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Abstract

Organized into a global network of critical infrastructures, the oil & gas industry remains to

this day the main energy contributor to the world’s economy. Severe accidents occasionally

occur resulting in fatalities and disruption. We build an oil & gas accident graph based on

more than a thousand severe accidents for the period 1970–2016 recorded for refineries,

tankers, and gas networks in the authoritative ENergy-related Severe Accident Database

(ENSAD). We explore the distribution of potential chains-of-events leading to severe acci-

dents by combining graph theory, Markov analysis and catastrophe dynamics. Using cen-

trality measures, we first verify that human error is consistently the main source of accidents

and that explosion, fire, toxic release, and element rupture are the principal sinks, but also

the main catalysts for accident amplification. Second, we quantify the space of possible

chains-of-events using the concept of fundamental matrix and rank them by defining a likeli-

hood-based importance measure γ. We find that chains of up to five events can play a signif-

icant role in severe accidents, consisting of feedback loops of the aforementioned events

but also of secondary events not directly identifiable from graph topology and yet participat-

ing in the most likely chains-of-events.

Introduction

Global affairs have become increasingly complex, with intertwined networks known to be vul-

nerable to cascading failures [1, 2]. Triggers can be natural perils, such as earthquakes,

cyclones, or floods [3, 4], or anthropogenic in nature, such as events related to global warming

[5]. Of all existing lifeline networks, energy flows (especially of the oil & gas sector) are the

most critical for the good functioning of our modern society. Major energy accidents often

have large financial consequences, whose losses are combinations of lost product, repair costs,
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but also legal fees and fines by government agencies. For example, the 2005 BP Texas City

refinery explosion killed 15 workers, injured 170, and led to financial losses of about $1.5 bil-

lion [6, 7]. Some of those events are natural-technological (or Natech) accidents: The 2011

Tohoku earthquake and associated great tsunami, mainly remembered for causing the failure

of the Fukushima nuclear plant, also shut almost a third of the Japanese refining capacity.

Accidents at critical infrastructures can lead to toxic material release, business interruption,

and some economic slowdown [8]. The extensive flooding due to record rainfall during the

2017 Hurricane Harvey damaged more than 40 industrial plants and triggered over 100 toxic

spillage events [9].

The study of energy accidents has a long history [10–15] and reflects a high energy security

risk [16]. Of existing accident data inventories, the Major Energy Accidents (MEA) database

contains 279 major energy accidents spanning over the course of the 20th and early 21st centu-

ries [17]. As for the ENergy-related Severe Accident Database (ENSAD), it lists ~23,500 unique

accident records between 1970 and 2016, of which 4,067 are considered severe (� 5 fatalities)

[18, 19]. The two databases have been compared by Felder [12]. However, the dynamics of

recorded accidents has yet to be better understood [20]. Energy models still generally do not

allow for a deep exploration of extreme events and emergent endogenous phenomena [21],

which consist of risk-amplifying cascading effects observed and already modelled in other

complex systems [22–24].

Here, we explore the chains-of-events leading to severe accidents in the oil & gas industry

using a data-driven approach based on ENSAD, which has been described as the most authori-

tative resource for comparative risk analysis of accidents in the energy sector [11, 13, 19]. This

is the first study to apply graph theory and catastrophe dynamics modelling [25–28] to

ENSAD, allowing us to describe the general topological properties of severe accidents at refin-

eries [29], oil tankers [30] and gas networks [31], based on a rich database of more than a thou-

sand events, spanning from 1970 to 2016, that includes information on the chains-of-events

that led to these accidents. By describing severe accidents at critical infrastructures (CIs) with

dependency risk graphs, we can first identify their main sources, catalysts, and sinks. Thanks

to ENSAD’s volume of data, we can then go beyond existing studies [32, 33] by exploring inter-

actions between 27 different events and offer a novel approach for the systematic, data-driven,

exploration of events that amplify severe accidents. We use the concept of fundamental matrix

from Markov chain theory recently introduced to catastrophe dynamics [34] to explore the full

space of potential chains-of-events. We also define a likelihood-based importance measure to

identify the most critical combinations of transitional events. Although Markov models are

commonly used in process accident and cascading effect modelling, they are generally con-

cerned with critical events within the chains [35] or with the final state [25], not with the

dynamics of the chains themselves that might provide richer information for energy risk

mitigation.

