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Imaging diagnosis is crucial for early detection and monitoring of brain tumors. Radiomics
enable the extraction of a large mass of quantitative features from complex clinical imaging
arrays, and then transform them into high-dimensional data which can subsequently be
mined to find their relevance with the tumor’s histological features, which reflect underlying
genetic mutations and malignancy, along with grade, progression, therapeutic effect, or
even overall survival (OS). Compared to traditional brain imaging, radiomics provides
quantitative information linked to meaningful biologic characteristics and application of
deep learning which sheds light on the full automation of imaging diagnosis. Recent
studies have shown that radiomics’ application is broad in identifying primary tumor,
differential diagnosis, grading, evaluation of mutation status and aggression, prediction of
treatment response and recurrence in pituitary tumors, gliomas, and brain metastases. In
this descriptive review, besides establishing a general understanding among protocols,
results, and clinical significance of these studies, we further discuss the current limitations
along with future development of radiomics.

Keywords: radiomics, radiogenomics, glioma, pituitary tumor, brain metastases
INTRODUCTION

Brain and other CNS tumors, including gliomas, pituitary tumors, and others such as brain
metasteses, mainly occur in lung cancer and breast cancer patients. These tumors stand out for their
high diversity and heterogeneity, along with dismal prognosis, ranking them among the top 10
causes of cancer deaths, accounting for a significant proportion of the deaths in men less than 40
Abbreviations: AUC, area under the curve; BM, brain metastases; CAD, computer-aided diagnosis and detection; CADe,
computer-aided detection; CBV, cerebral blood volume; CCC, concordance correlation coefficient; CE-T1WI, contrast-
enhanced T1-weighted MRI; CNN, convolutional neural network; DSC, dynamic susceptibility contrast; DTI, diffusion tensor
imaging; DWI, diffusion-weighted imaging; EGFR, epidermal growth factor receptor; FLAIR, fluid-attenuated inversion
recovery; GBM, glioblastoma; HGG, high-grade glioma; IDH, isocitrate dehydrogenase; LASSO, least absolute shrinkage and
selection operator; LGG, low-grade glioma; MGMT, O-6-methylguanine-DNA methyltransferase; MRI, magnetic resonance
imaging; mRMR, minimum redundancy maximum relevance algorithm; MRS, magnetic resonance spectroscopy; NFPA, non-
functioning pituitary adenoma; OS, overall survival; PA, pituitary adenoma; PCA, principal component analysis; PCNSL,
primary central nervous system lymphoma; PD, progressive disease; PFS, progression-free survival; PsP, Pseudoprogression;
PWI, perfusion-weighted imaging; RECIST, Response Evaluation Criteria in Solid Tumours; RF, random forest; RFE, recursive
feature elimination; ROC, receiver operating characteristic curve; RQS, radiomics quality score; SAM, significance analysis of
microarrays; SVM, support vector machine; TRC, treatment-related changes.
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years and women less than 20 years in the United States in 2018
(1), and it is estimated that they will cause 18,600 deaths in 2021.

Clinical radiology is a routinely performed examination for
patients who are suspicious of brain or other CNS tumors;
recently more and more sophisticated analytic methods have
sprung up which supplement traditional imaging techniques.
Based on the imaging techniques and incorporated with
computer vision and machine learning (2), radiomics was
born. Radiomics first appeared in Philippe’s review in 2012 (3),
initially as an extended technique of computer-aided diagnosis
and detection (CAD) systems. The term radiomics refers to the
refining of a large mass of quantitative features from complex
clinical imaging arrays, then transforming them into high-
dimensional data which can subsequently be mined to find
their relevance with the tumor’s histological features, which
reflect underlying genetic mutations and malignancy, along
with grade, progression, therapeutic effect, or even overall
survival (OS) (4). Deep learning is a branch of machine
learning, and machine learning is the necessary path to realize
artificial intelligence (AI). The concept of deep learning
originated from the study of neural networks that simulate the
human brain. In recent years, we have seen a blossoming in AI
development, with more intelligent algorithms such as deep
learning bringing the possibility of realizing fully automatic
image capturing and reading processes. Compared to
traditional manual radiology practice requiring trained
physicians to deal with large quantities of information, which
is labor intensive, subjective, and qualitative, radiomics is able to
use AI methods to provide automatic, objective, and quantitative
data with high efficiency. In this review, we focus on radiomics
and extended imaging techniques. The general clinical
applications of these noninvasive methods are shown (Figure 1).

Clinical Application
Early accurate diagnosis and classification are crucial in
prolonging the patient’s survival time. The application of
radiomics has been initiated in clinical oncology early
diagnosis, since its ability to analyze the combination of
numerous quantitative features provides the possibility to
unravel the underlying pathophysiology that is hard to be
perceived by radiologists’ eyes and avoid subjective misreading.
The general workflow of radiomics involves several discrete
steps: imaging, segmentation, feature extraction, feature
selection, machine learning, and validation (5). Segmentation is
using a series of algorithms to delineate regions of interest
(ROIs), which refers to the tumor and its surrounding
abnormality from other tissue, and then further subdividing
the legion by its intra-heterogeneity to facilitate the next steps.
Accurate segmentation is a key step from image processing to
quantitative analysis, acting as a prerequisite for the subsequent
diagnostic tasks like defining the location, extent of radiation,
and tumor feature extraction, and is the most challenging step
due to high heterogeneity and irregularity of brain tumors.
Feature extraction refers to the use of existing features to
calculate a feature set with a higher degree of abstraction, and
also refers to an algorithm for calculating a certain feature. Then
the extracted features will go through feature selection, which
Frontiers in Oncology | www.frontiersin.org 2
aims at reducing dimensionality and the difficulty of learning
tasks to improve the efficiency of the model. The top features will
be integrated with clinical results and/or pathological results,
together as input into machine learning methods to build
prediction or classification models.

