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Abstract

Diseases often display complex and distinct associations with their environment due to differences in etiology, modes of
transmission between hosts, and the shifting balance between pathogen virulence and host resistance. Statistical modeling
has been underutilized in coral disease research to explore the spatial patterns that result from this triad of interactions. We
tested the hypotheses that: 1) coral diseases show distinct associations with multiple environmental factors, 2)
incorporating interactions (synergistic collinearities) among environmental variables is important when predicting coral
disease spatial patterns, and 3) modeling overall coral disease prevalence (the prevalence of multiple diseases as a single
proportion value) will increase predictive error relative to modeling the same diseases independently. Four coral diseases:
Porites growth anomalies (PorGA), Porites tissue loss (PorTL), Porites trematodiasis (PorTrem), and Montipora white syndrome
(MWS), and their interactions with 17 predictor variables were modeled using boosted regression trees (BRT) within a reef
system in Hawaii. Each disease showed distinct associations with the predictors. Environmental predictors showing the
strongest overall associations with the coral diseases were both biotic and abiotic. PorGA was optimally predicted by a
negative association with turbidity, PorTL and MWS by declines in butterflyfish and juvenile parrotfish abundance
respectively, and PorTrem by a modal relationship with Porites host cover. Incorporating interactions among predictor
variables contributed to the predictive power of our models, particularly for PorTrem. Combining diseases (using overall
disease prevalence as the model response), led to an average six-fold increase in cross-validation predictive deviance over
modeling the diseases individually. We therefore recommend coral diseases to be modeled separately, unless known to
have etiologies that respond in a similar manner to particular environmental conditions. Predictive statistical modeling can
help to increase our understanding of coral disease ecology worldwide.
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Introduction

The notion of a complex web of interactions between a disease

and its environment has been postulated for centuries [1] and

stems from the fact that diseases often have intricate etiologies [2]

and different modes of pathogen transmission between hosts [3].

Furthermore, pathogen virulence can respond positively or

negatively to a range of variables, such as temperature, nutrient

availability, or habitat quality [4–6]; changes in environmental

conditions can promote physiological stress that impairs host

immunity [7–9], and there may be differences in disease

susceptibility between host genotypes [10,11]. With this in mind,

it is easy to envisage how complex associations between a disease,

the host, and the environment can become established. For

example, cholera in humans is caused by Vibrio cholerae, a

bacterium that attaches to zooplankton[12]. Outbreaks of cholera

are not the result of changes in a single environmental factor, but

instead involve multiple interactions between human host

densities, V. cholerae, water temperature, salinity, and copepod

abundance, and are generally a result of zooplankton blooms

following heavy rainfall [13].

Marine organisms are also subject to the influence of disease.

Coral reefs worldwide are in decline [14–16] and the role of

marine diseases, in particular coral disease, to this decline is

receiving increasing attention [5,17–20]. Coral disease outbreaks

can lead to an overall reduction in live coral cover [21] and

reduced colony density [22], and in extreme cases initiate

community phase-shifts from coral- to algal-dominated commu-

nities [23]. Coral diseases can also result in a restructuring of coral

populations [24], for example a shift from long-lived slow growing

massive reef builders to communities dominated by smaller,

shorter-lived corals [25]. As corals act as facilitators for other reef

invertebrates [26] and fish [27] their loss threatens coral reef

biodiversity and function. Spatial patterns of coral disease are

linked to environmental conditions [28]. Significant relationships

exist between coral disease prevalence and elevated water

temperatures [29–32], a decline in water quality [33–37], vector

and host densities [31,38], and intensity of coral bleaching [39,40].

The effects of environmental factors on coral disease prevalence

and modes of transmission are likely to be intricate and synergistic

[41]. Recently, efforts have shifted towards this multi-factorial

concept. For example, scleractinian coral white syndrome

outbreaks along the Great Barrier Reef (GBR) require a threshold

coral cover of greater than 50% in conjunction with thermal stress

events, and the interaction between the two predictors explains a

significant amount of the increase in the frequency of outbreaks
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[31]. In Kenya, the relationship between massive Porites growth

anomaly prevalence and 16 environmental parameters including

water quality, temperature, intensity of bleaching, and benthic

composition were modeled to reveal bleaching intensity as the

most important factor in explaining spatial distribution of the

disease [40]. However, researchers and monitoring programs are

still, on occasion, attempting to understand spatial patterns of

overall coral disease prevalence (combining the prevalence of

multiple diseases into a single proportion value as the response

variable) with the environment. This approach ignores the

common-sense notion that diseases with different pathogens and

hosts are unlikely to have common spatial/temporal patterns or

environmental associations, and therefore should be monitored

and analyzed individually unless known to have a similar cause.

Exploring coral disease spatial patterns requires a statistical

technique that effectively addresses the complexity of disease

ecology, in particular the potential for non-linear relationships

between the disease, host and environment [42]. One approach is

classification and regression tree (CART) modeling [43]. Regression

trees have several advantages as a modeling technique, including

that various types of predictor and response variables can be

analyzed simultaneously rather than in an iterative manner, missing

values in data sets can be incorporated and therefore information

loss minimized, and complex interactions between predictors can be

quantified and modeled in a simple manner [44]. Despite these

advantages regression trees are often poor predictors and large trees

can be difficult to interpret [44]. Recently these weaknesses have

been overcome with the use of boosted regression trees (BRT)

[44–49], which incorporate machine learning decision tree methods

[50] and boosting, a method for improving model accuracy (reducing

predictive error) [46]. BRT differs fundamentally from conventional

techniques that aim to fit a single parsimonious model. Instead, the

final BRT model is an additive regression model in which individual

terms are simple trees, fitted in a forward stage-wise manner [46]. In

summary, BRT gives two crucial pieces of information, namely the

underlying relationship between the response and each predictor, and

the strongest statistical predictor (among the simultaneously tested

predictors) of the response in question. These are clearly two different

things, and as BRT focuses on building predictive models for theory

development, the environmental associations that result can be direct

or indirect. Disease-environment relationships revealed by this type of

modeling can be used to predict spatial patterns in novel systems and

facilitate hypothesis-driven experimental studies. Exploratory and

predictive modeling provides an initial step towards understanding

spatial patterns and processes and has been underutilized in coral

disease research.

