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Abstract: Lightweight thin-walled structures are crucial for many engineering applications. Ad-
vanced manufacturing methods are enabling the realization of composite materials with spatially
varying material properties. Variable angle tow fibre composites are a representative example, but
also nanocomposites are opening new interesting possibilities. Taking advantage of these tunable
materials requires the development of computational design methods. The failure of such structures
is often dominated by buckling and can be very sensitive to material configuration and geometrical
imperfections. This work is a review of the recent computational developments concerning the
optimisation of the response of composite thin-walled structures prone to buckling, showing how
baseline products with unstable behaviour can be transformed in stable ones operating safely in the
post-buckling range. Four main aspects are discussed: mechanical and discrete models for composite
shells, material parametrization and objective function definition, solution methods for tracing the
load-displacement path and assessing the imperfection sensitivity, structural optimisation algorithms.
A numerical example of optimal material design for a curved panel is also illustrated.

Keywords: composites; shells; post-buckling; optimisation; material design; Koiter method; imper-
fection sensitivity

1. Introduction

Thin-walled composite structures are employed in a wide range of structural applica-
tions, particularly in the aerospace industry due to the high strength-to-weight ratio. Their
design is dominated by buckling, which is mainly influenced by geometry and material
properties. The geometry is usually constrained by the structural functionality and only
little changes are possible. Conversely, the spatial distribution of the elastic properties (like
for the fibre orientation) can be easily varied. Then, an optimization process of the material
distribution can provide the desired mechanical behavior in terms of displacement and ca-
pacity. Different manufacturing options are also available to tailor the stiffness and reduce
buckling effects: grid stiffeners [1], multi-layered and variable thickness composites [2],
variable angle tows (VATs) [3]. New technologies for 3D printed products are also opening
new prospective for cheaper and more tunable structures [4–6].

Moreover, as known, optimal properties in composites are usually sought also by
controlling the orientation of the fibers in each layer, since the fibers orientation signifi-
cantly affects the stiffness distribution, hence, the load-carrying capability or the elastic
limits states (see, for instance, [7,8]). A promising direction in the context of material
optimization is that offered by nanostructured materials which can exhibit multifunctional
properties and are thus prone to more advanced multi-objective optimizations. In this field,
nanocomposite materials made of thermosetting or thermoplastic polymers integrated
with carbon nanotubes (CNTs) are currently subject to intense developments [9–11].
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The mechanical behavior of shells can be simulated by different structural models. The
Mindlin–Reissner model is the most common for shear flexible shells, where the kinematics
is governed by displacements and rotations of the middle surface. The Kirchhoff–Love
one is attractive for thin shells, where only displacements of the mid-surface are needed.
Alternative shear flexible models have been proposed, like solid-shell elements, which are
solid elements able to obtain the shell solution without meshing through the thickness. Such
formulations use displacement degrees of freedom (DOFs) only and the number of overall
DOFs can be equal to the one in Mindlin–Reissner elements [12,13], but without the rotation
parametrization in large deformation problems. Beside finite element formulations [12],
Isogeometric analysis (IGA) based on NURBS highly continuous shape functions [14] is
an interesting alternative for the description of geometry and kinematics over the shell
mid-surface.

The linearized buckling load is the objective function in many optimal design strategies
proposed in the literature. However, this can lead to an elastic limit state known as buckling
mode interaction, characterized by unstable post-critical behavior [15] with a deterioration
of their capacity due to geometrical, load and material imperfections. Instead, a more
reliable design, which takes into account the geometrically nonlinear behaviour, should be
considered. In this case, the failure load of the structure can be used as objective function
to maximize. This can be defined as the first limit load for the unstable load–displacement
curves or as the load leading to deformation limits, taking into account the typical post-
buckling stiffness reduction. Optimizing the post-buckling behaviour is a challenging task.
Firstly, a suitable mechanical model and its discrete approximation are required to describe
with acceptable accuracy geometry, boundary conditions and deformations. Discretization
techniques are usually needed and, then, the structural problem is generally described by a
high number of discrete nonlinear equations defining the equilibrium load-displacement
path. Moreover, an imperfection sensitivity is generally needed for reliable estimates of the
safety factor.

The static Riks method [16,17] is a standard tool for path following the solutions of a
set of nonlinear equations. This approach is suitable for assigned data, but not for structural
optimizations, which require a new equilibrium path for any change in the design variables,
since the single run is too time-consuming with current CPUs. The same holds for an
imperfection sensitivity analysis. Promising generalizations of the Riks method have been
presented in [18–20], which are able to perform parametric analysis in a more efficient way
by using the fold line concept.

In the optimal design presented in [21], the failure load is given by a nonlinear
finite element (FE) buckling problem, extended in [22,23] in order to consider the worst
case of the geometrical imperfection. An alternative reduced order model formulation is
offered by numerical implementations of Koiter’s theory of elastic stability [24], allowing to
estimate the initial post-critical behaviour in terms of slope and curvature of the bifurcated
branches [25].

More recently, a solution algorithm based on Koiter’s theory implemented within a
Finite Element environment was proposed in [26,27]. In this case, the design is able to
consider general geometries, loading and boundary conditions. Moreover, a good accuracy
in predicting the initial postbuckling response is given by a multi-modal asymptotic
expansion which accounts also for nonlinear buckling modal interactions [28]. The strategy
also provides an inexpensive sensitivity analysis with a statistical estimation of the worst-
case imperfection, assumed to be a combination of the linearized buckling modes of the
perfect structure. A hybrid solution strategy, referred to as the Koiter–Newton approach,
was further investigated in [29,30].