The ENSAD database

We use the ENergy-related Severe Accident Database as sole input to our study [11, 13]. Severe

accidents are defined in ENSAD as events leading to five or more fatalities, ten or more inju-

ries, at least 200 evacuees, release of hydrocarbons exceeding 10,000 tons, enforced clean-up of

land and water over areas of 25 km2 or greater, or an economic loss equal or greater to $5 mil-

lion USD (inflation adjusted) [36]. Chains-of-events are extracted for the CIs part of the oil &

gas sector. We considered 1,187 severe accidents in refineries (674), tankers (263), and natural

gas networks (250). Offshore platforms for oil were not included for lack of readily available

information on chains-of-accidents. However, the natural gas network includes the entire
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energy chain, from exploration and production, storage and distribution, and power plants.

While the distribution of accidents is worldwide for refineries and gas networks, for tanker

accidents, only those in the Mediterranean Sea were considered (one of the most active and

accident-prone area in the world) [30].

One important attribute of ENSAD, which has so far not been analysed, is the description

of the chain-of-events leading to a severe accident. The goal of this study is to remediate to this

omission. Each chain-of-events is composed of 1 to 5 events, up to 6 for refineries in which

case the initial trigger attribute is separate from the rest of the chain-of-events by construction.

The number of possible events was originally 30 for refineries, 12 for tankers and 12 for gas

networks, merged into 27 events for the 3 CI types combined. Chains-of-events here represent

causality chains between events participating to a severe accident, not limited to loss-generat-

ing events. Successive (loss-generating) accidents are often referred to as cascading effects or

domino effects [32]. Our study is more closely related to fault tree analysis [37] although we

can distinguish between both types of events. Indeed, the sub-accidents that generate losses are

all the events that can act as a sink in ENSAD (see below).

In a preliminary step to chain-of-event encoding, we combined the events which were sel-

dom observed in ENSAD into more representative categories for frequentist analysis. All natu-

ral-hazards (heavy rain, flood, landslide, earthquake, tsunami, lightning, (wind)storm,

heatwave, and unknown natural triggers) were combined under the term Natural Event;

machinery failure (1) and loss of power (1) were included in Technical Failure; personal health

problem (3), radiation (1) and food poisoning (1) were combined in Health Problem; theft/

scooping (1) (but not intentionally leading to an accident) and collision (37) were included in

Human Error (if not already declared as Natural Event, e.g. due to fog). Several terms were

also shortened to improve graph readability: ’Spill / Release / Leakage’ to Release (which can

be toxic and/or inflammable), ’Rupture / Crack / Break Up’ to Rupture, ’Overflow / Overfitting

/ Overload’ to Overload, ’Asphyxiation / Gas Poisoning / Suffocating’ to Gas Poisoning,

’Sprayed / Sprinkled / Wetted’ to Sprayed, and ’Crushed / Pushed / Pinned’ to Crushed. It

should be noted that ENSAD does not provide detailed causal factors for human errors, in

contrast to the ones provided in the HFACS-OGI framework [38]. This is due to the lack of

information retrievable for some accidents. Human error here implicitly includes violation of

safety rules, violation of guidelines, management failure, etc. Fig 1 shows the total count ni of

cases per event type i as well as the count nij of one-to-one interactions, based on which the

conditional probabilities to be used as input in section 3 are estimated with pij = nij⁄ni. This fre-

quentist approach provides a straightforward and informative, data-driven, inference.