In the present study, we used a BRT technique and a reef system

with contrasting environmental conditions and a range in coral

disease states and prevalence to address the following hypotheses: 1)

coral diseases show distinct associations with multiple environmen-

tal factors, 2) incorporating interactions (synergistic collinearities)

among environmental variables is important when predicting coral

disease spatial patterns, and 3) modeling overall coral disease

prevalence (the prevalence of multiple diseases as a single

proportion value) will increase predictive error relative to modeling

the same diseases independently. In addition, to develop the use of

BRT modeling in coral disease research we outline the analytical

methods of a technique and its novel application.

Materials and Methods

Model System, Host Sensities and Disease Prevalence
In August 2007, pilot surveys were conducted within Coconut

Island Marine Reserve (CIMR) (21u269N, 157u479W), Kaneohe

Bay, Oahu, Hawaii. The two competitively dominant space

holders in the system were Porites compressa and Montipora capitata.

Pocillopora damicornis, P. meandrina and Fungia scutaria were also

observed but at low densities. Four disease states affecting Porites

and Montipora spp. were documented and CIMR was found to

represent an ideal system for modeling coral disease-environment

associations due to large variations in host abundance, disease

prevalence, and environmental conditions over spatial scales of

100s m (Fig. 1, Table 1).

We conducted surveys over two five-week periods: October –

November 2007 (winter), and May – July 2008 (summer). The

sampling design was not hierarchical, but instead was designed to

maximize variability between observations in both disease

prevalence and the environmental predictors. Observations were

randomized within 11 specific regions of CIMR known, from

preliminary surveys, to display contrasting disease prevalence and

environmental conditions. To quantify disease prevalence, 55 belt

transects (1062 m) were surveyed within a depth range of 0.7–

3.1 m in each season (giving 110 observations overall). Lesions on

colonies were classified according to gross morphology (growth

anomalies, tissue loss, discoloration, trematodiasis) and assigned

the host genus and descriptive name [51] (Fig. 1). Porites

trematodiasis (PorTrem) was recorded even if a single lesion was

found on a colony. The proportion of diseased colonies was

calculated for each disease and the overall (total) disease

prevalence. To quantify host abundance, every coral colony

whose centre fell within the belt transect area was counted and

inspected for signs of disease. Percentage cover of live coral was

estimated using a point-intercept method at 50-cm increments

along the transect line.

Environmental and Biological Predictors
Salinity, turbidity and chlorophyll-a were measured using two

RBRH XR-420 data loggers (www.rbr-global.com) recording every

minute over 24 hr periods at the depth of the coral. The

chlorophyll-a value is a measure of how much of the suspended

material present (turbidity) contains chlorophyll-a. The placement

of the loggers was randomized among the 11 CIMR regions

throughout each 5-week period. HOBOH Pro temperature data

loggers (www.onsetcomp.com) were attached to the reef within

each of the 11 regions; these recorded every 10 min from the start

of October 2007 to the end of July 2008.

Sedimentation levels were measured as a potential source of

stress to the corals which in turn may influence their susceptibility

to disease. Within each of the 11 regions, sedimentation was

quantified using PVC sediment traps [52]. These were attached to

stainless steel poles and placed into, and approximately 30 cm

above, the substrate among coral colonies. Sedimentation was

measured over 7-day periods, with measurements repeated 5 times

per season. To determine the organic carbon fraction of the

sediment (a proxy for the level of organics, but not dissolved

organics, entering the system), sediment was finely ground, oven

dried at 100uC for 10 h and weighed. Samples were then placed in

a muffle furnace at 500uC for 12 h to burn off the organic fraction

and the remaining inorganic fraction reweighed [53].

Physical injury to the host coral can promote the spread of

some coral diseases [54]. Reef fish, such as butterflyfishes,

parrotfishes and damselfish, offer a potential source of injury to

corals [55–57] and fish are known to be involved in disease

transmission [58] and/or promoting the rate of disease spread

[59]. Within CIMR, pilot surveys showed butterflyfish to be the

dominant coral-feeding fish. Damselfish and adult parrotfish were

seldom seen but juvenile parrotfish were abundant and parrotfish

feeding scars were seen around CIMR, particularly on P.

Coral Disease Patterns
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compressa. Hence, only coral-feeding butterflyfish (facultative and

obligate) and juvenile parrotfish were quantified over a 5066 m

area within the vicinity of each disease transect. The observer

swam at a speed of approximately 10 m min21 to account for the

active nature of these reef fish and 1 m out from the reef-flat edge

to detect fish both on the reef flat and slope. Horizontal visibility

limited the width of the transect, with 3 m being the limit at

which fish could confidently be identified to species. Butterflyfish

species observed were Chaetodon auriga, C. ephippium, C. lineolatus, C.

lunula, C. lunulatus (formally C. trifasciatus), C. multicinctus, C.

ornatissimus, and C. unimaculatus. Each count was conducted

between the daylight hours of 10:00 and 15:00 and replicated a

Figure 1. Gross descriptions of the four coral diseases present at Coconut Island Marine Reserve, Oahu, Hawaii. a) Porites growth
anomaly, b) Porites tissue loss, c) Porites trematodiasis, and d) Montipora white syndrome. Minimum and maximum prevalence values between
transects are shown.
doi:10.1371/journal.pone.0009264.g001
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minimum of five times, with each count taking place on a

different day.

Statistical Analysis
The 110 belt transects (55 from each season) were modeled

simultaneously against 17 predictor variables, which included

continuous environmental data, count data, and categorical terms

(Table 1). Transects were considered independent observations in

the models, and not pseudoreplicates, as they were separate from

each other in both space and time. We used Boosted Regression

Trees (BRT) [46] as the modeling technique. The technique is

sometimes referred to as stochastic gradient boosting, as BRT

includes an element of stochasticity in order to improve accuracy

and reduce overfitting (when a statistical model describes random

error or noise instead of the underlying relationship) [60]. BRTs

were constructed using the routines gbm version 1.5–7 [61] and

gbm.step [46] in the R statistical program version 2.6.2 (R

Development Core Team, http://www.r-project.org). Prevalence

data was log transformed and the few zero disease prevalence

counts that did occur removed in order to achieve a normal/

pseudo-normal distribution. The numbers of independent obser-

vations were then as follows: Montipora white syndrome (n = 101),

Porites trematodiasis (n = 86), Porites tissue loss (n = 101), Porites

growth anomalies (n = 110), and overall disease (n = 110).