Despite the difficulties associated with the prediction of the nonlinear behavior, an-
other challenge is the solution of the optimization problem that is generally nonlinear
and nonconvex. Its solution is usually computationally expensive and difficult due to
the possibility of local minima. Frequently employed algorithms are the random search
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methods [26,31], genetic algorithms [32] and gradient-based techniques such as the method
of moving asymptotes [33] or sequential linear programming [34].

This paper is a review of the recent computational developments concerning the
material design for optimising the post-buckling response of composite thin-walled struc-
tures, showing how baseline products with unstable behaviour can be transformed in
stable ones operating safely in the post-buckling range. Four main aspects are discussed:
mechanical and discrete models for composite shells, material parametrization and ob-
jective function definition, solution methods for tracing the load–displacement path and
assessing the imperfection sensitivity, structural optimisation algorithms. A numerical
example of optimal material design is also given, where the optimisation suppresses the
snap-through instability leading a globally stable behaviour. Examples of applicability for
actual engineering uses can be found in [27,35].

The paper is organized as follows: Section 2 describes the solid-shell continuum and
its discrete finite element and isogeometric counterpart for elastic shell structures; Section 3
reviews the material parametrizations and introduces the optimization problem; Section 4
discusses the solution method for tracing the equilibrium path of a slender elastic structure
with particular focus on the reduced order modelling provided by the Koiter method;
Section 5 reviews the nonlinear optimization algorithms suitable for the problem under
consideration; a numerical example of optimization for a curved panel is illustrated in
Section 6; finally, conclusions are drawn in Section 7.

2. Mechanical and Numerical Models for Composite Shells

The main equations of the shell model are now described. The outset is the 3D Cauchy
continuum whose deformation is described by means of the Green–Lagrange strain. A
linear approximation is assumed through the shell thickness for the kinematics according
to the solid-shell formulation [12,25,36]. The model is rotation-free, so making simple and
effective its discrete formulation. Two kinds of discretization over the shell mid-surface are
presented, namely linear finite elements and isogeometric (IGA) formulations.

2.1. Kinematics of the Shell from the 3D Continuum

Convective curvilinear shell coordinates ζ = (ζ1, ζ2, ζ3) are employed, with (ζ1, ζ2)
representing mid-surface coordinates and ζ3 ∈ [− h

2 , h
2 ] being the thickness coordinate with

h the shell thickness (see Figure 1). The current position vector p(ζ) is expressed in terms
of the reference position vector x(ζ) and the displacement field u(ζ),

p(ζ) = x(ζ) + u(ζ). (1)

The covariant basis vectors in the undeformed configuration are Gi = x,i, where (),i
denotes partial differentiation with respect to the ith component of ζ. The contravariant
basis Gi, so that Gi ·Gj = δ

j
i with δ

j
i the Kronecker delta and (·) the dot product, makes it

possible to write the Green–Lagrange strain as

E = Ēij Gi ⊗Gj, Ēij =
1
2
(
x,i ·u,j +u,i ·x,j +u,i ·u,j

)
, (2)

where (⊗) indicates the tensor product.
Assuming a linear interpolation along the thickness direction, the position vector

becomes
x(ζ) = x0(ζ1, ζ2) +

2ζ3
h xn(ζ1, ζ2) (3)

where x0 := 1
2
(
x(ζ+) + x(ζ−)

)
and xn := 1

2
(
x(ζ+)− x(ζ−)

)
, with ζ+ = (ζ1, ζ2, h

2 ) and
ζ− = (ζ1, ζ2,− h

2 ). Similarly, the displacement field is described as

u = u0(ζ1, ζ2) +
2ζ3
h un(ζ1, ζ2) (4)
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with u0 := 1
2
(
u(ζ+) + u(ζ−)

)
and un := 1

2
(
u(ζ+)− u(ζ−)

)
being the coordinates of the

upper and lower surfaces of the shell. The independent strain components in Equation (2)
are collected in the 6-dim strain vector ε = [E11, E22, 2E12, E33, 2E23, 2E13]

T and linearized
with respect to ζ3 as

ε ≈
e(ζ1, ζ2) + ζ3 χ(ζ1, ζ2)

E33(ζ0)
γ(ζ1, ζ2)

 (5)

with ζ0 = (ζ1, ζ2, 0) and the membrane strain vector e, the curvature vector χ, and the
transverse shear strains vector γ given by

e(ζ1, ζ2) =

 E11(ζ0)
E22(ζ0)

2E12(ζ0)

, χ(ζ1, ζ2) =

 E11,3 (ζ0)
E22,3 (ζ0)

2E12,3 (ζ0)

, γ(ζ1, ζ2) =

[
2E23(ζ0)
2E13(ζ0)

]
.

We refer to [13,25] for more details and the explicit strain–displacement relationships.
It is important to remember here that, as a consequence of the use of the Green–Lagrange
strain measure, quantities {e(ζ1, ζ2), χ(ζ1, ζ2), E33(ζ0), γ(ζ1, ζ2)} have a quadratic depen-
dence on displacements u.
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Figure 1. Schematic geometry of the solid-shell continuum.

2.2. Constitutive Matrix for the Lamina

Deflections and buckling behavior of multi-layered composites can be modeled ef-
ficiently using a homogenized material model based on the hypothesis of the classical
lamination theory.

The constitutive matrix of each lamina is usually known with respect to a local
Cartesian reference system, defined by the orthogonal triad { ¯̄e1, ¯̄e2, ¯̄e3}, with ¯̄e1 the fibre
direction. Then, it is necessary to express it with respect to the Cartesian reference system
of the homogenised material, defined by the triad {e1, e2, e3}. Let assume that ¯̄e3 ≡ e3 and
denote with ϑ the angle around e3 between ¯̄e1 and e1. To simplify the notation, we omit to
report explicitly the dependence of all quantities from the ith lamina. Moreover, it is worth
noting that ϑ can vary over the mid-surface of the ply in VAT composites.