The main clinical tasks of radiomics lie in three parts:
detection, characterization, and monitoring. By the help of
computer-aided detection (CADe), the suspicious area of the
image can be highlighted and some features indicating early
cancer lesions can be detected, which reduce observational
oversights and improve the speed of interpretation (6, 7). Most
radiomics models are served for characterization, including
diagnostic tasks (differential diagnosis, malignancy, WHO CNS
classification, specific genetic mutation status, and treatment
effect) and predictive/prognostic tasks (treatment effect, OS/
PFS, complication, and tumor recurrence). Monitoring is also
significant within clinical practice in evaluating the progression
of tumor and the effect of treatment. Traditional protocols to
assess the tumor progression, recommended by institutions like
Response Evaluation Criteria in Solid Tumors (RECIST) and
WHO, are usually defined by the size of tumor (8), which omits
much geometry and material information detected by advanced
radiological instruments and also oversimplifies the indicators
on tumor burden. The emergence of AI-monitoring may help
radiologists to establish more sophisticated quantitative
protocols towards tumor burden evaluation.

MRI acts as a key part and is usually the first choice in
radiological diagnosis of brain tumors. First, MRI has an
FIGURE 1 | The clinical application of the noninvasive detection techniques.
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TABLE 1 | Radiomic.

Study No. of
patients
involved
(Training/

Test)

General
purpose

CT or MRI con-
trast(s)

Segmentation
method

Nomber of
features

(extraction/
selection)

Feature
selection
method

Classification
method

Performance (Training/
Test)

Yae Won
Park et al.
(30)

141/36 To predict the DA
response in
prolactinoma
patients

T2WI ^^3D Slicer
software

107/n.a. / soft voting (RF,
light gradient
boosting machine,
extra-trees,
quadratic
discrimination
analysis, and linear
discrimination
analysis)

#0.81/0.81 (AUC)

Yang
Zhang et al.
(40)

50/n.a. To predict
progression or
reccurence in
NFPAs

CE-T1WI and
T2WI

^^^fuzzy c-
mean (FCM)
clustering
algorithm

107/3 SVM SVM ***0.78/n.a.(AUC)

Andrei
Mouraviev
et al. (117)

87/n.a. To predict local
recurrence
following SRS

CE-T1WI and
FLAIR

^^Elastix
software

440/12 Random
forest feature
importance
(RFI)

RF #0.793/n.a. (AUC)

Kniep, H
et al.(113)

189/n.a. To predict tumor
type in different
BM with
unknown primary
lesion

CE-T1WI, T1WI
and FLAIR

^^Analyze 11.0
Software

1423/20 Decision tree RF *0.64 (NSCLC)-0.82 (MM)/
n.a.(AUC)

Peng, LK
et al. (116)

66/n.a. To predict
diagnosing
treatment effect
after stereotactic
radiosurgery

CE-T1WI and
FLAIR

^^a
multiparametric
deep learning
(MPDL) network

51/5 IsoSVM IsoSVM **0.81/n.a.(AUC)

Ji Eun Park
et al. (73)

85/35 To predict core
signaling
pathways in IDH
wild-type GBM

T1WI, T2WI, DWI,
FLAIR, CE-T1WI,
and DSC

^^MITK
software

71/5(RTK), 17/
5(P53), 35/5
(retinoblastoma)

t-test,
LASSO, RF

Logistic regression (3-fold CV)0.87/0.88(RTK),
0.80/0.76(p53), 0.84/0.81
(retinoblastoma pathway)
(AUC)

Pascal O.
Zinn et al.
(65)

46/47
(GBM),
40/
n.a.(mice)

To establish
causality between
POSTN status
and MRI-
extracted
radiomic-features
in GBM

FLAIR and CE-
T1WI

^^3D Slicer
software

2480/48
(GBM),17(mice)

LASSO Binary logistic
regression

**76.56%/n.a.(GBM),
92.26%/n.a.(mice)(AUC)

Chia-Feng
Lu et al.
(46)

214/70 To stratify the
molecular
subtypes of
gliomas

CE-T1WI, FLAIR,
T2WI, and DWI

^^n.a. 39212/(20-
1960)

Two-
sample t-test
with pooled
variance
estimate

SVM *87.7%-96.1%/80.0%-
91.7%(accuracy)

Robin
Gutsche
et al. (47)

50/n.a. To evaluate the
repeatability of
feature-based
FET PET
radiomics and
investigate IDH
genotype on
feature
repeatability

FET PET ^^^TBR≥1.6 1302/297 intraclass
correlation
coefficient

n.a. n.a.

Yoon
Seong Choi
et al. (48)

727/439
(129
internal
and 310
external)

To predict the
IDH status of
gliomas

CE-T1WI, T2WI
and FLAIR

^^^CNN 24/20 CNN CNN ***0.96/0.94(internal), 0.86
(external)(AUC)

(Continued)
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outstanding contrast capacity for the detection of brain tissues.
Second, MRI has many different sequences respectively sensitive
to different physiology parameters, such as blood flow and edema
in surroundings, which indicate the tumor’s microenvironment.
Third, MRI can be implemented throughout the treatment
Frontiers in Oncology | www.frontiersin.org 4
noninvasively and assesses the progression and effect. Besides
this anatomical imaging, the multimodal MRI with emerging
sequences and technical developments like PET using either
amino acid, choline, or fluorodeoxyglucose, as well as fusion
PET/CT and PET/MRI scanners, provides a mass of functional
TABLE 1 | Continued

Study No. of
patients
involved
(Training/

Test)

General
purpose

CT or MRI con-
trast(s)

Segmentation
method

Nomber of
features

(extraction/
selection)

Feature
selection
method

Classification
method

Performance (Training/
Test)

Anna Luisa
Di Stefano
et al. (67)

66/78 To characterize
the clinical,
radiological, and
molecular profile
of F3T3 positive
diffuse gliomas

T1WI, CE-T1WI
and FLAIR

^ITK-SNAP
software

2616/25 Cox
proportional
hazards
models (OS)

RF(F3T3) *F3T3: 0.87/0.745(AUC)

Xiaorui Su
et al. (71)

75/25 To predict H3
K27M mutation
status in midline
gliomas.

FLAIR ^ITK-SNAP
software

99/10 TPOT TPOT *** 0.788~0.867/0.60~ 0.84
(accuracy)

Zev A.
Binder
et al. (59)

260/n.a. To investigate the
negative survival
impact of
EGFRA289D/T/V

T1WI, CE-T1WI,
T2WI, FLAIR, DTI,
and DSC

^^GLISTRboost 2104/299/17 SVM/
radiographic
interpretability

n.a. n.a.