Analyses were based on a Gaussian distribution. Due to problems

with assigning real probabilities in BRTs (there are no p-values) a

key approach is to use validation processes that require a

proportion of the data set to be held back. Due to our relatively

small data set, we used 10-fold cross-validation (cv) for model

development and validation, with the benefit of still using the full

data set to fit the final model. The measure of model performance

was cv deviance and standard error (se) throughout our study (the

lower the value the better the model performance). Within the

BRT model, three terms are used to optimize predictive

performance: bag-fraction, learning rate, and tree complexity.

The bag-fraction determines the proportion of data to be selected

at each step and therefore the model stochasticity; for example a

bag fraction of 0.5 means that 50% of the data are drawn at

random without replacement. The learning rate (lr) is used to

shrink the contribution of each tree as it is added to the model, and

tree complexity (tc) determines the number of nodes in a tree and

should reflect the true interaction order on the response being

modeled [62]. We determined optimal settings for these

parameters by examining the cv deviance over tc values 1–5, lr

values of 0.05, 0.01 and 0.001, and bag fractions of 0.5 and 0.75.

All possible combinations were run, with the optimal number of

trees in each case being determined by gbm.step. The combination

of the three parameter settings with the lowest cv deviance was

then selected to produce the final BRT. Finally, redundant

predictor variables may degrade model accuracy by increasing

variance, particularly in small data sets. We therefore achieved

optimization to create a balance between statistical performance,

parsimony, and usefulness of the model using the routine

gbm.simplify, a method analogous to backwards selection in

regression [46]. Both season and reef type (categorical predictors)

were found to exert no influence upon predicting the prevalence of

any disease and were removed during optimization before the

creation of the final BRTs.

As part of the final model, BRT assesses the relative importance

(or contribution) of each predictor. This measure is based on the

number of times a variable is selected for splitting, weighted by the

squared improvement to the model as a result of each split, and

averaged over all trees [45,46]. A higher relative importance of a

predictor indicates a stronger influence on the response (disease) in

question. Partial dependency plots were used for interpretation

and to quantify the relationship between each predictor variable

and the disease, after accounting for the average effect of all other

predictor variables in the model. To quantify interaction effects

between predictors (the collinearity and synergistic effect upon

predicting the response in question) we used the routine

gbm.interactions [46]. The relative strength of interaction fitted by

Table 1. Predictor variables used in the analyses with their codes and units.

Variable Type Code Description and units Min Max Range

temperature environmental Temp uC 23.0 27.3 4.3

salinity environmental Sal ppt 31.30 35.3 4.0

turbidity environmental Turb standard turbidity units (STU) 2.15 9.69 7.5

chlorophyll-a environmental Chl-a mg/l 0.25 1.04 0.8

depth environmental Depth m 0.74 3.06 2.3

sedimentation environmental Sed g/m2/day 27.7 89.8 62.1

organics environmental Org % of sediment 3.7 12 8.3

Porites cover biological Porites % 9 68 59

Porites density biological PorDen number of colonies/m2 1.5 15 13.5

Montipora cover biological Montipora % 2 42 40

Montipora density biological MonDen number of colonies/m2 1.1 33.4 32.3

total coral cover biological Cover % 28 87 59

total coral density biological Den number of colonies/m2 5 12 7

juvenile parrot fish biological JuvPF number per 300 m2 4 489 485

butterflyfish density biological BF number per 300 m2 0 13 13

reef type categorical Reef upper slope versus reef flat 2 2 2

season categorical Season first versus second season 2 2 2

Min/Max, minimum and maximum predictor values between transects.
doi:10.1371/journal.pone.0009264.t001
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BRT is quantified by the residual variance from a linear model,

and the value indicates the relative degree of departure from a

purely additive effect, with zero indicating no interaction effects

fitted. The interaction value can also be thought of as the relative

contribution of the interaction between the two predictors towards

the overall predictive performance of the individual model (the cv

deviance value). We defined a threshold interaction value and

reported the interactions with values $ 0.1. We performed the

above analyses for individual diseases and for the calculation of

overall disease prevalence.

Results

Environmental Associations and Strongest Predictors
Porites growth anomalies (PorGA). Two relationships

contributed most strongly to predicting PorGA prevalence

(Fig.2), namely negative relationships with both turbidity and

depth. PorGA prevalence was highest in clearer waters within 1 m

of the surface. In addition, prevalence peaked when there was an

overall coral cover of 40–70%, increased chlorophyll-a

concentration within any suspended material, lower juvenile

parrotfish abundance, and an increase in Porites cover. Turbidity

offered the largest contribution (i.e. it was the strongest predictor)

with a relative importance of 33.9% (Fig.2). Model cv deviance

equalled 0.391, with second order interactions present between

predictors (Table 2). The largest interaction (collinearity and

synergistic effect) involved Porites cover and total coral cover

(Table 3).

Porites tissue loss (PorTL). Three relationships contributed

most strongly to predicting PorTL prevalence (Fig.2): a negative

correlation with butterflyfish abundance, a positive correlation

with temperature, and a negative correlation with turbidity.

Prevalence peaked in areas with few butterflyfish, where

temperatures reached above 27uC, and low turbidity

environments. Butterflyfish abundance was the strongest

predictor with a relative importance of 47.5% (Fig.2). Model cv

deviance equalled 0.350, with second order interactions present

between predictors (Table 2). The largest interaction involved

butterflyfish (the strongest predictor) and turbidity (Table 3).

Porites trematodiasis (PorTrem). Four relationships

contributed most strongly to predicting PorTrem prevalence

(Fig.2). A modal relationship occurred with Porites cover, with a

peak in prevalence at approximately 50% cover, and a positive

correlation existed with overall colony density, reaching an

asymptote at approximately 9 colonies m221. There was a

positive correlation with butterflyfish abundance (peaking above

4 fish 300 m221), and a weak negative correlation with depth

(Fig.2). Porites cover was the strongest predictor with a relative

importance of 31.2% (Fig.2). Model cv deviance equalled 1.182,

the highest deviance for any of the individual models, with third

order interactions present between predictors (Table 2). The

largest interaction involved Porites cover and overall colony density

(the two strongest predictors). This was the largest interaction

value (2.02) seen within any of the models (Table 3).