It must be noted that our approach is subjected to the completeness, homogeneity, and

uncertainties of ENSAD, as in any data-driven analysis. However, ENSAD has been shown to

be more careful in its methodology compared to other available databases [12]. To avoid

under-sampling, rare accident associations were preliminary merged into more representative

categories, as described in the previous paragraph. The problem of heterogeneity between dif-

ferent CIs and the potential lack of comparability mentioned in the energy accident literature

[12] is shown to be unfounded when considering chains-of-events attributes, as different oil &

gas CIs share a number of hazardous elements. We will demonstrate below that refineries,

tankers, and gas networks—despite their specificities—display similar accident network prop-

erties as when they are combined in one unique graph.

Chain-of-event encoding & modelling

Graph definition. As a first step in our analysis, we encode the chains-of-events given in

ENSAD into a 27 × 27 adjacency matrix A where each element aij is the conditional frequentist
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probability of event j given the occurrence of event i. The result—derived from the data of Fig

1 —is shown here in Fig 2A. This accident interaction system is further represented by a chord

diagram in Fig 2B to make the distinction between source events, catalysts and sink events,

and by a directed weighted graph in Fig 3 for centrality measure analysis. We merged the

causal networks of the different CI systems by assuming that similar CI elements play similar

engineering roles at a generic level. This hypothesis will be shown to be reasonable in section 4

(with further plots given as S1 File).

We consider the three principal measures of centrality as explanatory metrics of the chains-

of-events in severe accidents: degree (in- and out-degree), betweenness, and closeness [39].

Fig 1. Event counts, total versus conditional in ENSAD for the oil & gas energy sector, for a total of 1,187 severe accidents. Considered critical

infrastructures (CIs) are refineries, tankers, and gas networks.

https://doi.org/10.1371/journal.pone.0263962.g001
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Degree centrality of a vertex is the number of edges incident on the node; closeness centrality

of a vertex is the average of the shortest path lengths from the vertex to all other vertices in the

graph; betweenness centrality of a vertex is the number of the shortest paths that pass through

that vertex. In catastrophe dynamics modelling [26–28], the main triggering events (or

sources) are represented by high out-degree and closeness centralities. The main triggered

events (or sinks) are represented by a high in-degree centrality. Catalysts of cascading effects

are represented by a high betweenness centrality.

Markov chain theory. With severe accidents defined as the succession of individual

events that interact with each other, we may assume that the dynamical process is described by

the following linear differential equation

d~XðtÞ
dt
¼ Q~X tð Þ ð1Þ

in which the dynamics of the vector ~X of events is described by the transition rate matrix Q
that encodes all possible one-to-one direct interactions. The propagator for ~XðtÞ ! ~Xðt þ tÞ
can be written as P(τ) = exp(Qτ) with the entries pij(τ) interpreted as the conditional probabil-

ity of event j being triggered by event i for a period of τ and with A≔ P(τ = 1). We define an

outflow event as a last (implicit) matrix entry for conservation of probabilities with conditional

probability 1 �
Pn

j¼1
pij. We also fix the last row of A as pn+1 = (0,. . ., 0, 1), i.e. the outflow

event does not trigger any real event but itself, which is an absorbing state in Markov chain

parlance. These 28th column and row are not displayed on the adjacency matrix plots for

Fig 2. One-to-one interaction system leading to severe accidents in the energy sector. (A) Adjacency matrix A with one-to-one conditional

frequentist probabilities derived from ENSAD (refineries, tankers, and gas networks combined); (B) Chord diagram representing the complexity of the

directed chains-of-events, as encoded in the adjacency matrix. Note that sub-accidents (i.e., loss generating events) are all the events that can act as a

sink in ENSAD.

https://doi.org/10.1371/journal.pone.0263962.g002
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convenience. As so, we do not directly apply Eq (1) but operate with the adjacency matrix, as

shown in the next subsection.

