2.3.2. Classification accuracy, sensitivity, specificity and area under the
receiver operating curve (AUC)

The classification performance at each time point is measured by
classification accuracy, sensitivity and specificity for each follow-up
period. To make the comparison between the metrics for different set-
tings (using only MRI-driven scores, only using neurocognitive scores,
or using both sets of features) feasible and to gain a more robust sense
of the classification performance, we measured the classification ac-
curacy, sensitivity and specificity by sampling 85 percent of data
without replacement for each iteration and we repeated the perfor-
mance calculation procedure for 200 iterations. That is, for each
iteration, we ran a LOO procedure only using 85% of the population.
The final accuracy, sensitivity and specificity shown are the mean of the
calculated metrics and the standard deviations is shown with error-
bars.

As a measure that is robust to unbalanced classes, we also report the
AUC for the classifier trained with all the features to better show our
model performance.

2.3.3. Feature importance
To determine the relative importance of the different features over

the 9-year follow-up period, we use a metric similar to effect size,
customized for Naïve Bayes classification. In summary, we compare the
different features based on their importance for our classifier at each
point over time in the follow-up period (see the supplementary material
for details on how feature importance is computed). This shows how the
features gain or lose importance over time and is related to the disease
progression.

3. Results

3.1. Classification performance

The accuracy, sensitivity and specificity at each follow-up time
point are plotted in Fig. 1 for the three classifier scenarios: using only
MRI features, using only neurocognitive scores and using both MRI and
neurocognitive features together as inputs. From 24 months onwards,
the classification accuracy using both sets of features are better than
using only MRI features or only neurocognitive features. MRI features
are more sensitive (Fig. 1, middle), while neurocognitive features bring
specificity to the prediction (Fig. 1, right).

Statistical comparisons were made between accuracies, sensitivities
and specificities of all the classifiers with different feature sets. Models
were compared when trained using combined feature sets (i.e., MRI and
neurocognitive scores) and with each one of them alone. An ANOVA
with post-hoc pairwise Tukey test with 95% confidence level shows that
the combined model significantly performs better than the models
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trained on each feature set alone in all follow-up periods (p<2× 10–5)
except for the accuracies of the combined model and the model trained
with only neurocognitive scores at 108 months.

As stated in the methods section, data imbalance may cause bias
towards one of the classes, thus affecting the classification results. For
example, at 12mo, there are only 101 pMCI and 619 sMCI. A simple
classifier that assigns all the test cases to the majority class would ob-
tain 86% accuracy by assigning all subjects to sMCI class. We therefore
measured AUC, which is a more robust metric against data imbalance.
The AUC curve in Fig. 2 shows the best second-degree fit (Akaike In-
formation Criterion yielded −34.31 for second order vs. −19.91 for a
linear model). The AUC plot over time shows an inverted-U pattern
where the maximum performance happens around 60 months
(AUC = 0.92) with accuracy, sensitivity and specificity of 87%, 86%,
and 89%, respectively. The model is robust with AUC values >0.85 for
follow-up periods from 24 to 84 months.

The inverted-U pattern in the AUC plot (Fig. 2) is counterintuitive as
baseline visits should be more informative for early follow-up periods
and less informative for longer follow-up periods and, therefore, model
performance should fall monotonically in time. Indeed, the sensitivity
profile drops over time for the classification models using only MRI or
only cognition features but remains relatively flat for the combined
model. The inverted-U pattern of the AUC curve (Fig. 2) is driven by the
inverted-U shape of the specificity plot (Fig. 1), indicating that the
classifier does not properly identify the negatives (sMCI) at the earlier

follow-up time points.
Early follow-ups are prone to more false positives. We hypothesize

that this happens due to the fact that shorter follow-ups don't allow
enough time for all prodromal AD subjects to progress to a clinical
dementia diagnosis. This means that these false positives are in-
dividuals who do not change categorical diagnostic categories in
shorter follow-ups even though the disease is progressing and will reach
the dementia stage at a later time point. To test this hypothesis, one
could show that the conversion rate in this group is greater than the
average MCI population. From the 109 false positives at 12 months, 70
(64%) converted to dementia, with more than 43% converting within
one year (47 converted within one year, 11 within two years, 8 within
three years and 4 in four years or more). This is much higher than the
expected yearly rate of progression of 10%–15% (Petersen, 2009), in-
dicating that many of these false-positives are in fact true progressors at
a later follow-up time.