Montipora white syndrome (MWS). Two relationships

contributed most strongly to predicting MWS prevalence,

namely a negative correlation with juvenile parrotfish abundance

and a positive correlation with chlorophyll-a concentration (Fig.2).

In addition, a positive correlation existed with temperature, with

peak prevalence occurring above 27uC. Juvenile parrotfish

abundance was the strongest predictor with a relative

importance of 53.6% (Fig.2). Model cv deviance equalled 0.213,

the lowest deviance (best fit) for any of the models, with second

order interactions present between predictors (Table 2). The single

interaction involved chlorophyll-a with temperature (Table 3).

This was the only model where the strongest predictor (juvenile

parrotfish abundance) did not interact with another predictor

variable above the defined interaction threshold.

Combining disease states (overall prevalence). Com-

bined modeling of the diseases led to a loss in predictive

performance (increased predictive error) of the model, with an

approximate six-fold increase in cv deviance above the average cv

deviance for all four diseases analysed individually (Table 2).

Discussion

Coral diseases, like most diseases, can logically be expected to

display complex associations with their environment due to the

intricate nature of the host -environment-pathogen triad of disease

causation [2], and the inherent multi-collinearity present between

biotic and abiotic variables in any ecological system. With the use

of boosted regression tree (BRT) modeling, this study has shown

that different coral diseases do indeed show complex associations

with a range of environmental variables and that these associations

are distinct between diseases. We determined the environmental

associations, and of these, the strongest statistical predictors of four

individual coral diseases within a reef system in Hawaii from a

suite of 17 predictor variables. The environmental conditions

showing the strongest overall associations (direct or indirect) with

coral disease prevalence in our model system were fish abundance,

host availability, temperature, water quality (turbidity and

chlorophyll-a concentration), and depth.

Biotic, Abiotic and Physical Associations with Disease
Within our study the relative importance of disease associations

(direct or indirect) with biotic, abiotic and physical parameters

differed across coral disease states. Porites growth anomalies

(PorGA) were optimally predicted by turbidity (abiotic), Porites

tissue loss (PorTL) and Montipora white syndrome (MWS) by a

decline in reef fish abundances (biotic), whilst spatial patterns of

Porites trematodiasis (PorTrem) were optimally predicted by Porites

host cover (biotic). The ecological mechanisms behind these

disease-environment patterns are likely to be complex. Reef fish

could be involved in regulating the disease dynamics of PorTL

and MWS directly by offering a mechanism for diseased tissue

removal via predation that could lead to individual host recovery

[63]. Conversely, the association could equally be indirect and

overall conditions which have negative effects on butterflyfish and

juvenile parrotfish abundance may favor PorTL and MWS

prevalence. In the Philippines, negative relationships between

coral disease prevalence and fish taxonomic diversity exist inside

and outside of marine protected areas [64], and in Palau

increased prevalence of skeletal eroding band disease is associated

with a reduction in the richness of a fish species targeted by

fishers [65]. Further research is needed to tease apart the direct

and indirect associations between coral disease prevalence and

reef fish.

In addition to reef fish, we found strong links between the spatial

patterns of PorTrem and a further biotic predictor, namely host

abundance. The relationship between disease prevalence and host

abundance is central to the theory of disease ecology [3]. As

transmission is a key process in host-pathogen interactions,

increased host density can increase horizontal transmission of a

disease [66]. Hence, to a degree, host availability can determine

how many infected individuals are observed in a defined area [67],

regulated by both density dependent [68–70] and frequency

dependent processes [71–73]. Scleractinian coral white syndrome

outbreaks along the Great Barrier Reef require, in part, an overall

Coral Disease Patterns
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Figure 2. Boosted regression tree (BRT) analyses relating prevalence of four coral diseases to environment. Models are developed and
validated using 10-fold cross-validation on 86–110 independent observations for each disease and 17 predictor variables. The 8 most influential
predictors to the model are shown. Their relative importance is shown as a % in parentheses. The deciles of the distribution of the predictors are
indicated by tick marks along the top of each plot. Predictor variable codes and units are as per Table 1.
doi:10.1371/journal.pone.0009264.g002
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coral cover in excess of 50% [31]. Positive correlations between

coral cover and prevalence of black band, yellow band and white

band disease were reported at reefs in Dubai [74], and positive

relationships between overall disease and Porites cover in the

Philippines [41]. PorTrem is caused by a digenetic trematode that

relies on trophic transmission for completion of its multi-host (fish,

mollusc, coral) life cycle [75]. Infected coral polyps are fed upon by

coral-feeding fish, such as butterflyfish, which then become

infected with the adult worm. Transmission of PorTrem across

the reef occurs when the parasite’s eggs are shed with the fish host

feces. It therefore follows that as Porites cover and colony densities

increase the chance of infected feces landing on the Porites host also

increases, hence the positive relationship. The reason for the drop

at higher levels of Porites cover is unclear and has been found across

the entire Kaneohe Bay area [38]. Additionally, PorTrem is

unable to establish without the full compliment of intermediate

hosts and therefore the positive relationship with butterflyfish

abundance is not surprising. Increased butterflyfish abundance

leads to more infected polyps being fed upon and in turn more

infected feces dropping over the reef.

Disease spatial patterns are often predicted by abiotic as well as

biotic parameters. Among our four coral diseases we found PorGA

and PorTL were both associated with reduced water turbidity,

PorTL was positively associated with temperature, and MWS was

positively associated with water chlorophyll-a concentration. For

PorGA, water turbidity and depth (the sole physical parameter)

were superior to any of the biotic parameters in predicting the

prevalence of the disease, with prevalence peaking in shallow, less

turbid waters. Little is known about PorGA ecology but it has been

speculated that growth anomaly formation in corals could be

linked to increased sensitivity to ultraviolet radiation (UVR)

[76,77]. Improved water clarity and shallow depths (with

subsequent low light attenuation) could lead to increased levels

of UVR reaching the coral surfaces [78]. In addition, shallower

Table 2. Optimal settings and predictive performance of boosted regression tree (BRT) analyses relating prevalence of four coral
diseases to environment.