Note that the proposed approach has two main limitations: first, the system dynamics con-

siders one-to-one interactions (reflected in Eq 1) and not triplets or higher-order interactions

although triggering may be caused or enhanced by the combination of multiple variables; sec-

ond, the true temporal evolution of a chain-of-events is not modelled, only the ranks or succes-

sion of events with their cumulative count acting as an effective time. Eq 1 provides a first-

order description of the process and the rate matrix, defined from the adjacency matrix, is

directly encodable from ENSAD data. Including n-to-one interactions would require physical

modelling which is out of the scope of the present empirical study. Moreover, the memoryless-

ness property of Markov theory is a very common and well accepted assumption. Finally, the

chains-of-events generated in the present study are implicitly assumed to occur in a natural

physical time scale that is simplified into the consecutive trials in a Markov chain. Inclusion of

common time intervals between different types of events would require details that are not

available in the ENSAD.

Fundamental matrix definition. While the analysis of the matrix power Aτ would suffice

to explore the full space of possible interactions in a topological sense, we use the concept of

fundamental matrix N to capture the frequency, or intensity, of each transition event before

Fig 3. Centrality measures of the severe accident chains-of-events. (A) In-degree centrality; (B) out-degree centrality; (C) closeness centrality; (D)

betweenness centrality. Influent nodes (or hazardous events) are highlighted in bold per centrality measure. Yellow-to-red colours of the vertices

represent increasing centrality estimates, following the scales and ranking shown in the histograms.

https://doi.org/10.1371/journal.pone.0263962.g003
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resting at the absorbing state:

N :¼ I � Að Þ
� 1
¼ I þ

X1

t¼1
At ¼ I þ Aþ A2 þ . . . ¼ I þM ð2Þ

where the entry nij is the expected number of times the chain-of-events reaches event j given

that the accident starts with event i; I is the identity matrix, τ the number of pseudo-time steps

and M the interaction matrix [34], which excludes the step τ = 0. Eq 2 describes all possible

combinations of chains-of-events via the matrix power Aτ including amplification via the sum

operator. Elements mij(τ) are interpretable as the total set of scenarios leading to event j for a

chain-of-events starting from event i and of length 1 to τ.

This study is the second application of the fundamental matrix to catastrophe dynamics.

The first one, by Mignan and Wang [34], analysed the role of adjacency matrix topology on

the matrix M. It described the non-trivial behaviour of cascading patterns in terms of the space

of possibilities covered, and of interaction amplification by feedback loops. That study further

tested the approach on a small database of 29 historical catastrophes known for their domino

effects. The present work is the first application of the fundamental matrix to the energy sector

and to such a large database (more than one thousand accidents from ENSAD). Notice that

the approach proposed earlier by Helbing and Kühnert [25] models the final state that is equiv-

alent to Aτ, but based on the rate matrix Q. In contrast, the interaction M provides some infor-

mation on all the transition states of the chain.

Importance measure definition. For the purpose of risk mitigation, an importance mea-

sure of a chain of m events Z(m) = (z1, z2, . . ., zm) is defined using the Markov property. It is

derived from the likelihood function

Lðz1; z2; . . . ; zmÞ ¼
Ym

i¼1
pðzijzi� 1Þ ð3Þ

where we set p(z1|z0)� p(z1). The conditional probability can be directly read from A, i.e. p(zi|
zi−1) = a(zi−1, zi). Since any chain that has not yet reached the absorbing state has the potential

to further grow, it is useful to define the concept of a complete chain as any chain that rests at

the absorbing state. Formally, let the absorbing state be denoted by za, a chain (z1, z2,. . ., zm) is

said to be complete iff zm = za, and zi 6¼ za for i 2 {1, 2,. . ., m − 1}. An importance measure for

a complete chain with m events can then be defined as:

g z1; . . . ; zm� 1; zað Þ ¼
Lðz1; . . . ; zm� 1; zaÞ
P

Z0 ðmÞ2szðmÞ
L Z0 ðmÞ
� � ¼

Qa
i¼1

afzi� 1; zig
P

Z0 ðmÞ2szðmÞ
L Z0 ðmÞ
� � ð4Þ

where L is the likelihood function, zm = za the absorbing (final) state, and σz(m) the set of all

possible complete chains with m events. Note that γ can be interpreted as the probability of a

specific chain among chains-of-m-events. It can thus be used for severe accident ranking.