Jingwei
Wei et al.
(50)

74/31 To predict MGMT
methylation status
in astrocytoma

CE-T1WI, FLAIR
and DWI

^ITK-SNAP
software

3051/13 The minimum
redundancy
maximum
relevance
(mRMR)

logistic regression #0.925/0.902(AUC)

Yiming Li
et al. (51)

63/123(32
internal
and 91
external)

To predict ATRX
mutation in LGGs

T2WI ^MRIcro
software

431/9 LASSO SVM #0.94/0.925(internal) and
0.725(external)(AUC)

Johannes
Haubold
et al. (52)

28/14 To predict tumor
grading and
mutational status
of patients with
cerebral gliomas

CE-T1WI, ADC,
and 3D-FLAIR
(SPACE), FET
PET, and SWI,
The water-
content-based M0
map (MRF M0) ,
T1FLAIR, DWI

^^3D Slicer
software

19284/32
(1p19q
codeletion), 64
(IDH1), 8
(ATRX),16
(MGMT)

f score
(ANOVA),
chi-square,
LCSI and
randomized
logistics
regression
(RandLR)

RF and SVM *WHOI-IV:0.818/n.a.(AUC);
Differentiation of LGG and
HGG:0.85/n.a.(AUC);
1p19q codeletion: 0.9784/
n.a.(AUC); IDH1:0.88/
n.a.(AUC); ATRX:0.851/
n.a.(AUC); MGMT:0.757/
n.a.(AUC)

Luyuan
Zhang et al.
(57)

96/24 To identify the
value of CIC
mutations in
gliomas

T1WI, T2WI,
FLAIR and CE-
T1WI

^FSL image
viewer

6676/11 LASSO logistic regression *0.985/n.a.(AUC)

Changliang
Su et al.
(53)

220/n.a. To differentiate
among glioma
subtypes and
predict tumour
proliferation

T2WI fast-echo
images (T2FSE),
T1WI, FLAIR, CE-
T1WI, DWI, PWI
and CBF

^^ImageJ 431/25 univariate
analysis

logistic regression #0.936/n.a.(AUC)

Yiming Li
et al. (76)

69/40 To predict PTEN
mutation status in
GBM

T1WI, T2WI and
CE-T1WI

^MRIcro
software

862/6 The minimum
redundancy
maximum
relevance
(mRMR)

SVM #0.925/0.787(AUC)
October 2021 |
^ manual segmentation; ^^ semi-automatic segmentation; ^^^ full-automatic segmentation; * 5-fold cross-validation; ** leave-one out cross-validation; *** 10-fold cross-validation; #
cross validation not available;
AUC, area under the receiver operating characteristic curve; GBM, glioblastoma; BM, brain metastases; PsP, pseudoprogression; CCC, concordance correlation coefficient; IDH,
isocitrate dehydrogenase; PCNSL, primary central nervous system lymphoma; TBR, tumor-to-brain ratio; CNN, convolutional neural network; LASSO, least absolute shrinkage and
selection operator; MGMT, O6-methylguanineDNA-methyltransferase; EGFR, epidermal growth factor receptor; TRC, treatment-related changes; RFE, recursive feature elimination; RF,
random forest; SAM, significance analysis of microarrays; SVM, support vector machine; n.a., not available; PCA, principal component analysis;
MRI, magnetic resonance imaging; mRMR, minimum redundancy maximum relevance algorithm; MRS, magnetic resonance spectroscopy; DTI, diffusion tensor imaging; DWI, diffusion-
weighted imaging; FLAIR, fluid-attenuated inversion recovery; PWI, perfusion-weighted imaging; T1, T1-weighted MRI; CE-T1WI, contrast-enhanced T1-weighted MRI; T2, T2-weighted
MRI; DSC, dynamic susceptibility contrast; CBV, cerebral blood volume.
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TABLE 2 | Radiomic.

Study No. of
patients
involved
(Training/

Test)

General purpose CT or
MRI

contrast
(s)

Segmentation
method

Nomber of
features

(extraction/
selection)

Feature
selection
method

Classification
method

Performance (Training/
Test)

Daesung
Kang et al.
(82)

112/42 To identify atypical PCNSL
mimicking GBM

T1WI,
T2WI,
FLAIR,
DWI, CE-
T1WI and
DSC

^^MITK
software

1618/15
(ADC), 40
(CE-T1WI)

RFE(ADC);
relief (CE-
T1W1)

RF(ADC); LDA
(CE-T1WI)

***0.983(AUC)/0.984
(internal AUC)0.944
(external AUC)

Guoqing Wu
et al. (83)

67/35 To differentiate PCNSL and
GBM and for IDH1 mutation
estimation

T2WI and
CE-T1WI

^^^CNN 968/49 Sparse
representation

Collaborative
sparse
representation

**98.51%/94.51%
(accuracy)

Zenghui Qian
et al. (81)

227/185 To differentiate GBM from BM
preoperatively

T1WI,
T2WI and
CE-T1WI

^MRIcro
software

1303/24 LASSO SVM *0.945/0.90(AUC)

Jung Youn
Kim et al. (86)

61/57 (23
internal
and 34
external)

To differentiate PsP from early
tumor progression in patients
with GBM

CE-T1WI,
FLAIR,
ADC and
CBV
maps

^^MITK
software

6472/12 LASSO
logistic
regression
model

Student’s t-test
and the chi-
square test

***0.9(AUC)/0.96(internal
AUC), 0.85(external AUC)

Katrin Aslan
et al. (91)

148/
n.a.(mice)

To predict treatment response
and PsP in ICB-treated mice

T2WI and
CE-T1WI

^Osirix or
ITKsnap
software

423/423 / Gradient
boosting

*82.7%/n.a. (accuracy)

Nabil
Elshafeey
et al. (84)

98/7 To discriminate PsP from
progression in GBM

FLAIR,
T1WI and
CE-T1WI

^^3D Slicer
software

620/60 Maximum
Relevance
Minimum
Redundancy
(MRMR)

SVM **89%/n.a.(AUC)

Jinhua Cai
et al. (90)

77/72 (41
internal
and 31
external)

To predict the response to
bevacizumab in patients with
brain necrosis after radiotherapy