From now on, symbol ¯̄ will denote quantities expressed in components with respect
to { ¯̄e1, ¯̄e2, ¯̄e3}. In particular, the Voigt strain vector is ¯̄ε = { ¯̄ep, ¯̄E33, ¯̄γ}.

Strain vector ¯̄ε is linked to that in the global reference system ε by

¯̄ε = R[ϑ]ε (6)

where

R[ϑ] =

Rp 0 0
0 1 0
0 0 Rγ

, (7)
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0 denotes zero matrices of suitable dimensions and

Rp =

 cos(ϑ)2 sin(ϑ)2 − sin(2ϑ)
sin(ϑ)2 cos(ϑ)2 sin(2ϑ)

sin(2ϑ)/2 − sin(2ϑ)/2 cos(ϑ)2 − sin(ϑ)2

 Rγ =

[
cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

]
.

The lamina elastic law linking the Green–Lagrange strain to the second Piola–Kirchoff
stress is then

S = Cε (8)

where by standard transformation

C = R[ϑ]T ¯̄CR[ϑ] =

Cp 0 0
0 C33 0
0 0 Ct

. (9)

The block matrix ¯̄C of the orthotropic constitutive law of the lamina with respect to
the lamina reference system is

¯̄C =

 ¯̄Cp 0 0
0 ¯̄C33 0
0 0 ¯̄Ct

. (10)

where ¯̄Cp is obtained assuming a plane stress condition with a decoupling of membrane
and thickness strains in order to eliminate thickness locking [12]. The coefficient ¯̄C33,
linking thickness stress and strain, is maintained in order to avoid zero energy modes
(thickness stretch).

2.3. The Strain Energy for the Shell Model in Generalised Quantities

Letting Ω be the mid-surface of the shell, the stored strain energy of our shell model
can be conveniently rewritten, in compact notation, as

Φ(u) ≡ 1
2

∫
Ω

∫ h
2

− h
2

εTC(ζ)ε dζ3 dΩ =
1
2

∫
Ω

ε(ζ1, ζ2, u)TC(ζ1, ζ2)ε(ζ1, ζ2, u)dΩ (11)

with

C(ζ1, ζ2) =


Cee 0 0 Ceχ

0 C33 0 0
0 0 Ct 0
CT

eχ 0 0 Cχχ

 ε(ζ1, ζ2, u) =


e

E33
γ
χ

 (12)

where

C33 =
∫ h

2

− h
2

C33dζ3 Ct =
∫ h

2

− h
2

Ctdζ3

Cee =
∫ h

2

− h
2

Cpdζ Ceχ =
∫ h

2

− h
2

ζ3Cpdζ Cχχ =
∫ h

2

− h
2

ζ2
3Cpdζ

The transverse shear stiffness Ct can be evaluated more accurately by means of
shear correction factors as, for example, reported in the Abaqus/Standard [37] manual.
Finally note that, as recently proposed in [38], thermal effects due to general temperature
distributions can be easily accounted for in the model. Generally, a membrane-flexural
coupling is possible. Higher order lamination theories or layer-wise interpolations [39,40]
are also available for obtaining more accurate inter-laminar stresses. A recent paper [41]
proposes the inter-laminar stress recovery starting from the homogenized response.
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2.4. Discretization Methods

The continuum solid-shell model can be discretized using a displacement based
formulation or a mixed one. In this section, a displacement based finite element [12] and
isogeometric [14] formulation are reviewed, while we refer to [12,25] for a mixed one.

2.4.1. Geometry and Displacement Interpolation

The shell is discretized in quadrilateral elements through a mesh generation. Ac-
cording to the isoparametric concept, the same interpolation is used for the geometry and
displacements. The geometry is described over the element as

x(ζ) = Nu(ζ)xe (13)

where xe = [x0e, xne] collects the element discrete variables of the geometry corresponding
to x0 and xn, respectively. The matrix Nu(ζ) collects the interpolation functions

Nu(ζ) :=
[
N(ζ1, ζ2),

2ζ3
h N(ζ1, ζ2)

]
(14)

where N(ζ1, ζ2) are bi-dimensional functions of the mid-surface coordinates only as pro-
posed in [13,36].

The displacement field is interpolated using the same shape functions

u(ζ) = Nu(ζ)de (15)

where de = [d0e, dne] collects the element discrete degrees of freedom (DOFs) for the
displacement fields u0 and un.

The Green–Lagrange strains in Equation (5), upon considering Equations (13) and (15),
become

ε(ζ1, ζ2, de) =
(
L(ζ1, ζ2) +

1
2Q(ζ1, ζ2, de)

)
de, (16)

where L(ζ1, ζ2) := Q(ζ1, ζ2, xe) and Q(ζ1, ζ2, de) has a linear dependence from de, and its
expression can be found in [13].

The stored energy of the shell can be evaluated using a numerical integration as

Φ(d) = ∑
e

Φe, Φe =
1
2 ∑

g

(
εg(de)

>Cgεg(de)
)

wg (17)

where d is the global counterpart of de, e denotes the element, g indicates the integration
point, and wg is the corresponding weight.

