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Organoid models combined with genome engineering and
epigenome studies to define SOX2 function evolution in
esophageal squamous cell carcinoma

Esophageal cancer is the eighth most frequently reported
malignancy and the sixth leading cause of cancer death
worldwide.1 More than half of new esophageal cancer cases
and deaths, of which about 90% are esophageal squamous
cell carcinoma (ESCC), are in China.2,3 Effective therapeutic
options are limited for patients with advanced ESCC.4,5

Cytogenetic abnormalities, such as gain of chromosome 3q
which targets the locus encoding sex-determining region
Y-box 2 (SOX2), is a common event in ESCC.6 The genomic
amplification of SOX2 has been identified as one of the most
specific genomic alterations in ESCC, indicating that SOX2
plays a vital role in ESCC initiation and progression.6

SOX2 is a well known cell fate determining transcription
factor and octamer-binding transcription factor 4 (OCT4) pro-
tein partner active within embryonic and pluripotent stem
cells. However, SOX2 plays an important role in promoting
development of the esophagus and is a marker of precursor
populations in the adult esophagus.7 In other words, SOX2 can
perform distinct functions in cells of different lineages. This is
because it has multiple binding sites which can interact with
different protein partners. Indeed, Watanabe et al.8 demon-
strated that SOX2 in squamous cell carcinoma could directly
bind to p63 (a squamous transcription factor) and colocalize in
specific genomic regions. So far, we know that both SOX2 and
p63 are coexpressed in normal esophageal squamous progeni-
tor cells and ESCC cells,9 but the difference between the nor-
mal and neoplastic functions of SOX2 is still unknown.
Distinguishing between the two types of SOX2 function and
their potential molecular mechanisms will enable better under-
standing of the initiation and progression of ESCC and pro-
mote the development of targeted therapy.

In a study recently published in Nature Genetics, “Repro-
gramming of the esophageal squamous carcinoma epigenome
by SOX2 promotes ADAR1 dependence”, Wu et al.10 defined
the evolution of SOX2 function during ESCC carcinogenesis
by establishing a set of engineered organoids representing phe-
notypes from the normal esophagus to SOX2-induced ESCC.
Specifically, they compared SOX2 activity in normal esophagus
and malignant tissues at different stages and characterized the
epigenetic and transcriptional programs induced by SOX2

during the evolution from normal to cancer. They found that
SOX2 maintained most of the functions observed in normal
esophageal tissues, but when the cells in the esophagus undergo
SOX2 overexpression and tumor suppressor gene (p53 and
p16) inactivation simultaneously, chromatin remodeling and
SOX2 cistrome evolution will be promoted. This leads to the
opening of the loci where SOX2 binds with its protein partners,
including krueppel-like factor 5 (Klf5), AP-1, and TEA domain
transcription factor (TEAD), followed by the activation of new
gene expression programs. These findings are consistent with
the data provided by Dodonova et al.11 (both studies have
demonstrated that SOX2 has the ability to promote nucleo-
some remodeling).

The authors in this study subsequently focused on Klf5.
The function of Klf5 in ESCC is still controversial. Some
research groups have demonstrated that Klf5 could promote
ESCC progression,6 while others found that Klf5 inhibited
tumor growth in ESCC.12 Klf5 is routinely expressed in nor-
mal esophageal epithelial cells and suggests that it may be a
tumor suppressor gene,12 but Klf5 amplification has fre-
quently been found in ESCC and suggests that it may act as
an oncogene.6 This study supports the oncogenic role of
Klf5. The authors found that with the assistance of Klf5,
SOX2 could acquire new genomic binding sites and enhance
the transcriptional activity of certain oncogenes, such as sig-
nal transducer and activator of transcription 3 (STAT3).
Similarly, a recent study reported that Klf5, SOX2, and p63
could jointly regulate gene expression, epigenetic modifica-
tion, and chromatin accessibility in ESCC.9 After discover-
ing the network of SOX2 and Klf5 binding sites activated
during the malignant transformation of esophageal epithelial
cells, we wondered whether the ability of SOX2 to bind to
new transcription factor binding sites with Klf5 may serve a
series of physiological functions in specific cellular contexts.
Based on the concept of cancer as a nonhealing wound, we
believe that the SOX2/Klf5 transcription complex may be
activated during injury repair or acute stress, and this pro-
cess is hijacked by ESCC cells. Indeed, most of the pathways
activated by SOX2 in ESCC, such as the YAP/TEAD and
IL6/JAK/STAT signaling pathways, are associated with
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injury and infection. In addition, Klf5 has been reported to
be a key factor involved in colon injury.13

This study also found that SOX2 overexpression could
induce the expression of double-stranded RNAs (dsRNAs),
endogenous retroviral elements (ERVs), and interferons
(IFNs), as well as enhance the dependence on double-stranded
RNA-specific adenosine deaminase 1 (ADAR1). Since ERVs
are considered to be the markers of injury or acute stress and
can enhance IFN response by stimulating dsRNA sensors,
SOX2-induced ERVs may be a byproduct of injury or acute
stress. Furthermore, SOX2-induced ERVs can promote chronic
inflammatory conditions14 reflecting the potential role of
chronic inflammation to promote carcinogenesis. It is worth
noting that ERVs have also been shown to regulate the self-
renewal of stem cells.15 Therefore, we believe that
SOX2-induced ERVs may not only activate innate immune
signaling, but also contribute to enhancing the self-renewal of
cancer stem cells. The data regarding ADAR1 dependence in
this study has multiple implications. First, this study indicated
that inhibiting ADAR1 may suppress ESCC growth. ADAR1
inhibition has previously been shown to enhance the efficacy
of immune checkpoint inhibitors (ICIs) in cancer treatment,16

therefore, the combination of ADAR1 targeted therapies and
ICIs may be more effective against ESCC. Moreover, the find-
ings in this study that SOX2 promotes ERV expression in
ESCC can help us determine treatment plans that enhance ICI
efficacy. As epigenomic therapies can inhibit ERV expression
with resulting IFN induction and ICI potentiation, combining
epigenetic therapies with ADAR1 inhibitors is expected to
become a highly effective cancer treatment strategy.

Overall, this study shows that combining organoid
models with genome engineering and epigenome studies is
an effective way to track the evolution of transcription fac-
tors involved in cancer initiation and progression. By using
this strategy, the key transcription factors that drive tumori-
genesis can be identified and ultimately promote the devel-
opment of anticancer therapies.
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