FLAIR ^^3D Slicer
software

1301/18 LASSO multivariate
logistic

#0.916/0.912 (internal)
and 0.827 (external)(AUC)

Philipp
Lohmann
et al. (85)

72/30 To differentiate PsP in glioma
patients post-chemoradiation

FET PET ^^^TBR=1.4,
1,6, 1.8

944/4 RFE TPOT *0.74/0.74 (AUC)

Kai Wang
et al. (87)

112/48 To discriminate tumor
recurrence from radiation
necrosis in glioma

CE-T1WI,
FLAIR,
18F-FDG
and 11C-
MET PET

^ITK-SNAP
software

396/15 LASSO Multivariable
logistic
regression
analysis

***0.988/0.914(AUC)

Zi-Qi Pan
et al. (94)

82/70 (40
internal
and 30
external)

To predict the response of
individual GBM patients to
radiotherapy

T1WI,
CE-T1WI,
T2WI,
and
FLAIR

^^GLISTR
software

28496/8 Boruta
algorithm

RF ***0.764/0.758 (external)
(C-index)

Xing Liu et al.
(103)

216/84 To predict the PFS in LGGs and
investigate the corresponding
genetic background

T2WI ^MRIcro
software

431/9 Univariate
Cox
regression

LASSO Cox
regression

***0.684/0.823(C-index)

Sara
Dastmalchian
et al. (95)

31/n.a. To differentiate between intra-
axial adult brain tumors and to
predict survival in the GBM
cohort

T1WI,
T2WI,
FLAIR
and CE-
T1WI

^Magnetic
resonance
fingerprinting

39/20 Spearman’s
rank
correlation
coefficient
test

Wilcoxon rank
sum

#Peripheric white matter
regions in GBM and
LGGs: 0.869/n.a.(AUC),
Solid tumor regions in
LGGs and metastases:
0.952/n.a. (AUC)

Zenghui Qian
et al. (102)

85/148 To identify OS in patients with
LGGs

T2WI ^MRIcro 55/6 univariate Cox
regression

multivariate
Cox regression

#0.92/0.70(C-index)

László Papp
et al. (97)

42/28 To estimate survival for glioma 11C-MET
PET

^^Hybrid 3D 112/56 Genetic
algorithm and
Nelder–Mead
method

geometric
probability
covering
algorithms

Monte Carlo cross-
validation, n.a./0.9
(M36IEP AUC)

(Continued)
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neuroradiological information towards tumor penetration
boundaries and heterogeneity in brain tumor patients (9, 10).

Radiogenomics
In 2016, WHO published a new guideline on classifying CNS
tumors; the molecular markers are especially spotlighted to
describe brain tumor entities histology features for the first
time, which leads to more precise tumor cataloging (11).
Furthermore, target therapies and treatment strategies for
malignant brain tumor patients are also predominantly
dependent on specific molecular markers, emphasizing the
importance of precision oncology. With the advance of big
data and bioinformatics, it is possible to detect the correlations
between gene expression and radiomics features, which is known
as radiogenomics. Radiogenomics is based on a common
hypothesis that the dissimilarities in phenotypes of ROIs can
be attributed to gene-expression patterns (12). Panth et al.
further proved that genetic changes that lead to phenotypic
consequences can be reflected in variations of radiomics
features (13). The main tasks of radiogenomics are to
investigate the correlation between germline genotypic variance
and the large clinical post-radiotherapy variability (14), as well as
the correlation between specific imaging features and the
inherent cellular pathophysiology (15).
Frontiers in Oncology | www.frontiersin.org 6
Radiogenomics is analogous to the combination of radiology
and genomics, but people should be aware that a sole radiomics
analysis without biopsy genomics confirmation is not robust
enough for definitive assessment of gene expression or other
contents in ROIs. On the one hand, radiomics or radiogenomics
only reveals the correlation between features and genetic
alterations, not the causes. On the other hand, not all of the
phenotypic differences are induced only by genetic alteration, but
also epigenetic changes and other factors. Thus, they actually
incorporate with histopathologic examinations or sequencing,
which provides confirmatory information to improve clinical
decision making. Radiogenomics holds great potential for an
expanding translational technology, mainly due to
three characteristics:

First of all, while genomic sequencing usually uses biopsy
samples from one representative part of the tumor, the
radiomics data is derived from the entire tumor lesion, so the
outcome can capture radiomics features on the whole. As a result,
radiogenomics supplements genomic sequencing with
intratumoral heterogeneity and even intertumoral heterogeneity.
Several recent studies have exhibited the role of radiogenomics in
identifying regional genetic heterogeneity in malignant tumor
with broad genetic diversity that led to treatment resistance such
as glioblastoma (GBM) (16–18).
TABLE 2 | Continued

Study No. of
patients
involved
(Training/

Test)

General purpose CT or
MRI

contrast
(s)

Segmentation
method

Nomber of
features

(extraction/
selection)

Feature
selection
method

Classification
method

Performance (Training/
Test)

Sohi Bae
et al. (96)

163/54 To predict survival in patients
with GBM

T1WI,
T2WI,
FLAIR,
3D CE-
T1WI and
DTI

^^signal
intensity
thresholding,
region growing,
and edge
detection

796/18 Random
survival forest

Random
survival forest

***Overall survival: n.a./
0.652, Progression-free
survival: n.a./ 0.590(iAUC)

Niha Beig
et al. (98)

83/113
(male),
47/70
(female)

To develop sexually dimorphic
radiomic risk score (RRS)
models that are prognostic of
OS

CE-T1WI,
T2WI and
FLAIR

^^CapTK 105/8
(male), 287/
6 (female)

LASSO Cox regression #0.73/0.88(C-index,
male), 0.73/0.69(C-index,
female)

Maikel
Verduin et al.
(99)

142/46 To established prognostic
clinical features, predict IDH-
mutation, MGMT-methylation
and EGFR amplification develop
a prognostic model for OS in
GBM

CE-T1WI
and T2WI

^Osirix Lite and
MiM software

1197/5 XGBoost Cox-regression ***0.72/0.73(C-index)

Philipp
Kickingereder
et al. (100)

120/61 To stratify patients with GBM CE-T1WI,
T2WI and
FLAIR

^^ITK-SNAP 1043/386 CCC Lasso-
penalized Cox
model (Coxnet
algorithm)