2.4.2. Finite Element Formulation

If bilinear shape functions N(ζ1, ζ2) are employed for the middle surface approxima-
tion, we have a hexahedron solid-shell linear element. Low order elements are however
affected by shear and trapezoidal locking. In order to eliminate these undesired inaccu-
racies, it is possible to redefine the transverse shear strain components Ēηζ , Ēξζ and the
transverse normal strain component Ēζζ by the Assumed Natural Strain (ANS) technique
with number and location of the sampling points as reported in [12,42]. The in-plane
bending response of the element is improved by replacing the in-plane shear strain Ēξη

with its value at ξ = η = 0 that is a Selective Reduced Integration (SRI) retaining the correct
matrix rank.

2.4.3. Isogeometric Formulation

In the solid-shell isogeometric version, NURBS of arbitrary order and continuity are
employed as middle surface shape functions N(ζ1, ζ2). Locking occurs for low order
interpolations. Shear and membrane lockings are typical in small deformation problems.
Furthermore, an additional locking occurs in large deformations, even for flat plates, due
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to the nonlinear strain measure in Equation (16). The high continuity of the NURBS
functions allows the use of patch-wise numerical integrations [43,44], based on a lower
number of integration points compared to Gauss rules. Moreover, well-tuned patch-wise
reduced scheme can avoid locking. We refer to [13,36,45] for more details on this topic. The
displacement-based IGA model represents a reliable choice from the point of view of the
discrete approximation and the efficiency of the integration compared to high order FEs.

The NURBS high continuity also allows the use of a Kirchhoff–Love model for thin
shells as presented in [45,46], which has the advantage of describing the kinematic using
only the mid-surface displacement, thus halving the number of unknowns.

3. Objective Function and Design Variables
3.1. The Objective Function

The optimization process is aimed at maximizing the collapse load of the composite
shells. In buckling problems, the collapse load can be defined as the lower bound between
the critical limit load λlim and the load associated with a deformation limit λde f . With
α being the vector collecting the generic design optimization parameters, the objective
function can thus be written as

P(α) = λc = min
(

λlim, λde f

)
. (18)

The evaluations λlim and λde f , and thus the objective function computation, require
the construction of the equilibrium path of the structure for assigned design variables α.

Another possibility is to change the optimization problem in minimizing the displace-
ments occurring at an assigned load level. This is particularly suitable for structure with
an a priori known stable behavior [35].

3.2. Constraints

Some constraints should be considered in the optimization process (see [27]). Firstly,
manufacturing constraints are needed to guarantee the applicability for actual engineering
products. For example, the manufacturing of VAT composites requires a limit on the
minimum steering radius of the fibers. Moreover, the material behavior of the composite
can be assumed to be elastic up to failure. In this case, delamination and damage can be
prevented by adding constraints on maximum values of the strains or stresses.

3.3. Design Variables

The design variables collected in vector α define how the material properties, and then
the constitutive matrix in Equation (12), depend on the material properties at this point,
that is, we now have C(α, ζ1, ζ2).

3.3.1. Layer-Wise Parameters

The most simple approach consists of optimising the lamination using, as optimisation
variables, the angles ϑi of the stacking sequence, i.e., α = {α1, · · · αn} with each αi ≡ ϑi
constant over the patch. This means that for single shells we have a number of optimization
variables at most equal to the number of layers.

For VAT composites, the only change is that the lamina orientation is controlled by
more parameters, two according to the description proposed in [47]:

ϑi(ζ1, ζ2) = f (ζ1, ζ2, αk−1, αk) with k = 2i

We refer to [27,47] for more details.

3.3.2. Lamination Parameters

The previously discussed layer approach requires a large number of optimization
parameters when a large number of layers is used. For this reason, other approaches have
been proposed in literature in order to parametrise the homogenised constitutive matrix,
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without an explicit use of the stacking sequence. To this aim, the main approaches are polar
decompositions [48] and lamination parameters [49].

According to the last one, the constitutive matrix can be described as a linear function
of 12 lamination parameters [35,50]. Assuming to have the same material through the shell
thickness, the matrices Cee, Ceχ, Cχχ and Ct of the stiffness matrix in Equation (12), are
parametrized in terms of lamination parameters using the material invariants Γk:

Cee = Γ0 + Γ1ξA
1 + Γ2ξA

2 + Γ3ξA
3 + Γ4ξA

4 , Ceχ =
1
2

(
Γ1ξB

1 + Γ2ξB
2 + Γ3ξB

3 + Γ4ξB
4

)
,

Cχχ =
1
3

(
Γ0 + Γ1ξD

1 + Γ2ξD
2 + Γ3ξD

3 + Γ4ξD
4

)
, Ct = Γs

0 + Γ1ξ A
1 + Γs

2ξA
2 .

(19)

Lamination parameters are defined in [−1, 1] as

ξ A
i =

∫ 1

−1
fidζ3, ξB

i = 2
∫ 1

−1
ζ3 fidζ3, ξD

i = 3
∫ 1

−1
ζ2

3 fidζ3, i = 1, · · · , 4 (20)

where fi is the component of the vector f = [cos(2ϑ), sin(2ϑ), cos(4ϑ), sin(4ϑ)] and ϑ is
the angle around e3 of the VAT at a given point. Matrices Γi and Γs

i can be evaluated as

Γ0 =

U1 U4 0
U4 U1 0
0 0 U5

, Γ1 =

U2 0 0
0 −U2 0
0 0 0

, Γ2 =

 0 0 U2/2
0 0 U2/2

U2/2 U2/2 0

,

Γ3 =

 U3 −U3 0
−U3 U3 0

0 0 −U3

, Γ4 =

 0 0 U3
0 0 −U3

U3 −U3 0

,

(21)