Disease number of trees lr tc bag fraction cv deviance se

Porites growth anomaly 3150 0.01 3 0.75 0.391 0.02

Porites tissue loss 1950 0.01 3 0.75 0.350 0.01

Porites trematodiasis 4400 0.01 4 0.75 1.182 0.14

Montipora white syndrome 1700 0.01 3 0.75 0.213 0.04

Overall disease prevalence 2550 0.01 3 0.5 3.215 1.26

lr, learning rate; tc, tree complexity. Cross-validation (cv) deviance and standard error (se) is shown as the measure of model performance (the lower the value the better
the model performance).
doi:10.1371/journal.pone.0009264.t002

Table 3. Pairwise interactions between predictor variables used to relate prevalence of four coral diseases to environment.

Disease Predictor Predictor Interaction Value Pairwise interaction summary

Porites growth anomaly Porites cover Total coral cover 0.86 Higher Porites cover (.60%) and high total coral
cover (40–70%).

Chlorophyll-a Turbidity 0.32 Higher chlorophyll-a and lower turbidity.

Juvenile parrotfish Sedimentation 0.30 Lower juvenile parrotfish abundance and lower
sedimentation.

Porites tissue loss Butterflyfish Turbidity 0.21 Lower butterflyfish abundance and lower turbidity.

Porites cover Turbidity 0.14 Lower Porites cover (,20%) and lower turbidity.

Porites cover Temperature 0.10 Lower Porites cover (,20%) and higher
temperatures (.25uC).

Porites trematodiasis Porites cover Total colony density 2.02 Mid Porites cover (50%) and higher total colony
density (.7/m2).

Total colony density Chlorophyll-a 0.95 Higher total colony density (.7/m2) and lower
chlorophyll-a.

Porites cover Chlorophyll-a 0.74 Mid Porites cover (50%) and lower chlorophyll-a.

Porites cover Temperature 0.39 No clear association with temperature.

Temperature Depth 0.20 No clear association with depth.

Total colony density Temperature 0.11 No clear association with temperature.

Montipora white syndrome Chlorophyll-a Temperature 0.15 Higher chlorophyll-a and higher temperatures
(.27uC).

Interactions displayed are those that exceeded an interaction value of $0.1 and involved the 8 predictors offering the highest contribution to the model displayed in
Figure 2. Interaction value indicates the relative degree of departure from a purely additive effect, with a value of zero indicating that no interaction is present. A
summary description is given for the association of the peak in disease prevalence and the pairwise interactions for those predictor variables showing a clear
relationship (for example positive, negative, or modal) with the disease in Figure 2.
doi:10.1371/journal.pone.0009264.t003
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depths are often associated with higher variations in environmen-

tal stressors such as temperature and salinity and these fluctuations

may be affecting PorGA prevalence.

A positive association between disease prevalence and

temperature, as seen with PorTL and to a lesser degree with

MWS in our study, is common in disease ecology. Increased

temperature, like any environmental stressor, can shift the

balance in favour of either the host or pathogen [10].

Compromized hosts may be more susceptible to ubiquitous

pathogens and/or the stressor may increase pathogen virulence

[5,7,79]. For example, malaria prevalence is often associated

with temperature. At higher temperatures the parasite develop-

ment time inside the mosquito vector shortens and so

mosquitoes become infectious sooner and transmission rates

increase [80]. For corals, increased temperatures can lead to loss

of the symbiotic algae (bleaching) and possible mortality [81].

Higher water temperatures can also promote bacterial growth

[5]. For bacterial diseases, the combined effect of temperature

stress on the coral host and enhanced bacterial growth may

ultimately result in disease occurrence. This was recently found

in the Virgin Islands where coral bleaching led to a lethal white

plague disease outbreak [82]. Many coral diseases show positive

associations with temperature, such as black band disease in the

Caribbean [83,84], the Florida Keys [85], the GBR [86], and

Venezuela [32]; white plague in Puerto Rico [87]; atramentous

necrosis in Australia [29], and white syndrome along the GBR

[31]. Of these diseases, three have been identified as caused by a

bacterial pathogen resulting in chronic or acute tissue loss: white

plague Type II [88], black band disease [89], and white

syndrome [90]. The emergent pattern suggests coral diseases

that produce progressive tissue loss are responding to seawater

temperature whereas those displaying disease signs other than

tissue loss are not, or at least not in the same manner. Similarly,

we found that the two diseases within CIMR that displayed a

positive association with temperature were PorTL and MWS

(both tissue loss diseases). Importantly, as only two of our four

diseases showed distinct associations with temperature we

emphasize that temperature should not be assumed to

universally display specific relationships with coral disease

prevalence.

A further environmental stressor for coral is reduced water

quality, as measured by increased nutrients and chlorophyll-a

concentration. Reduced water quality has been linked to increased

severity and prevalence of aspergillosis in sea fans [33,35,37],

increased prevalence of yellow band disease [35], and increased

black band disease prevalence and progression, respectively

[34,91]. In our study the only diseases to show strong positive

associations with increasing chlorophyll-a concentration were

MWS and, to a lesser degree of predictive importance, PorGA.

Consistent with this, MWS prevalence across Kaneohe Bay, an

area with historically poor water quality, was found to be four

times higher than in other areas of the Main Hawaiian Islands

[92].

Predictor Interactions and Combining Diseases
Researchers often view collinearity between predictor variables

as a problem in ecological modeling and remove predictor

variables that are highly collineated prior to model formation.

However, providing the collinearity between predictors can be

identified, quantified and built into the model their synergistic

effect may improve model predictive capability. Incorporating

interactions between predictor variables increased the predictive

power of our models, particularly for Porites trematodiasis

(PorTrem). When predicting the prevalence of PorTrem, Porites

cover and overall colony density (the two strongest predictors)

were also the two variables showing the highest interaction level

(highest degree of departure from a purely additive effect) and

together explained the largest amount of variation in the disease

occurrence. The number and higher values of the interactions

present for PorTrem probably reflects the complex multi-host

relations required for this disease to occur. Significant interaction

terms between predictors have also been reported for scleractinian

coral white syndrome outbreaks in Australia [31] and researchers

have started to adopt a more multi-factorial approach to

understanding coral disease-environment associations [31,40].

Our results, in conjunction with these studies, emphasize the

need for considering multiple environmental predictors and their

respective collinearity for coral disease-environment modeling.