***0.103(all layers, OS
IBS); 0.089(all layers, PFS
IBS)
O
ctober 2021 | V
^ manual segmentation; ^^ semi-automatic segmentation; ^^^ full-automatic segmentation; * 5-fold cross-validation; ** leave-one out cross-validation; *** 10-fold cross-validation; #
cross validation not available;
AUC, area under the receiver operating characteristic curve; GBM, glioblastoma; BM, brain metastases; PsP, pseudoprogression; CCC, concordance correlation coefficient; IDH,
isocitrate dehydrogenase; PCNSL, primary central nervous system lymphoma; TBR, tumor-to-brain ratio; CNN, convolutional neural network; LASSO, least absolute shrinkage and
selection operator; MGMT, O6-methylguanineDNA-methyltransferase; EGFR, epidermal growth factor receptor; TRC, treatment-related changes; RFE, recursive feature elimination; RF,
random forest; SAM, significance analysis of microarrays; SVM, support vector machine; n.a., not available; PCA, principal component analysis;
MRI, magnetic resonance imaging; mRMR, minimum redundancy maximum relevance algorithm; MRS, magnetic resonance spectroscopy; DTI, diffusion tensor imaging; DWI, diffusion-
weighted imaging; FLAIR, fluid-attenuated inversion recovery; PWI, perfusion-weighted imaging; T1, T1-weighted MRI; CE-T1WI, contrast-enhanced T1-weighted MRI; T2, T2-weighted
MRI; DSC, dynamic susceptibility contrast; CBV, cerebral blood volume.
olume 11 | Article 732196

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yi et al. Review of Radiomics in Brain Tumor
The following advantage lies in that radiogenomics are easy,
rapid, noninvasive, and dynamic, as well as cost-effective. As
imaging becomes routine for patients who are suspicious of
brain tumor and the estimated error rate of cancer
histopathology can be as high as 23% (19–22), quantitative
imaging provides additional information to avoid observer
variability and indicates actual biopsy sites. For those who have
contraindications of biopsy, radiomics or radiogenomics is
expected to serve as a secondary substitution to guide
individualized medicine. As far as costs are concerned, radiomics
are usually low cost compared to biopsy; it costs around 2000
dollars for a brain biopsy in China, but less than half of that for
radiomics. In addition, brain biopsy is an invasive procedure that
includes risks like bleeding, seizure, infection, and even paralysis or
death for key lesions like basal area and brain stem. Consequently,
radiomics outweighs biopsy in costs and risks. Since radiomics or
radiogenomics is easy and rapid, they enable the monitoring of the
change of gene expression in the tumor’s different regions, which
may potentially indicate the causes of gene mutation.

Finally, there are single features strongly related to genes, and
a cluster of features not significantly correlative to genes, but that
have the potential to provide the information with some sort of
combination, which has made progress in predicting cancer
immunotherapy. By combining CT radiomics features and
genomic data based on CD8B, Sun et al. developed a novel
radiomics-based biomarker to predict CD8 cell count and
clinical outcomes of patients’ response to anti-PD-1 or anti-
PD-L1, when validated by further prospective randomized trials
(23). In an AI-based radiomics study by Trebeschi et al., the
biomarker mainly regarding tumor proliferation could predict
anti-PD-1 therapy response with an AUC of up to 0.76 for both
advanced melanoma and non-small-cell lung cancer (NSCLC)
patients (24). It is also promising to see more robust radiomics-
based biomarkers on targeted therapy in the future, such as
antiangiogenic treatment with bevacizumab (25). To improve the
resolution and confidence of features’ subsets related to gene
modification or expression, big data from multiple centers
should be collected and integrated.
PITUITARY TUMOR

Pituitary adenomas (PAs) are among the leading types of brain
tumors, and the foremost frequent lesion in sellar area. Usually, the
hormone hypersecretion is assessed by immunocytochemical or
hormone assays to distinguish secretory tumor from non-secretory
ones. And the evaluation of tumor mass, such as accurate location
and volume, is based on diagnostic imaging and visual field
examination. Accurate clinical diagnosis derived from tumor
characteristics helps individualized treatment. Radiomics will
likely never replace histopathology or hormonal diagnosis for
adenomas. However, separately, AI algorithms may replace the
work performed by pathologists in interpreting microscopic
analyses. Recent progress in pituitary tumors, gliomas, and brain
metastases are arranged and summarized in Tables 1, 2.
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Evaluation of Aggression
Ki-67 is only expressed in the nucleus of proliferating cells and
the Ki-67 labeling index is considered to be an ideal indicator for
detecting cell proliferation activity. PAs may exhibit clinically
invasive or aggressive behavior, accompanied by postoperative
recurrence and resistance to multidimensional therapy, which is
usual ly evaluated by Ki-67 label ing index through
immunohistochemistry. Ugga et al. collected 89 patients with
available Ki-67 data and performed k-nearest neighbors (k-NN)
to build a radiomics classifier using 12/1128 quantitative
radiomics features to evaluate the Ki-67 labeling index based
on preoperative T2WI MRI, which is effective and accurate
(accuracy 91.67%) (63).

Knosp grade describes the degree of PA invasion to bilateral
cavernous sinuses (CS). Niu et al. predicted CS invasion in 194
PA patients (training cohort: 97; test cohort: 97) graded 2-3 with
Knosp pre-operatively by radiomics approaches deriving from
contrast-enhanced T1 (CE-T1) and T2WI MRI (64). They
applied LASSO to select three important features and establish
a classifier using support vector machine (SVM), which yielded
decent AUC values (training cohort: 0.852, test cohorts: 0.826).

Grading
The regulation of adenohypophyseal cell differentiation and
hormone secretion are operated by a series of transcription
factors, including Tpit, Pit-1, and SF-1. Peng et al. involved
235 patients with pituitary adenoma (PA), and 18 quantitative
imaging features were verified as significant to train SVM, k-NN,
and Naïve Bayes (NBs) models to classify the transcription factor
types of PAs. Among the three models, the SVM model showed
the best performance (AUC 0.9549) whereas the K-NN (AUC
0.9266) and NBs (AUC 0.9324) models displayed lower
performance and they found better performance in T2-
weighted than Tl-weighted and CE-T1 (65).