3.2. Feature importance

Importance of each feature in predicting disease progression at each
follow-up is shown in Fig. 3. For illustration, we averaged importance
over ADAS-cog-11 and ADAS-cog-13, RAVLT learning, forgetting and
immediate, hippocampal SNIPE score for left and right, entorhinal
SNIPE score for left and right, and made one score out of each set. This
graph shows the value of each feature in making the final decision when
the classifier has access to both neurocognitive and MRI data. ADAS-cog
shows the greatest importance over the entire follow-up period, fol-
lowed by hippocampal SNIPE scores.

While all features lose AD-related sensitivity for very long follow-
ups, the peak importance for each one happens at a different follow-up
period. The later the peak, the more sensitive a feature would be to
earlier detection of the disease. Meaning, the farther a peak happens
relative to the baseline, the more sensitive is the corresponding feature
to the very early patterns of AD-related pathology. If used alone, en-
torhinal cortex shows the earliest possible detection performance at 68
months and is among the first biomarkers to show abnormality. While
the hippocampal grading score has a peak at 39 months, it shows a
higher importance for all the follow-up periods from one to seven years
compared to the entorhinal cortex SNIPE score. Similarly, by peaking at
62 months, the RAVLT neurocognitive scores are more sensitive to early
AD changes in comparison to the more general screening test MMSE
and the disease severity marker CDR-SB (performance peak at 47 and
19 months, respectively). Having multiple biomarkers available enables
each classifier to select the most appropriate data to achieve high
sensitivity and specificity for all follow-up periods.

The demographic information shows very low importance in

Fig. 1. Accuracy, sensitivity and specificity for classifier performance considering from 12 to 108 months of follow-up.
Data points show the mean metric calculated in each follow-up period from 200 bootstrap samples of 85% of the data. Error bars show the associated standard
deviation. The curves show the best second-degree fit.

Fig. 2. Area under the receiver operating curve (AUC) for follow-ups from 12 to
108 months.
Data points show the AUC metric value at each follow-up period.
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comparison to all the other features (Fig. 3). In fact, their effect is
negligible with respect to the other markers. However, they show
higher importance for late follow-ups rather than short ones (i.e., peaks
at 61, 68 and 64 months for age, sex and education, respectively).

4. Discussion

In this study, we evaluated a prognostic model to predict the onset
of dementia using baseline neurocognitive and MRI-driven features
from ADNI subjects as a function of follow-up period.

This study showed that both MRI and neurocognitive information
are needed to make the most accurate decision on future progressors.
Importantly, they contribute differently to overall accuracy. This ob-
servation has been shown previously in (Peters et al., 2014) with a
smaller cohort and a single, shorter follow-up period. In the present
study, we investigated how the different categories of features con-
tribute to the final performance of the model. Furthermore, this study
investigated the effect of different follow-up periods on performance of
such a model. The MRI-driven features are more sensitive than neuro-
cognitive test scores, but neurocognitive scores are more specific than
MRI features. In other words, the MRI derived biomarkers are highly
sensitive to the morphological pattern of abnormal brain aging (i.e., to
identify at-risk subjects), while preservation of cognition function
contributes to identify persons who will not progress over time despite
MRI changes. This would explain why using both make an optimally
accurate, sensitive, and specific prognostic tool.

One of the observations in this study was that the AUC follows an
inverted-U shape over the 9-year follow-up period: at the beginning,
AUC rises with time, reaches a maximum, and then falls again. It has
been previously observed that a model trained based on neurocognitive
scores can show low predictive ability for shorter follow-up periods
(Belleville, 2017). This study reported low sensitivity in shorter follow-
ups using some neurocognitive scores such as semantic fluency tasks
(Belleville, 2017). By combining many of the neurocognitive scores
available in ADNI with MRI features we maintained high sensitivity
throughout the 9-year follow-up period. The study postulates that in
shorter follow-ups, performance is adversely affected by late converters
(i.e., individuals whose progression is not sufficient at the one-year time
point to change diagnostic category but reach the dementia stage later).
However, to the best of our knowledge, no previous study has shown
the late-converters hypothesis and their effect on model performance
using a data-driven approach. Our investigation with short follow-ups
showed that the majority of false positives are in fact late convertors.