Modeling combined diseases (the prevalence of multiple diseases

as a single proportion value as the model response), led to an

average six-fold increase in cross-validation deviance (reduction in

predictive accuracy) over modeling the diseases individually. This

is to be expected. For example, environmental modeling of human

cholera (caused by an intestinal bacterium), and measles (a viral

disease), even though they affect the same host, would most likely

produce confusing results due to their differing etiologies and

modes of transmission [13,71]. However, when disease etiologies

are known and their ecological similarities recognized then

combined disease modelling may be appropriate. For example,

dengue fever and dengue haemorrhagic fever, two diseases both

transmitted by mosquitoes within the genus Aedes, were modeled

together successfully within Thailand [93]. Importantly, the

authors were not modeling a combined proportion value of both

diseases as the response variable. Modeling overall coral disease

prevalence, multiple diseases each with a possibly distinct etiology,

seems inappropriate. We recommend coral diseases to be modeled

individually, unless they are known to have etiologies that respond

in a uniform manner to particular environmental conditions.

Predictive statistical modeling forms an important stage in the

understanding of coral disease patterns and in conjunction with

biomedical techniques, field observations and laboratory manip-

ulations, can increase our understanding of coral disease ecology

worldwide.

Acknowledgments

We thank the Hawaiian Institute of Marine Biology for use of their facilities

and permission to work within Coconut Island Marine Reserve. We thank

Barrett Wolfe, Chris Runyon, Ann Farrell, and Ku’ulei Rodgers for field

and laboratory assistance. We also thank Kevin Lafferty, Thierry Work,

Joanne Davy and Ingrid Knapp for stimulating discussions and feedback

on early drafts of the manuscript.

Author Contributions

Conceived and designed the experiments: GJW GSA. Performed the

experiments: GJW ROMC. Analyzed the data: GJW. Wrote the paper:

GJW GSA SKD.

References

1. Ostfeld RS, Keesing F, Eviner VT (2008) Infectious disease ecology: The effects

of ecosystems on disease and of disease on ecosystems. New Jersey, USA:

Princeton University Press. 506 p.

2. Work TM, Richardson LL, Reynolds TL, Willis BL (2008) Biomedical and

veterinary science can increase our understanding of coral disease. Journal of

Experimental Marine Biology and Ecology 362: 63–70.

Coral Disease Patterns

PLoS ONE | www.plosone.org 8 February 2010 | Volume 5 | Issue 2 | e9264



3. Lloyd-Smith JO, Cross PC, Briggs CJ, Daugherty M, Getz WM, et al. (2005)
Should we expect population thresholds for wildlife disease? Trends in Ecology

& Evolution 20: 511–519.

4. Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of

parasites. Limnology and Oceanography 44: 925–931.

5. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, et al. (2002) Ecology

- Climate warming and disease risks for terrestrial and marine biota. Science
296: 2158–2162.

6. Harvell D, Jordan-Dahlgren E, Merkel S, Rosenberg E, Raymundo L, et al.
(2007) Coral disease, environmental drivers, and the balance between coral

microbial associates. Oceanography 20: 172–195.

7. Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching:

interpretation of thermal tolerance limits and thermal thresholds in tropical
corals. Coral Reefs 20: 51–65.

8. Jackson JA, Tinsley RC (2002) Effects of environmental temperature on the
susceptibility of Xenopus laevis and X-wittei (Anura) to Protopolystoma xenopodis

(Monogenea). Parasitology Research 88: 632–638.

9. Lafferty KD, Holt RD (2003) How should environmental stress affect the

population dynamics of disease? Ecology Letters 6: 654–664.

10. Blanford S, Thomas MB, Pugh C, Pell JK (2003) Temperature checks the Red

Queen? Resistance and virulence in a fluctuating environment. Ecology Letters
6: 2–5.

11. Vollmer SV, Kline DI (2008) Natural Disease Resistance in Threatened
Staghorn Corals. PLoS ONE 3: e3718.

12. Kirn TJ, Jude BA, Taylor RK (2005) A colonization factor links Vibrio cholerae

environmental survival and human infection. Nature 438: 863–866.

13. Colwell RR (2004) Infectious disease and environment: cholera as a paradigm
for waterborne disease. International Microbiology 7: 285–289.

14. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, et al. (2003)
Climate change, human impacts, and the resilience of coral reefs. Science 301:

929–933.

15. Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral

reef crisis. Nature 429: 827–833.

16. Bruno JF, Selig ER (2007) Regional Decline of Coral Cover in the Indo-Pacific:

Timing, Extent, and Subregional Comparisons. PLoS ONE 2: e711.

17. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, et al. (1999)

Review: Marine ecology - Emerging marine diseases - Climate links and
anthropogenic factors. Science 285: 1505–1510.

18. Sutherland KP, Porter JW, Torres C (2004) Disease and immunity in Caribbean
and Indo-Pacific zooxanthellate corals. Marine Ecology-Progress Series 266:

273–302.

19. Ward JR, Lafferty KD (2004) The elusive baseline of marine disease: Are

diseases in ocean ecosystems increasing? Plos Biology 2: 542–547.

20. Weil E, Smith G, Gil-Agudelo DL (2006) Status and progress in coral reef

disease research. Diseases of Aquatic Organisms 69: 1–7.

21. Nugues MM (2002) Impact of a coral disease outbreak on coral communities in

St. Lucia: What and how much has been lost? Marine Ecology-Progress Series
229: 61–71.

22. Richardson LL, Voss JD (2005) Changes in a coral population on reefs of the
northern Florida Keys following a coral disease epizootic. Marine Ecology-

Progress Series 297: 147–156.

23. Aronson RB, Precht WF (2001) White-band disease and the changing face of

Caribbean coral reefs. Hydrobiologia 460: 25–38.

24. Borger JL (2005) Scleractinian coral diseases in south Florida: incidence, species

susceptibility, and mortality. Diseases of Aquatic Organisms 67: 249–258.

25. Bruckner AW, Bruckner RJ (2006) Consequences of yellow band disease (YBD)

on Montastraea annularis (species complex) populations on remote reefs off Mona
Island, Puerto Rico. Diseases of Aquatic Organisms 69: 67–73.

26. Idjadi JA, Edmunds PJ (2006) Scleractinian corals as facilitators for other
invertebrates on a Caribbean reef. Marine Ecology-Progress Series 319:

117–127.

27. Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline

threatens fish biodiversity in marine reserves. Proceedings of the National
Academy of Sciences of the United States of America 101: 8251–8253.