ENSAD application

The ENSAD accident interaction encoding is first described in Figs 1 and 2. Counts of one-to-

one interactions go from one instance for the rarest interactions in ENSAD to more than 150

in the case of the most common triggering process, which is an explosion triggering a fire (Fig

1). We observe a rich variety of 117 potential one-to-one interactions. Since most accidents

considered in ENSAD are described as chains-of-events, the conditional frequentist probabili-

ties aij can be relatively high, with 36% of cases above 0.1 (Fig 2). Two interactions have a prob-

ability greater than 0.9 of occurring, which are grounding (i.e., impact to seabed or waterway

side, also known as stranding) to rupture, and tanker sinking to toxic material release. All

interactions are constrained by the underlying assumption that an accident is severe in
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ENSAD. Hence, a tanker sinking implicitly means that a toxic spill follows for the accident to

be severe. The same rule applies for all other interactions.

The ENSAD already contains some examples of long historical chains-of-events [19]. For

example, in the case of refineries, one of the worst industrial disasters in recent U.S. history

happened on the 23rd of March 2005. On that day, at the BP Texas City Refinery (USA), due to

an error, a raffinate splitter tower has been overfilled. Once the isomerization (ISOM) unit was

started, the overfill caused the opening of the pressure relief devices, which resulted in a flam-

mable liquid geyser from a blowdown stack that was not equipped with a flare. The release of

flammables led to an explosion followed by fires. The latter killed 15 workers located close to

the source of the accidents and injured another 180, alarmed the community (with 43,000 peo-

ple ordered to remain indoors), and resulted in financial losses exceeding $1.5 billion, due to

the damages to the refinery and the houses in a radius of 750 meters from it. Other examples

include (i) a release followed by fire from a depropanizer, which caused the injury of a worker

at the Alkylation unit of the Delaware City refinery (USA) in 2015, (ii) an explosion followed

by fire, which caused the injury of 6 workers during maintenance of a tank at the Aspropyrgos

refinery in Greece in 2015.

In the case of gas networks, an example taken from ENSAD is the accident that happened

50 km south-west from Brussels (Belgium) in 2004. In an excavation process during a con-

struction work, a scraper ruptured a major underground high-pressure natural gas pipeline.

Immediately, fire fighters and police rushed to secure the area, but an explosion occurred fol-

lowed by fire, which killed 17 persons and injured 120. Other examples are the explosion of a

pipeline caused by corrosion and the consequent release of natural gas, followed by fires that

killed 22 people and injured 40 in India in 2014; the explosion of a CNG station caused by an

intentional attack, which caused 25 fatalities and 100 injuries in Pakistan in 2011. Some of

those chains-of-events are not limited to gas networks. Some events are however associated to

CI-specific elements, such as excavation when pipelines are involved.

For tankers, one of the worst accidents in the Mediterranean Sea happened near the port of

Genoa in 1991. The Cypriot oil tanker Haven, anchored off Genoa, loaded with 144,000 tons

of crude oil, caught fire, exploded, and broke into three parts. One of them sank on the spot,

the other parts were taken hold of and sank during their towing, releasing the entire loaded

crude oil in the sea. In addition, the accident caused 6 fatalities and 30 injuries among the peo-

ple on the tanker. Other examples are the Ottoman Integrity tanker, which released 3300 tons

of crude oil during shipping in the Peloponnesus area in Greece in 2015; a tanker grounded at

the port of Tarragona (Spain), which sank and released the remaining crude oil in the vessel

(around 25 tons) in 2008. All those examples were encoded as one-to-one interactions in the

previous section but can be retrieved via Markov theory.