Γs
0 =

[
U5 0
0 U5

]
, Γs

1 =

[
U6 0
0 −U6

]
, Γs

2 =

[
0 −U6
−U6 0

]
, (22)

with Uk reported in [50].
The lamination parameters, controlling the elastic matrix, are interpolated over the

shell domain as
ξ = Nξ(ζ1, ζ2)α (23)

where α collects the lamination parameters ξ
j
i , i = 1 . . . 4 , j = A, B, D at the control points

of a further grid used for the material description.
Following [51], the reconstruction of the stacking sequences over the surface in terms

of the lamination parameters, once they are evaluated by the optimal design process, is
obtained in a second stage by minimising a least-square distance between the target distri-
bution (23) and the lamination parameters related to the unknown fibre angle distribution.
To this aim, the vector ϑ collecting the orientations of all layers can be interpolated as

ϑ(ζ1, ζ2) = Nϑ(ζ1, ζ2)ϑd (24)

where Nϑ[ζ1, ζ2] are bi-dimensional shape functions, while ϑd are the corresponding dis-
crete variables. The least-square problem can be written as

minimise
ϑd

E(ϑd) =
np

∑
i=1

lp

∑
j=1

(ξ j(ϑd, ζ i
1, ζ i

2)− ξ j(α, ζ i
1, ζ i

2))
2

np

subject to ||ϑd||∞ ≤ π/2

C(ϑd) ≤ 0

(25)

where C(ϑd) ≤ 0 is a set of manufacturing constraints that the fibre tow must satisfy,
i = 1 . . . np are a fine set of sample points over the shell surface and lp is the number
of lamination parameters at each point. The solution of this non-convex and nonlinear
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problem can be obtained using a multi-start GCMMA. A complex-step method [52] is
advised for the gradient evaluations.

4. Equilibrium Path Evaluation

The evaluation λlim and λde f , and thus the objective function computation, requires
the construction of the equilibrium path of the structure for assigned design variables
α. A common approach for path following the equilibrium curve is the Riks arc-length
method [13,16,20,53]. In this case, the nonlinear equations in the kinematic unknowns are
solved step-by-step using the Newton–Raphson method. However, this kind of analysis
bears a significant computational cost due to the large size of the matrices associated with
a high number of DOFs. Furthermore, a reliable evaluation of the equilibrium path should
take into account the sensitivity of the structure to imperfections in order to detect the
worst imperfection scenario [21]. For this reason, an alternative approach called Koiter’s
method [25] was proposed, which assembles a reduced order model based on Koiter’s
theory of elastic stability for the assigned material configuration. The corresponding
reduced nonlinear equations, usually in a lower number of unknowns, are then solved
to obtain a good estimate of the equilibrium path at a low computational cost. The
most interesting feature of the method is the possibility of including imperfections a
posteriori in the reduced system [28] of the perfect structure, thus enabling inexpensive
sensitivity analyses.

4.1. Path-Following Analysis

The system of discrete equilibrium equations is then obtained through enforcement of
the stationarity of the total potential energy according to

r(λ; u) =
∂Φ
∂u
− λf = s(u)− λf = 0, (26)

where r is the residual vector, s(u) is the vector of generalized stress resultants (i.e., restor-
ing forces), f is the load vector per unit multiplier, u collects the discrete variables and λ
is the load multiplier. Note that u collects the global displacements d in a displacement
formulation, while it can contain other variables like stresses and strains in mixed formula-
tions. The solutions of Equation (26) define the equilibrium paths of the structure in the
u− λ space.

The Riks approach [16] is the most popular strategy for solving Equation (26) by
adding a constraint of the shape g(λ; u)− s = 0, which defines a surface in RN+1. Assign-
ing successive values to the control parameter s = s(k), the solution of the nonlinear system

R(s) ≡
[

r(λ; u)
g(λ; u)− s

]
= 0 (27)

defines a sequence of points (steps) z(k) ≡ {u(k), λ(k)} belonging to the equilibrium path.
Starting from a known equilibrium point z0 ≡ z(k), the new one z(k+1) is evaluated
correcting a first extrapolation z1 = {u1, λ1} by a sequence of estimates zj (loops) by a
Newton iteration {

J̄ż = −Rj

zj+1 = zj + ż
(28)

where Rj ≡ R(zj) and J̄ is the Jacobian of the nonlinear system (27) at zj or a suitable
estimate. The method is able to provide the equilibrium path for assigned data even in
case of limit points in load or displacements. Its main drawback is the high computational
cost, due to the large size of the system of equations. For this reason, the method is
inadequate to assess the imperfection sensitivity. Generalized path-following methods are
a promising alternative to the standard Riks method, where, for example, the critical point
can be evaluated by changing the initial data directly, without reevaluating the whole load–
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displacement curve [20]. However, in the following, a completely different approach, called
the Koiter method, is illustrated. It is based on a reducer order model (ROM) and is far
more efficient for imperfection sensitivity analyses compared to path-following methods,
and then more suitable for design purposes. It is worth citing the possibility to couple the
Koiter method with the path-following approach, obtaining the so-called Koiter–Newton
approach where the ROM is used as an accurate predictor [29,30].

4.2. The Mixed Integration Point Strategy

In geometrically nonlinear analysis, a mixed format of the nonlinear equations in
stress and displacement variables provides superior performances in the solution methods.
In the standard path-following method, the mixed iterative process assures a greater
robustness also for large steps and with a reduced number of iterations, and then a reduced
computational time [54]. In Koiter analysis, a mixed format is an indispensable prerequisite
to obtain an accurate ROM (see [25,54]). The improved efficiency in path-following methods
and accuracy in Koiter’s method is much more evident when the slenderness of the
structure gets higher and, concerning the last one, when the pre-critical path presents
some nonlinearities. The mixed integration point (MIP) strategy proposed in [17] can
be successfully used to exploit the advantages of a mixed format in Riks and Koiter
analysis [13,36] without the need of a stress interpolation.