28. Kaczmarsky LT (2006) Coral disease dynamics in the central Philippines.
Diseases of Aquatic Organisms 69: 9–21.

29. Jones RJ, Bowyer J, Hoegh-Guldberg O, Blackall LL (2004) Dynamics of a
temperature-related coral disease outbreak. Marine Ecology-Progress Series 281:

63–77.

30. Bally M, Garrabou J (2007) Thermodependent bacterial pathogens and mass

mortalities in temperate benthic communities: a new case of emerging disease
linked to climate change. Global Change Biology 13: 2078–2088.

31. Bruno JF, Selig ER, Casey KS, Page CA, Willis BL, et al. (2007) Thermal stress
and coral cover as drivers of coral disease outbreaks. Plos Biology 5: 1220–1227.

32. Rodriguez S, Croquer A (2008) Dynamics of Black Band Disease in a Diploria

strigosa population subjected to annual upwelling on the northeastern coast of

Venezuela. Coral Reefs 27: 381–388.

33. Kim K, Harvell CD (2002) Aspergillosis of sea fan corals: dynamics in the

Florida Keys. In: Porter JW, Porter KG, eds. The Everglades, Florida Bay, and
coral reefs of the Florida Keys: an ecosystem sourcebook. Boca Raton: CRC. pp

813–824.

34. Kuta KG, Richardson LL (2002) Ecological aspects of black band disease of

corals: relationships between disease incidence and environmental factors. Coral
Reefs 21: 393–398.

35. Bruno JF, Petes LE, Harvell CD, Hettinger A (2003) Nutrient enrichment can
increase the severity of coral diseases. Ecology Letters 6: 1056–1061.

36. Voss JD, Richardson LL (2006) Nutrient enrichment enhances black band

disease progression in corals. Coral Reefs 25: 569–576.

37. Baker DM, MacAvoy SE, Kim K (2007) Relationship between water quality,

delta N-15, and aspergillosis of Caribbean sea fan corals. Marine Ecology-
Progress Series 343: 123–130.

38. Aeby GS (2007) Spatial and temporal patterns of Porites trematodiasis on the
reefs of Kaneohe Bay, Oahu, Hawaii. Bulletin of Marine Science 80: 209–218.

39. Muller EM, Rogers CS, Spitzack AS, van Woesik R (2008) Bleaching increases

likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John,
US Virgin Islands. Coral Reefs 27: 191–195.

40. McClanahan TR, Weil E, Maina J (2009) Strong relationship between coral
bleaching and growth anomalies in massive Porites. Global Change Biology 15:

1804–1816.

41. Raymundo LJ, Rosell KB, Reboton CT, Kaczmarsky L (2005) Coral diseases on
Philippine reefs: genus Porites is a dominant host. Diseases of Aquatic Organisms

64: 181–191.

42. Sokolow SH, Foley P, Foley JE, Hastings A, Richardson LL (2009) Disease

dynamics in marine metapopulations: modelling infectious diseases on coral

reefs. Journal of Applied Ecology 46: 621–631.

43. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and

Regression Trees. California: Wadsworth International Group.

44. De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology

88: 243–251.

45. Friedman JH, Meulman JJ (2003) Multiple additive regression trees with
application in epidemiology. Statistics in Medicine 22: 1365–1381.

46. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression
trees. Journal of Animal Ecology 77: 802–813.

47. Ge Y, He JZ, Zhu YG, Zhang JB, Xu ZH, et al. (2008) Differences in soil

bacterial diversity: driven by contemporary disturbances or historical contin-
gencies? Isme Journal 2: 254–264.

48. Leathwick JR, Elith J, Chadderton WL, Rowe D, Hastie T (2008) Dispersal,
disturbance and the contrasting biogeographies of New Zealand’s diadromous

and non-diadromous fish species. Journal of Biogeography 35: 1481–1497.

49. Carslaw DC, Taylor PJ (2009) Analysis of air pollution data at a mixed source
location using boosted regression trees. Atmospheric Environment 43:

3563–3570.

50. Breiman L (2001) Statistical modeling: The two cultures. Statistical Science 16:

199–215.

51. Work TM, Aeby GS (2006) Systematically describing gross lesions in corals.

Diseases of Aquatic Organisms 70: 155–160.

52. Bloesch J (1994) A review of methods used to measure sediment resuspension.
Hydrobiologia 284: 13–18.

53. Craft CB, Seneca ED, Broome SW (1991) Loss on ignition and kjeldahl
digestion for estimating organic-carbon and total nitrogen in estuarine marsh

soils - calibration with dry combustion. Estuaries 14: 175–179.

54. Page CA, Willis BL (2008) Epidemiology of skeletal eroding band on the Great
Barrier Reef and the role of injury in the initiation of this widespread coral

disease. Coral Reefs 27: 257–272.

55. Cox EF (1986) The effects of a selective corallivore on growth-rates and

competition for space between 2 species of Hawaiian corals. Journal of

Experimental Marine Biology and Ecology 101: 161–174.

56. Bruckner AW, Bruckner RJ (1998) Destruction of coral by Sparisoma viride. Coral

Reefs 17: 350–350.

57. Miller MW, Hay ME (1998) Effects of fish predation and seaweed competition

on the survival and growth of corals. Oecologia 113: 231–238.

58. Lu YN, Yu QG, Zamzow JP, Wang Y, Losey GS, et al. (2000) Detection of
green turtle herpesviral sequence in saddleback wrasse Thalassoma duperrey: A

possible mode of transmission of green turtle fibropapilloma. Journal of Aquatic
Animal Health 12: 58–63.

59. Aeby GS, Santavy DL (2006) Factors affecting susceptibility of the coral

Montastraea faveolata to black-band disease. Marine Ecology-Progress Series 318:
103–110.

60. Friedman JH (2002) Stochastic gradient boosting. Computational Statistics &
Data Analysis 38: 367–378.

61. Ridgeway G (2006) Generalized boosted regression models. Documentation on
the R package ‘‘gbm’’, version. pp 1.5–7.

62. Friedman JH (2001) Greedy function approximation: A gradient boosting

machine. Annals of Statistics 29: 1189–1232.

63. Cole AJ, Pratchett MS, Jones GP, Seng KMC (2009) Coral-feeding fishes slow

progression of black-band disease. Coral Reefs 28: 965–965.