Zhang et al. worked on differential diagnosis of non-
functioning pituitary adenomas (NFPAs) subtypes from other
subtypes preoperatively (66). They enrolled 75 patients as the
training cohort and 37 patients as the test cohort, and derived
complete T1-WI and CE-T1 MRI. The top three T1-WI imaging
features, rather than CE-T1 imaging features, were ultimately
selected using mRMR to fit a Radial Basis Function (RBF)-SVM
predictive signature. A nomogram incorporated clinical
characteristics and the radiomics signature corresponding to
the best predictive model for individual prediction. Finally, the
calibration of the nomogram was presented with a concordance
index (CI) (training cohort: 0.854, test cohort: 0.857).

Prediction of Treatment Response
Prolactinoma is the most common secretory PA, with prime
treatment being dopamine agonists (DA) such as bromocriptine.
To assess prolactinoma patients’ response to DA before initiating
the treatment plan, Park et al. investigated a total of 177
prolactinoma patients’ coronal T2-weighed MRIs and set up a
radiomics predictor with an AUC of 0.81 in both training and
test cohorts (26).
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Acromegaly is a severe complication that leads to poor
prognosis most frequently caused by somatotroph PAs that
secrete excessive growth hormone (GH). For those who are not
suitable for surgery or have severe symptoms, somatostatin
receptor ligand (SRL) treatment is usually applied to reduce
the volume of mass preoperatively (67–69). To predict the
treatment response of SRL ahead of surgical resection,
radiomics features from MRI are selected to predict the
histological granulation pattern. Park et al. set up a radiomics
prediction model based on 69 GH-secreting PA patients and the
model showed an AUC of 73.7% (70).Fan et al. proposed a
radiomics prediction model of invasive functional pituitary
adenoma (IFPA) working on the treatment responses before
surgery (71). The prediction model was incorporated with a
radiomics signature based on seven selected features derived
from MRI and Knosp grade of each IFPA patient. The
discrimination abilities and calibration of this yielded good
performance, with AUCs (training cohort: 0.832, test
cohort: 0.811).

Prediction of Recurrence
Early progression/recurrence (P/R) is a poor prognostic factor of
macro NFPAs that is reported in 25–55% patients after surgical
resection (72–75). Zhang et al. established a SVM radiomics
model based on three selected features from 50 patients’ 214
preoperative and postoperative follow-ups MRI features
extracted from CE-T1 and T2WI yielded an overall accuracy of
82% and AUC of 0.78 discriminating P/R NFPAs from non-P/R
ones using the original mask tumor ROI (27). They also
calculated SVM scores for each patient and found that higher
scores may correlate with shorter PFS. Regarding SVM score for
differentiation of P/R, the optimal cut-off value was calculated
which means patients with SVM scores higher than 0.537 tended
to exhibit shorter PSF and the corresponding AUC (0.87)
were obtained.

Machado et al. applied 3D CE-T1 MRI of patients
preoperatively and segmented two and three-dimensional
regions. They evaluated the 255 extracted radiomics features of
27 patients with NFPA and selected six features for two-
dimensional machine learning radiomics models and 13 for
three-dimensional models (76). The results showed 3D-feature
based models have superior discrimination ability to classify
NFPAs recurrent and stable lesions than 2D-feature based
models, with their accuracies of up to 96.3% compared to
accuracies of 92.6% for models solely based on 2D features.
GLIOMAS

Gliomas account for the first leading primary brain and other
CNS tumor in adults (25.1%) (77), making up approximately
80.8% among primary malignant brain and other CNS tumors
with certain diagnoses (11).As the majority of gliomas (57.7%),
GBM accounts for the foremost and lethal primary malignant
brain tumor in neurosurgery, whose overall incidence rate is
estimated 0.0032% in American adults (78). Though multimodal
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treatment protocols, including maximal safe surgical resection
and adjuvant radiation therapy with concurrent chemotherapy
mainly temozolomide (TMZ), are standardly given to GBM
patients, they still suffer a crushingly adverse prognosis with
14.6 months of median OS (79).

Evaluation of Mutation Status
Isocitrate dehydrogenase (IDH) mutations are recognized as a
good prognostic factor in early clinical intervention and can be
integrated into routine clinical practice such as pathological
examination via radiomics analysis, immunohistochemistry,
flow cytometry, standard PCR, and/or sequencing techniques
(80). All IDH-mutant diffuse astrocytic tumors are classified as a
single type of tumor (astrocytoma, IDH mutation, grade 2/3/4)
and all GBM only included IDH wild type tumors in the 2021
WHO CNS 5. The 1p19q co-deleted tumors are exclusively
oligodendrogliomas. And most oligodendrogliomas with 1p/
19q co-deleted, which indicates poor prognosis, are
accompanied by IDH1 and IDH2 mutation. In 2016 WHO
CNS 4, the guideline of gliomas classification incorporated five
molecular subtypes of diffuse gliomas based on IDH mutation
and 1p/19q codeletion status.

Lu et al. built a multilevel quantitative imaging model based
on CE-T1 image, T2 FLAIR, T2WI, DWI, and ADC to recognize
IDH and 1p/19q genotypes of glioma and further classification of
five molecular types (33). The training cohort involved 214
patients and an additional independent cohort involved 70
patients for external test. The IDH and 1p/19q classifier using
SVM models was established in the training cohort, yielding
areas under receiver operating characteristic (ROC) curves
ranging from 0.922 to 0.975, and accuracies ranging from
87.7% to 96.1%. Correspondingly in the test cohort it showed
accuracies between 80.0% and 91.7%. On classifying five
molecular subtypes, the trained classifier with the MR
radiomics phenotypes as sole source yielded an accuracy of
81.8%, which further reached a higher accuracy of 89.2% in the
existence of histology diagnosis. Gutsche et al. implemented FET
PET to enhance the diagnostic performance of their radiomics
features on IDH genotype identification (34). The repeatability of
the features was evaluated by calculating the intraclass
correlation coefficient (ICC) and 297 features with robust
discrimination ability were finally selected.