Here, we generalise the process of interactions by applying the above theory to the ENSAD.

Based on the adjacency matrix shown in Fig 2, centrality measures are computed and plotted

on the matching graphs in Fig 3. They are then ranked in histograms to identify the main

sources, sinks and catalysts of severe accidents. The main triggers (or sources) are found to be

human error followed by technical failure as they have the highest out-degree and closeness

centralities. We also observe that the main triggered events (or sinks), represented by a high

in-degree centrality, are toxic (including inflammable) release, explosion, element rupture and

fire. These events are also the four main catalysts for cascading effects, being also represented

by the highest betweenness centralities. These results are consistent across CI types, supporting

our approach to combine all CIs in one graph. Figures similar to Fig 3 but for the individuals

CIs are given as S1 File. S1 Fig in S1 File shows the accident network and matching centrality

measures for refineries. Results are very similar to the combined oil & gas CI network since

this class is dominating the full dataset with 57% of cases. S2 Fig in S1 File shows the same
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plots for tankers. For this CI, sinking replaces explosion in the top sinks (highest in-degree

centrality), the other sinks remaining the same (release, rupture, fire). Human error remains

the dominant initial trigger, the only event being at the highest rank for both out-degree and

closeness centralities. Similar catalysts are found except again for sinking replacing explosion

(highest betweenness centrality). S3 Fig in S1 File, finally, shows the results for gas networks.

The accident network topology is similar to the one for refineries and all oil & gas CIs com-

bined. Quantified by a globally comprehensive data source, our results confirm the existing lit-

erature that most accidents are due to human errors [38, 40–42] but also that fire, explosion,

and toxic release are the major hazards in the industry [43, 44], as well as the main sources for

further domino effects [32].

To go beyond the identification and ranking of individual critical events by centrality mea-

sures, we investigate the potential amplification of chains-of-events via the interaction matrix

M previously defined (Eq 2) and plotted in Fig 4. We are here concerned with event j being a

sub-accident, meaning a loss-generating sink event, as defined by the colour scheme in Fig 2B.

We find that the dynamical process stabilises rapidly, around τ = 4, and expands the space of

possibilities significantly compared to direct interactions aij = mij (τ = 1). This is captured in

Fig 4A in which we see the number of possible interactions (i.e., non-zero cells) increase at

each step to then remain constant at τ = 4. The values mij can still evolve at this stage but

changes are dwarfed relative to the summation of the previous steps, which is due to the fact

that the matrix power Aτ tends to zero for increasing τ. Of all trigger events (27 minus 5 sink-

only) and triggerable events (27 minus 5 source-only), 64% (14/22) of triggerable events can be

triggered, directly or indirectly, by 95% (21/22) of trigger events. This suggests the potential

for surprising accidents that were never experienced before. Longer chains-of-events (τ> 4)

can be considered unsignificant as their contribution, terms Aτ for τ> 4 in Eq 2, becomes neg-

ligible. The interaction matrix M also shows which accidents j are most prone to occur due to

Fig 4. Interaction matrix M encoding chains-of-events of length up to τ. (A) All CIs combined with M evolving from τ = 1 (i.e., adjacency matrix A)

to τ = 4. (B) M(τ = 4) for refineries. (C) M(τ = 4) for gas networks. (D) M(τ = 4) for tankers.

https://doi.org/10.1371/journal.pone.0263962.g004
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a multiplicity of chains-of-events, turning towards purple-to-black as τ increases. Those events

are again fire, explosion, toxic release, and rupture, which is consistent with our previous mea-

sures of high betweenness and in-degree centralities. Those patterns are more pronounced

when Eq 2 is applied to individual CIs as shown in Fig 4B–4D for refineries, gas networks and

tankers, respectively. This is due to the smaller number of instances leading to some high con-

ditional probabilities at τ = 1 in ENSAD. Those results remain consistent with the measures of

high betweenness and in-degree centralities described in the S1 File. However, it shows that

merging all CIs in one graph yields more stable patterns.