Indeed, 42% of the false positives at 12 months convert to dementia
within the following year. This is almost three times the rate of con-
version to dementia found in the average MCI population
(Petersen, 2009). More specifically, when our model falsely predicts the
conversion to dementia at 12 months, it is likely that there is patho-
physiological progression in the brain, but that more time is needed for
the disease to reach the dementia stage. Another possibility might be
related to cognitive reserve (Katzman et al., 1988, 1993; Stern et al.,
1994). The cognitive reserve hypothesis suggests that at a particular
level of AD pathology, different individuals manifest different levels of
clinical symptoms of dementia. It has been shown that highly educated
individuals are less likely to manifest clinical symptoms of dementia
compared to less-educated individuals (Katzman et al., 1988, 1993;
Stern et al., 1994). However, in our study, there was no difference in
education levels between the false positive and true positive groups at
12 months, which argues against this explanation. However, we believe
that considering the limited variability in education level of ADNI data,
the effect of cognitive reserve cannot be effectively investigated using
ADNI dataset.

Furthermore, our study showed that features which are highly
sensitive for short follow-ups – for instance disease severity metric
(CDR-SB) - can lose importance during longer follow-ups, while some
other features may show low sensitivity to early stage changes and gain
importance in longer follow-ups like the entorhinal cortex SNIPE
grading and RAVLT score. Furthermore, certain baseline neurocognitive
scores, like RAVLT, are better than others for longer follow-ups. This
confirms a previous study that showed that verbal memory measures
and language tests have high predictive value for progression to de-
mentia during the MCI period (Belleville, 2017; Braak and
Braak, 1995). Namely, a simple bedside test like the MMSE still has
reasonable accuracy to predict conversion.

For mid-range time periods, the combined MRI and cognitive bio-
marker model closely predicts the follow-up clinical diagnosis. Our AUC
reaches 0.92 for five-year follow up, which, to the best of our knowl-
edge, is the highest AUC reported for five-year follow-up for any pre-
dictive method in AD.

This study is not without limitations. While we used the large
publicly available multi-site ADNI dataset, the longest follow-up per-
iods (e.g., 96 and 108 months) would benefit from a larger subject pool
as the number of subjects was highly constrained by the availability of
diagnosis, study data, and availability of MRI at baseline. Since the
dataset size was limited in longer follow-ups, we decided to use LOO
cross-validation. While the method keeps the test and training sets se-
parate, a less data conservative variant, such as 10-fold cross-valida-
tion, could be used in case of availability of larger datasets.
Furthermore, for the same reason, we decided to include MRI scans
with both 1.5T and 3T field strengths to our dataset. To account for this
variability, we parameterised our pre-processing module to decrease
the variability in the dataset. In addition, a study showed that the
pattern of hippocampal atrophy in AD could be similarly observed
using both 1.5 T and 3T (Chow et al., 2015). However, using unique
field strength for the analyses could decrease the dataset size, which
was avoided due to small number of subjects specifically in longer
follow-ups.

In addition, our dataset includes patients only with amnestic MCI
who maintained their cognitive status or progressed to AD dementia;
therefore we cannot determine the accuracy of our model for
Alzheimer's disease beyond the typical clinical presentation or aMCI
subjects who revert to cognitively normal status or progress with a non-
AD etiology. A more heterogeneous population, more representative of
the clinical population with prospective follow-up would be needed to
evaluate these tools before they could be used in the clinic. Finally, we
do not compare our results to those that use molecular imaging such as
amyloid-PET (Mathotaarachchi et al., 2017). In future work, we will
combine amyloid imaging with our MRI and cognitive features.

Fig. 3. Feature importance for each follow-up period.
Features show both neurocognitive and MRI-driven scores. The curves show the
best second-degree fit given the metric for the 9-year follow-ups.
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5. Conclusion

We have demonstrated that combining MRI features with neuro-
cognitive test results from a baseline visit can be used to predict the
onset of dementia in a large cohort over periods up to 9 years, but with
maximal accuracy up to five years. Our study showed that MRI-driven
features and Neurocognitive scores complement each other, resulting in
a robust predictive method that is both sensitive and specific. We
showed that MRI-driven features are more sensitive predictor of early
AD patterns, while cognitive scores bring specificity to the prediction.

The two year FINGER trial (Ngandu et al., 2015) demonstrated
significant benefit of combined diet, exercise and cognitive training
interventions to prevent cognitive decline in cognitively at risk adults.
Early detection (e.g., 5–10y) is key to intervene to prevent irreversible
neurodegeneration and the onset of cognitive decline. In addition, the
uncertainty of future progression is a major source of anxiety for pa-
tients, therefore any tool that increase the accuracy of course prediction
would be of great benefit. With additional validation, this tool could be
useful in the clinic for better patient management and for cohort en-
richment in clinical trials of new treatments for AD.
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