The main idea of the MIP method is to relax the constitutive equations at each integra-
tion point by rewriting the strain energy in a pseudo Hellinger–Reissner form as

Φe(ue) ≡
n

∑
g=1

(
σT

g εg(de)−
1
2

σT
g C−1

g σg

)
wg (29)

where the stresses at each integration point σg become independent variables:

ue =


σ1
...

σn
de

 (30)

The stationary condition with respect to σg gives the constitutive law at g:

sgσ ≡ εg(de)− C−1
g σg (31)

When Equation (31) is exactly solved and substituted in Equation (29), we obtain,
again, the displacement formulation. This means that the discrete approximation of the
problem is the same as in the original displacement formulation: the equilibrium path is
the same when a path-following scheme is adopted (see [17]).

In this way, MIP formulations extend the results already obtained for mixed (stress–
displacements) discrete approximations, avoiding the use of a stress interpolation. This is
particularly convenient in IGA, where an effective mixed formulation is not an easy task.
Moreover, the MIP method was recently used to solve, by means of collocations, the strong
form of the problem equations [55,56] or applied to more involved constitutive laws [57].

4.3. Koiter Method

The Koiter approach, described in detail in [25,28,36], is here briefly recalled its main
algorithmic steps based on the MIP formulation of the solid-shell model. As shown in [54],
this is necessary to improve Koiter’s method accuracy because of the direct prediction of
the stress and efficiency, due to the vanishing of the fourth order strain energy variations.
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By collecting in vector u the global discrete displacements d and stresses σg at each
integration point g, Koiter’s method is based on the following reduced order model:

u(λ; ψi) = λû +
m

∑
i=1

ψiv̇i +
1
2

m

∑
i,j=1

ψiψjwij +
1
2 λ2 ˆ̂w (32)

where ψi are the scalar modal amplitudes, û is the linear elastic solution (path tangent to
the stress-free configuration), v̇i denotes the ith of the n linearized buckling modes, wij and
ˆ̂w are quadratic correction modes. The evaluation of these vectors requires the solution of

linear systems for û, wij and ˆ̂w and a linearized buckling analysis for v̇i. Details can be
found in [25,28,36].

According to this choice, the equilibrium path is approximated by the following
nonlinear reduced system of equilibrium equations in the unknowns ψi λ:

rk[λ, ψ1, · · · , ψm] = µk(λ) + (λk − λ)ψk − 1
2 λ2

m

∑
i=1

ψiCik +
1
2

m

∑
i,j=1

ψiψjAijk

+ 1
6

m

∑
i,j,h=1

ψiψjψhBijhk = 0, k = 1 . . . m
(33)

The scalar coefficients Aijk, Cik, Bijhk and µk[λ] are computed as the sum of elemental
contributions of the stored energy variations. Their explicit expressions can be found
in [25,36].

A notable feature of the method is a computationally efficient imperfection sensitivity
analysis. In fact, the imperfect structure can be studied by perturbing a posteriori the same
reduced system of the perfect structure by adding to it the imperfection coefficients µ̃k:

rk + µ̃k = 0, k = 1 . . . m. (34)

This means the analysis of a new geometrical imperfection simply requires only to
update µ̃k and solve again the small system in Equation (34). Thousands of imperfections
can be analyzed in a few seconds regardless of the global number of DOFs used for the full
structural model.

Two strategies were proposed for the evaluation of µ̃k [28]. A first solution is very
quick but with a validity range restricted to small imperfection amplitudes and almost
linear pre-buckling path. A second imperfection modeling is more accurate for a wider
range of structural problems and just a little more expensive than the first one [28].

4.3.1. The Worst-Case Geometrical Imperfection

The geometrical imperfection d̃ can be assumed to be a linear combination of assigned
shapes ḋi with combination factors ψ̃i,

d̃ =
m

∑
i=1

ψ̃iḋi, ||d̃|| ≤ d̃max, (35)

scaled in order to have an assigned maximum amplitude d̃max chosen, for example, from ex-
perimental measurements as in [58]. Shapes ḋi can be chosen, for example, as the displace-
ment part of the first linearized buckling modes.

The worst-case imperfection can be defined as that leading to the worst value of
P(αg, ψ̃1, . . . , ψ̃m):

maximise
ψ̃1,...,ψ̃m

P [αg, ψ̃1, . . . , ψ̃m]

subject to
∣∣d̃[ψ̃1, . . . , ψ̃m]

∣∣
∞ = d̃max

(36)

The solution of the previous problem can be obtained by the stochastic algorithm
proposed by [26,27], which exploits the reduced order modeling of Koiter’s method.



Materials 2021, 14, 1665 12 of 20

4.3.2. Advantages of a TL Solid-Shell Formulation

Discrete models directly derived from the 3D continuum using the Green strain
measure have a low order dependence on the strain energy from the discrete parameters
and in particular have a 3rd order dependence for the MIP formulation. On the contrary,
geometrically exact shell and beam models or those based on corotational approaches make
use of the rotation tensor. This implies that the stored energy is infinitely differentiable
with respect to the discrete parameters and leads to very complex expressions for the
energy variations with a high computational burden for their evaluation. On the contrary,
for solid-shell finite elements, the strain energy in MIP form has the lowest polynomial
dependence on the corresponding discrete parameters, i.e., just one order more than in the
linear elastic case, implying the zeroing of the fourth order energy variations required to
build the Koiter ROM.

5. Postbuckling Optimisation Algorithms

The optimisation problem is based on searching for the material distribution that
maximizes the structural performance, i.e., the objective function in Equation (18).