Deep convolutional neural networks (CNNs) and radiomics
share the same procedure but have separate characteristics
regarding radiological evaluation on IDH genotypes. Choi et al.
reviewed 1166 preoperative CE-T1, T2, and FLAIR
neuroimaging of gliomas grading II-IV derived from three
centers and developed a CNN-based fully automated model
hybridizing conventional MRI that integrated 2D tumor signal
intensity and quantitative radiological features from 3D tumor
shape and location, which was reproducible and generalizable for
noninvasive characterization of IDH status in gliomas (35).
Based on CE-T1, T2WI, and FLAIR from 1166 patients with
gliomas (training cohort:727; internal test cohort: 129; external
test cohort: 310), 20 out of 24 extracted features were selected
and the classifier reached an AUC of 0.96, 0.94, and 0.86
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respectively for training cohort, internal validation cohort, and
external validation cohort.

The DNA-repairing enzyme O-6-methylguanine-DNA
methyltransferase (MGMT) restores cytotoxic lesions in DNA
caused by temozolomide chemotherapy, thus leading to drug
resistance. Methylation epigenetically silenced MGMT has a
connection with a better treatment response and a better
prognosis than the unmethylated promoter (81). Based on a
group of 105 patients with grade II-IV astrocytoma, Wei et al.
established a radiomics model forMGMT promoter methylation
prediction with supreme power (AUC: training cohort: 0.925,
test cohort: 0.902), which successfully bisected the group into
high-risk and low-risk subgroups for OS followed by
temozolomide chemotherapy (39). ATRX mutation is another
good prognostic factor that usually appears in LGGs
accompanied by IDH mutation. Li et al. included 95 patients
with LGGs and built a radiomics predictor of ATRX alterations,
which was subsequently validated in an external cohort of 91
patients with good performance (AUC: training cohort: 0.94,
internal test cohort: 0.925 and external test cohort: 0.725) (40).

Haubold et al. assessed the potential of multimodal imaging
and radiomics algorithms to predict the grading and common
mutations including MGMT of 42 patients with suspicious
primary brain tumor (41). They applied 18F-FET PET along
with MR Fingerprinting and extracted 19284 features from each
patient, which were further divided into 32 for 1p19q codeletion,
64 for IDH1, 8 for ATRX, and 16 forMGMT. And through 5-fold
cross-validation the AUCs in predicting the mutation were
respectively assessed, with 1p19q for 97.8%, IDH1 for 88.7%,
ATRX for 85.1%, andMGMT for 75.7%. The 2016WHO grading
model yielded an AUC of 81.8% while AUC of discriminating
LGG from HGG was 85.2%. Su et al. further investigated grading
along with proliferation levels in 220 patients with various grades
of gliomas (43). When combining radiomics features of multi-
contrast MRI (T2WI fast-echo images (T2FSE), T1WI, FLAIR,
CE-T1WI, DWI, ADC, PWI and CBF), the models displayed the
highest AUC (0.911 for LGGs and HGGs, 0.896 for grades II–III,
0.997 for grades II–IV, 0.881 for grades III–IV, and 0.936 for
levels of Ki-67 labeling index).

It has been reported that CIC mutation promotes glioma cell
proliferation, differentiation, and aggression and results in a poor
outcome (82–84). However, Zhang et al. found that patients with
LGGs (IDHmutation) or oligodendroglioma (IDHmutation and
1p/19q codeletion) combined with CIC mutations may have
better prognosis (42). As shown in MRI, LGGs (IDH mutation)
with CIC mutation illustrate visually less malignant
manifestations, such as fairer necrosis and more homogeneity
among the tumor volume. They further developed a radiomics
model to predict the CIC alterations based on 11 features derived
from 120 patients with LGGs (AUC: 0.985).

Epidermal growth factor receptor (EGFR) variants are
reported in 57% of GBM specimens. Among these, a deletion
from exons 2–7, EGFRvIII is the most frequent EGFR variant,
and extracellular domain (ECD) missense mutations like
A289D/T/V, R108G/K, and G598V are the most frequent
EGFR deletion comprising 10%–15% of transcription products
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while the deletion was found to co-occur with amplification (85).
EGFRA289V mutation has the most negative survival impact,
which was reinforced by Binder’s study involving 260 patients
with de novo GBM (38). To investigate the negative prognostic
effect of EGFRA289D/T/V, Binder et al. firstly did quantitative
imaging analysis comprising six different MRI modalities and
extracted 2104 quantitative imaging phenomic features which
were further reduced to a more manageable set of 299 using a
multivariate classification framework (86). To promote
radiographic interpretability, an experienced neuroradiologist
further filtered these features into 17. The MRI signatures
based on selected features presented a picture of decreased T1
signal but higher CE-T1 signal, higher T2 values, higher peak
height (PH) values, and relative cerebral blood volume (rCBV) in
EGFRA289D/T/V mutant tumors region, indicating higher water
content, hyperproliferation, and increased invasion in tumor
region with EGFRA289V. The peritumoral edema region
presented reduced fractional anisotropy (FA) generated by
Diffusion Tensor Imaging (DTI) for cases with EGFRA289D/T/V

mutations, suggesting decreased tissue organization and
homogeneity. Taking MRI signature and following modified
cell lines in vivo, they demonstrated higher proliferation,
increased aggressiveness, and shorter OS in EGFRA289D/T/V. To
explore the mechanism in vivo, they inhibited two main signaling
pathways of EGFR, RAS/RAK/ERK and PIK3CA/AKT, which
revealed that A289V-induced EGFR activation mediates
phosphorylated ERK and augments MMP1 expression which
cause hyperproliferation and invasion. Finally, mAb806 targeting
therapy was examined in EGFRA289V mice models and was
proven to be a potential therapeutic option as the mAb806
antibody reduced the tumor burden, inhabited tumor growth,
and improved animal survival.

Glioma cells connect their microenvironment in a two-way
street, mainly through cytokines and matrix proteins. POSTN is
a secretory extracellular matrix protein made up of gliomas cells.
Prev ious s tud ie s showed POSTN plays a ro l e in
neovascularization, endothelial junction formation decrease,
stem cell maintenance, and macrophage recruitment (87, 88).
Subsequent studies revealed POSTN in glioma grade, recurrence,
and resistance to bevacizumab monoclonal antibody against
VEGF-A (89, 90). Zinn et al. found GBM patients with
different POSTN expression levels in association with distinct
imaging features, which can be utilized in radiomics for
prediction (32). They extracted 2480 radiomics features
respectively in GBM patients and GSC-derived orthotopic
tumors mice and selected 48 and 17 features respectively to
build two classifiers (GBM AUC: 76.56%; mice, AUC: 92.26%).