Chains-of-m -events with m = 5 (i.e. τ = 4) are finally ranked per CI by Eq 4, with the

respective top-5 chains shown in Fig 5. We do not show smaller chains but recall that they are

also included in M. We chose τ = 4 based on the results presented above. The approach pro-

vides a simple way to systematically explore emergent chains-of-events, including feedback

loops. The best example observed here is the chain explosion! fire! explosion! fire. While

the four critical events (explosion, fire, release, and rupture) drive the domino effects (shown

in dark grey), we see other events, such as loading/unloading, gas poisoning, excavating or

grounding, participate to the emergence of such chains (shown in light grey). Note that more

would be found by analysing lower-γ scenarios. Such events were only secondary in terms of

centrality measures and their relative important may have been missed if solely using graph

theory (see Fig 3). The metric γ, being interpretable as the probability of a specific chain

among chains-of-m-events, allows prioritizing mitigation measures not only based on critical

events but on critical chains-of-events that contain more information. This is exemplified by

the ENSAD example in Fig 5.

Fig 5. Ranking of chains-of-5-events from the importance measure γ for different oil & gas CIs. (A) Refinery case. (B) Gas network case. (C) Tanker

case. Secondary events that were not highly ranked from centrality measures are represented in light grey.

https://doi.org/10.1371/journal.pone.0263962.g005
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Concluding remarks

Severe accidents in the oil & gas industry can have important repercussions on the global

energy flow, and thus on the economy. Due to the complexity of the critical infrastructures

involved, those accidents generally result from complex chains-of-events. The critical events

that participate to the build-up to catastrophe (such as human error, explosion, fire) are well-

known and identifiable from graph theory. However, the systematic exploration of plausible

chains-of-events must provide richer information for risk mitigation. This was feasible in the

present study via the analysis of the authoritative ENergy-related Severe Accident Database.

We used the concept of fundamental matrix and defined an importance measure to identify

the complexity of interactions and rank emergent behaviours, respectively.

The topological analysis of more than a thousand oil & gas accidents from the ENSAD con-

firmed the critical role of fire, explosion, and toxic release (but also element rupture) in

chains-of-events leading to severe accidents, as well as human error as being the main source

of such accidents, globally. Our dynamical analysis further demonstrated the role of long

chains-of-events (up to 5 events), the significant extension of the space of possible indirect

interactions, the feedback loops (fire$ explosion) and the role of secondary events on top of

the four critical events (fire, explosion, release, rupture) in the most likely chains-of-events.

This complexity was modelled via the interaction matrix M and ranked via the importance

measure γ. Although the method is applicable to any adjacency matrix A of one-to-one inter-

actions, only large databases such as ENSAD can lead to its full appreciation. Considering CIs

individually, which reduced the number of instances, showed the important role of sample

size. Interestingly, the full exploration of potential chains-of-events based on a narrower set of

observed chains-of-events is one approach to model downward counterfactuals [45].

These insights should inform the optimal allocation of resources and needed level of main-

tenance in oil & gas CIs. With CI risk management crucially dependent on the analysis of

causes and effects of failures [20, 23, 46, 47], especially of the evaluation of the entire accident

sequence [33], decision-makers and first responders alike could use the ENSAD-based adja-

cency and interaction matrices to estimate the a priori cascading risk for the stress-testing of

their CIs [48]. A Bayesian approach could be applied to update the ENSAD prior with CI-spe-

cific characteristics [4, 49]. Future improvements in accident databases shall further improve

this approach. In general, we believe that data-driven dynamics will help minimize the impact

of surprising accidents in the energy sector.

Supporting information

S1 File. Centrality measures of the severe accident chains-of-events at different types of

critical infrastructures. Refineries (S1 Fig), tankers (S2 Fig) and gas networks (S3 Fig).

(PDF)
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