5.1. Monte Carlo Random Search with Zoom Steps

The Monte Carlo random search method proposed in [26] consists of multiple steps
and requires only the computation of the objective function. During the first step, a random
population of N1 layups is generated and, for each of them, the objective function is
computed. The n = n1 elite (best) solutions, collected in αel , represent the starting points
of the second step (zoom step) that improves the previous elite. For each value in αel , the
objective function is evaluated N2 times at random points defined as

αj = αel(j) + rnd(−R, R) (37)

where j = 1 . . . n denotes the elite value and rnd is a generator of pseudo random integer
values between −R and R. The radius R can decrease during the steps, e.g., R1 during the
first zoom step and R2 for the others.

At the end of a zoom step, n best solutions are selected as the new elite population to
start the next step. The algorithm stops if a satisfactory convergence is obtained; otherwise,
a next zoom step is started. Although very simple, the Monte Carlo search with zoom steps
provides good estimates of the optimum, for practical design purposes, with a limited
number of objective function evaluations. These kinds of methods become, however, more
and more demanding by increasing the number of design variables.

5.2. Genetic Algorithm

A genetic algorithm (GA) is a metaheuristic method inspired by the natural selec-
tion [32,59]. It is widely used to solve optimization problems when the derivatives of the
objective function are difficult or costly to evaluate. Compared to a Monte Carlo random
search, it relies on biologically inspired operators such as mutation, crossover and selection.
The method starts from a random population and proceeds with an iterative process, called
generation, providing new individuals. At each generation, the value of the objective
function (called fitness) of every individual is evaluated. The best individuals are stochas-
tically selected and recombined also with random mutations to form a new generation
for the next iteration. The termination criterion is a maximum number of generations or a
satisfactory fitness level. In addition, the genetic algorithm becomes, however, costly for a
large number of design variables.

5.3. Globally Convergent Method of Moving Asymptotes

The optimal design problem can be also solved via a gradient based method with
convex subsequent approximations of the objective function, i.e., the Global Convergent
Method of Moving Asymptotes (GCMMA) [33,60–62]. It is particularly suitable for the
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optimisation of objective functions requiring a high computational cost and depending on
many variables.

The gradient evaluation with respect to the design variables is usually done numeri-
cally. In particular, the ith component is computed as

∇Pi(α) ≈
P(α + hii)− P(α)

h
(38)

where h is a small real parameter chosen defining the discrete incremental ratio, and ii is
a basis vector where the unitary ith component is the only non-zero element. Generally,
the gradient evaluation is extremely time-consuming, but the relative efficiency of Koiter’s
method reduces it to an acceptable time. Moreover, GCMMA generally converges with a
few iterations, so compensating largely the gradient computation. A multi-start GCMMA
is advised for complicated objective functions with multiple local optima.

5.4. Comparison of the Optimization Algorithms

According the numerical experience matured in [26,27,35] in post-buckling optimisa-
tion, the performances of the different algorithms can be compared. In particular, the main
advantage of Monte Carlo with zoom steps and genetic algorithm is a likely convergence to
the global optimum and no need for gradient computation. The first one usually provides
better estimates for a low number of function evaluations, but it is slower to achieve a
converged solution compared to the second one. However, both methods get inefficient
(large number of function evaluations) when the number of design parameters increases.
On the contrary, GCMMA is the most efficient choice for a large number of design variables
because the cost for computing the function gradient is largely compensated by the very fast
convergence. As a drawback, multiple starts are generally needed to assure convergence to
global optima.

6. Post-Buckling Optimisation of a Cylindrical Panel under Compression

Figure 2 depicts a simply-supported cylindrical panel subject to uniform axial com-
pression. Boundary conditions are reported in Figure 2 and imposed as usual by zeroing
the corresponding DOFs. For the axial displacement, the rigid motion is prevented by
maintaining the symmetry.

A postbuckling optimisation of this structure was previously carried out in [26]
using straight fibre laminates and a Monte Carlo methodology. In addition, it was used
as a benchmark test for the isogeometric formulation proposed in [13]. The panel is
particularly suitable to assess the potentiality of the material optimisation, since its baseline
Quasi-Isotropic (QI) design, that is, when all lamination parameters are zero, exhibits
an unstable post-buckling behaviour with imperfection sensitivity. In the following, we
will denote with n1 × n2 the number of isogeometric elements in the two directions of
the shell domain. The NURBS isogeometric discretization is adopted for both material
description and displacement field. The number of elements for the two discretizations
is not necessarily the same. In particular, for the structural analysis, the displacement
discretization is that giving converged results, while, for the material description, different
meshes are considered.
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Figure 2. Geometry (lengths in mm), NURBS control grid, boundary conditions and loads.

6.1. Stage 1: Determination of the Optimum in Terms of Lamination Parameters

The optimisation problem at stage 1 consists of finding the distribution of lamination
parameters that maximises the failure load, i.e., the minimum between the first limit load
λlim and the load leading to a limit axial displacement of the loaded section vax = vd.
In practice, the process searches for the axially-stiffest stable behaviour or the unstable
configuration with the highest limit load and is less sensitive to geometrical imperfections.
The loads in the objective function (18) are normalised by the first linearised buckling load
of the QI case, named λQI .

The shell thickness is t = 10 mm. The axial displacement limit is set to vd = 2 mm.
The material is a widely employed E-glass/epoxy fibrecomposite with E11 = 30.6 GPa,
E22 = 8.7 GPa, ν12 = 0.29 , ν23 = 0.5 , G12 = 3.24 GPa, G23 = 2.9 GPa. The discretization of
the displacement field is based on quadratic NURBS and a 9× 9 control grid that gives a
converged solution for different material configurations. Consequently, the number of dis-
crete displacement DOFs is 683. The maximum amplitude of the geometrical imperfection
is d̃max = 0.5 t.