64. Raymundo LJ, Halford AR, Maypa AP, Kerr AM (2009) Functionally diverse

reef-fish communities ameliorate coral disease. Proceedings of the National

Academy of Sciences of the United States of America 106: 17067–17070.

65. Page CA, Baker DM, Harvell CD, Golbuu Y, Raymundo L, et al. (2009)

Influence of marine reserves on coral disease prevalence. Diseases of Aquatic
Organisms 87: 135–150.

66. Altizer SM, Augustine DJ (1997) Interactions between frequency-dependent and

vertical transmission in host-parasite systems. Proceedings of the Royal Society
of London Series B-Biological Sciences 264: 807–814.

67. McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be
modelled? Trends in Ecology & Evolution 16: 295–300.

Coral Disease Patterns

PLoS ONE | www.plosone.org 9 February 2010 | Volume 5 | Issue 2 | e9264



68. Brown CR, Brown MB (2004) Empirical measurement of parasite transmission

between groups in a colonial bird. Ecology 85: 1619–1626.
69. Ramsey D, Spencer N, Caley P, Efford M, Hansen K, et al. (2002) The effects of

reducing population density on contact rates between brushtail possums:

implications for transmission of bovine tuberculosis. Journal of Applied Ecology
39: 806–818.

70. Berthier K, Langlais M, Auger P, Pontier D (2000) Dynamics of a feline virus
with two transmission modes within exponentially growing host populations.

Proceedings of the Royal Society of London Series B-Biological Sciences 267:

2049–2056.
71. Bjornstad ON, Finkenstadt BF, Grenfell BT (2002) Dynamics of measles

epidemics: Estimating scaling of transmission rates using a Time series SIR
model. Ecological Monographs 72: 169–184.

72. Begon M, Feore SM, Brown K, Chantrey J, Jones T, et al. (1998) Population
and transmission dynamics of cowpox in bank voles: testing fundamental

assumptions. Ecology Letters 1: 82–86.

73. Begon M, Hazel SM, Baxby D, Bown K, Cavanagh R, et al. (1999)
Transmission dynamics of a zoonotic pathogen within and between wildlife

host species. Proceedings of the Royal Society of London Series B-Biological
Sciences 266: 1939–1945.

74. Riegl B (2002) Effects of the 1996 and 1998 positive sea-surface temperature

anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE).
Marine Biology 140: 29–40.

75. Aeby GS (1998) A digenean metacercaria from the reef coral, Porites compressa,
experimentally identified as Podocotyloides stenometra. Journal of Parasitology 84:

1259–1261.
76. Peters EC, Halas JC, McCarty HB (1986) Caliblastic neoplasms in Acropora-

palmata, with a review of reports on anomalies of growth and form in corals.

Journal of the National Cancer Institute 76: 895–912.
77. Coles SL, Seapy DG (1998) Ultraviolet absorbing compounds and tumorous

growths on acroporid corals from Bandar Khayran, Gulf of Oman, Indian
Ocean. Coral Reefs 17: 195–198.

78. Tedetti M, Sempere R (2006) Penetration of ultraviolet radiation in the marine

environment. A review. Photochemistry and Photobiology 82: 389–397.
79. Ward JR, Kim K, Harvell CD (2007) Temperature affects coral disease

resistance and pathogen growth. Marine Ecology-Progress Series 329: 115–121.
80. Patz JA, Olson SH (2006) Malaria risk and temperature: Influences from global

climate change and local land use practices. Proceedings of the National
Academy of Sciences of the United States of America 103: 5635–5636.

81. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, et al.

(2007) Coral reefs under rapid climate change and ocean acidification. Science
318: 1737–1742.

82. Miller J, Waara R, Muller E, Rogers C (2006) Coral bleaching and disease

combine to cause extensive mortality on reefs in US Virgin Islands. Coral Reefs
25: 418–418.

83. Edmunds PJ (1991) Extent and effect of Black Band Disease on a Caribbean reef.
Coral Reefs 10: 161–165.

84. Bruckner AW, Bruckner RJ (1997) The persistence of black band disease in

Jamaica: impact on community structure. Proceedings of the 8th International
Coral Reef Symposium, Smithsonian Tropical Research Institute, Panama 1:

601–606.
85. Kuta KG, Richardson LL (1996) Abundance and distribution of black band

disease on coral reefs in the northern Florida Keys. Coral Reefs 15: 219–223.
86. Boyett HV, Bourne DG, Willis BL (2007) Elevated temperature and light

enhance progression and spread of black band disease on staghorn corals of the

Great Barrier Reef. Marine Biology 151: 1711–1720.
87. Bruckner AW, Bruckner RJ (1997) Outbreak of coral disease in Puerto Rico.

Coral Reefs 16: 260.
88. Denner EBM, Smith GW, Busse HJ, Schumann P, Narzt T, et al. (2003)

Aurantimonas coralicida gen. nov., sp nov., the causative agent of white plague type

II on Caribbean scleractinian corals. International Journal of Systematic and
Evolutionary Microbiology 53: 1115–1122.

89. Richardson LL (2004) Black band disease. In: Rosenberg E, Loya Y, eds. Coral
Health and Disease. Berlin: Springer-Verlag. pp 325–336.

90. Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral Pathogens Identified
for White Syndrome (WS) Epizootics in the Indo-Pacific. PLoS ONE 3: e2393.

91. Voss JD, Richardson LL (2006) Coral diseases near Lee Stocking Island,

Bahamas: Patterns and potential drivers. Diseases of Aquatic Organisms 69:
33–40.

92. Friedlander AM, Aeby G, Brainard R, Brown E, Chaston K, et al. (2008) The
state of coral reef ecosystems of the Main Hawaiian Islands. In: Waddell J, ed.

The State of Coral Reef Ecosystems of the United States and Pacific Freely

Associated States: NOAA Technical Memorandum NOS NCCOS 11. NOAA/
NCCOS Center for coastal monitoring and assessment’s biogeography team. pp

219–261.
93. Nakhapakorn K, Tripathi NK (2005) An information value based analysis of

physical and climatic factors affecting dengue fever and dengue haemorrhagic
fever incidence. International Journal of Health Geographics 4: 13.

Coral Disease Patterns

PLoS ONE | www.plosone.org 10 February 2010 | Volume 5 | Issue 2 | e9264