Two different grids based on quadratic NURBS, namely 6× 6 and 9× 9, are used
to parametrize the lamination parameters. To preserve the symmetry, only the control
points of a quarter of the structure are taken as independent design parameters. An
orthotropic laminate with symmetric and balanced stacking sequence is considered. Under
these choices, the number of independent design variables is restricted to 64 and 144,
respectively, for the two grids.

The convergence of GCMMA for the two different description of the lamination param-
eters is illustrated in Figure 3. The optimal solution is achieved by less than 10 iterations.
Moreover, a good solution is also given for the coarsest material mesh. The evolution of
the equilibrium path during the iterative process is shown in Figure 4 for the 9× 9 material
grid. Each equilibrium curve corresponds to the lamination parameters obtained at the
end of each GCMMA iteration, whose number is reported in the legend. For example, the
equilibrium path indicated with 0 corresponds to the starting point of GCMMA, which is
the QI configuration. The curve denoted with 1 is relative to the first iteration of GCMMA,
and so on. Interestingly, the solution gets significantly better already after the first iteration
compared to the initial QI configuration. The third iteration gives the first stable postbuck-
ling response. Then, the computational design process finds configurations with increasing
axial stiffness and the GCMMA algorithm converges soon afterwards: the equilibrium
curve after the 7th iteration is practically the same as that found at the 20th one.

The results of stage 1 are summarized in Figure 5 in terms of equilibrium curves.
In particular, the load–displacement path corresponding to the optimal distribution of
lamination parameters (LP) is compared with the baseline QI case. Comparison is also
made with the optimal solution for straight fibre laminates with a non-symmetric stacking
sequence (SF) obtained in [26], that is, from the inside out, [∓54, 04] with the fibre orien-
tations given with respect to the local reference system in Figure 2 with e3 aligned with
the surface normal vector. Figure 5 compares the equilibrium path predicted by Koiter’s
method with that given by the Riks method using the full model. The end shortening and
the out-of-plane displacement at the centre of the panel are monitored. We can observe a
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satisfactory agreement in all cases. The optimal configuration of lamination parameters is
illustrated in Figure 6. Finally, the worst-case imperfection detected during the optimal
design process is pictured in Figure 7.
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1.5

GCMMA iterations

λ
c/
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material grid 6× 6

material grid 9× 9

Figure 3. Convergence of the GCMMA optimisation algorithm at stage 1 for two different NURBS
parameterizations of the lamination parameters.
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Figure 4. Load–displacement paths after different GCMMA iterations (0, 1, . . . 25) at stage 1 with a
grid of 9× 9 material control points.
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Figure 5. Comparison of the equilibrium paths obtained using Koiter’s method with Riks results.
On the left, the axial displacement (vax) is plotted while, on the right, we have the out-of-plane
displacement at the panel center (wout). Baseline QI case, straight fibre design [26] and optimal
lamination parameters are considered.
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of 9× 9 material control points.
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6.2. Stage 2: Recovery of the Lamination Angles

The advantage of the two-stage methodology is the possibility of designing structures
made of many layers without penalizing the computational cost of the process. Actually,
having many layers is an advantage, since it allows a more accurate match with the optimal
solution of stage 1. This fact is shown here, where the recovered stacking sequence (SS) is
symmetric and balanced with 12 independent layers. The stacking sequence is restricted
to be [±θ1, . . . ,±θ12]s, with each θ interpolated using a bivariate quadratic NURBS (see
Equation (24)) over a mesh of 9× 9 elements. The thickness of each layer is 0.208 mm.

The solution of the problem (25) is achieved by means of a multi-start GCMMA. The
algorithm converges quickly, as shown in Figure 8. The corresponding equilibrium curves
are reported in Figure 9, while Table 1 shows the match between the values of objective
function and the first linearised buckling loads for the optimal lamination parameters and
those corresponding to the recovered fibre orientations. These last ones are pictured in
Figure 10.
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Figure 8. Convergence of the multi-start GCMMA for the optimisation problem of stage 2.
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Figure 9. Load-axial displacement vax paths for the baseline QI case, the optimal distribution of
lamination parameters (LP, 9× 9 elements) and the fibre orientations retrieved in stage 2 (SS).

Table 1. Results of the optimised material design LP for a grid of 9 × 9 control points for the
lamination parameters and for the retrieved fibre orientations (SS).

9× 9

Case P λ1 λ2 λ3 λ4 Match

QI 0.710 1.000 1.255 1.795 1.883 -
LP 1.830 1.177 1.489 1.840 2.100 -
SS 1.821 1.170 1.482 1.840 2.097 99.92%

ϑ1 ϑ2 ϑ3 ϑ4

ϑ5 ϑ6 ϑ7 ϑ8

ϑ9 ϑ10 ϑ11 ϑ12

Figure 10. Fibre orientations retrieved by stage 2 for the stacking sequence [±ϑ1,±ϑ2, . . . ,±ϑ12]S [35].
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7. Conclusions

This review collected some recent findings in the post-buckling optimisation of
thin-walled composite structures. Focus was given to structural modelling, material
parametrization, post-buckling analysis with imperfection sensitivity and optimisation
algorithms. A computational framework merging the developments in these different
aspects led to robust and efficient optimizations of composite materials with spatially
varying material proprieties. As a result, numerical analysis can make it possible to fully
exploit the capability of advanced manufacturing methods for the realisation of a new
generation of structures able to work safely in the post-buckling regime saving materials,
costs and weight.
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