F3T3 is a novel fusion proto-oncogene incorporating FGFR3-
TACC3 found in approximately 3% of gliomas that functions as
an important part in the activation of oxidative phosphorylation
and mitochondrial metabolism. Though the foremost energy
metabolism pathway of tumor is anaerobic glycolysis, GBM with
F3T3 mutation depends on noncanonical mitochondrial
pathway. Thus, F3T3 may serve as a potential target for
targeting therapies such as mitochondrial inhibitors (91).
Stefano et al. showed that, in the midst of IDH-WT tumors,
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F3T3-positive gliomas exhibit distinct molecular, radiological,
and clinical features and possess a more optimistic clinical
outcome independent of their grading. Their radiomics data
composed 66 patients as training cohort and 78 patients from
another institution as test cohort and identified F3T3-positive
patients with good accuracy. They successfully built a classifier
towards F3T3 mutation status (AUC: 0.87(training)/0.745(test))
and a model composing clinical, genetic, and radiomics profile to
estimate the F3T3-positive patients’ OS as presenting the best
concordance (C-index: 0.81). They further implemented
multiple optimization techniques (SCCAN) to inspect the
tropism of F3T3 gliomas for specific intracranial ROIs and
finally located cortical and subcortical regions, especially insula
and temporal lobe (36).

H3 K27M mutant occurs within the histone-3 gene (H3F3A)
wherein an amino acid recurrently converts from lysine to
methionine in the site 27, and H3 K27M-positive diffuse
midline glioma is listed separately graded as IV in 2016 WHO
classification (92). According to a report, H3 K27M-positive
gliomas in thalamus area tend to result in a shorter median OS in
pediatric patients than in H3 K27M-WT ones (93). Furthermore,
there have been several epigenetic-targeted treatments towards
H3K27M and an immunological study provided evidence for
immunotherapeutic approaches like mutation-specific vaccines
targeting H3K27M (94). Su et al. carried out a retrospective study
on automated classification of H3 K27M genotypes. The Tree-
based Pipeline Optimization Tool (TPOT), a method that
automatically conducts feature and model selection procedure,
along with pipeline optimization, was highlighted. The study
included 40 H3 K27M-positive patients and 60 WT, of whom
75% were randomly grouped into the training cohort while 25%
into test cohort. After extracting 99 features from FLAIR, TPOT
finally refined 10 more manageable radiomics features and
generated ten prediction models. The optimal model is
generated through comparison of accuracy metrics. The model
exhibiting the best performance in the test cohort yielded the
highest average precision of 0.911 and AUC of 0.903, while
validation in an independent validation dataset observed an
average precision of 0.855 and an AUC of 0.85 (37).

Monitoring the core signaling pathway of GBM may reveal
the tumor evolution, allow early clinical intervention, and
enhance patients’ management (95). Park et al. built a
radiogenomic classifier based on patients with IDH-WT GBM
certified by next-generation sequencing (NGS), which
noninvasively predicts retinoblastoma 1, p53, and Receptor
tyrosine kinase (RTK) core signaling pathways (31). In this
study, 85 patients were classified into the training cohorts in
total and 35 into test cohorts, and their T1WI, T2WI, DWI,
FLAIR, CE-T1WI, and perfusion MRI-like dynamic
susceptibility contrast (DSC) were acquired for radiomics
analysis. For each core signaling pathway, 71, 17, and 35
features passed extraction, and finally the top 5 features were
selected respectively. Three models were evaluated, presented as
AUC (RTK, training cohort: 0.87, test cohort: 0.88; p53, training
cohort: 0.80, test cohort: 0.76; retinoblastoma, training cohort:
0.84, test cohort: 0.81). PTEN is a tumor suppressor gene
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participating in both ATK and RTK signaling pathways and
the deficiency of PTEN is considered to be the main feature of
GBM (96, 97). In addition to relying on sequencing and
immunohistochemistry to detect PTEN alterations, Li et al.
established a noninvasive radiomics method with good
performance in guiding targeted therapy (AUC: training
cohort: 0.925, test cohort: 0.787) (44).

Differential Diagnosis
The radiological features of gliomas usually lack specificity,
involving spherical well-encapsulated shape with ring
enhancement indicating tumor angiogenesis and prominent
peritumoral edema. The lesions are mostly multiple and are
usually located at watershed or grey-white junction with white
matter fiber bundles erosion. Further, the radiological features
between malignant gliomas and lymphomas are analogous and
there is also similarity in abscesses, infections, demyelinating
diseases, and vascular lesions. The radiological features are also
likely to be interfered with by hemorrhage, melanin, and
paramagnetic ions.

Brain metastases (BMs) take up the second most common
type of malignant brain neoplasms in adults preceded by GBM
(98, 99). Early diagnosis is the key to appropriate therapies since
the strategies for these two tumors are distinct with different local
control rates and intervention prognosis: the prior treatment for
GBM is maximum-safe surgery resection, following adjuvant
radiotherapy and chemotherapy (100), while regarding BM the
more effective and less invasive treatment is stereotactic
radiosurgery (101). Qian et al. assessed high-dimensional
radiomics features from T1-WI, T2-WI, and CE-T1 to
distinguish GBM from solitary BM (47). In the retrospective
study, patient’s population, including 242 GBM and 170 solitary
BM, was randomly grouped (training cohort: 227, test cohorts:
185). An amount of 1303 radiomics features passed extraction,
which were then refined by twelve feature selection methods.
Thirteen classifiers were generated and all yielded excellent
predictive efficacy with AUC≥0.95 in the training cohort.
Through ROC curve analysis they found out that the
combination of SVM and LASSO classifiers had the best
prediction value in the test cohort (AUC: 0.90).

Primary central nervous system lymphoma (PCNSL) shares
radiological similarities with GBM when solely using ADC
parameter, due to some overlaps in ADC values. Kang et al.
evaluated the feasibility of a radiomics model for the
differentiation of atypical PCNSL and GBM based on ADC
(45). The patient population in the training cohort contained
112 patients, while the population in the test cohort involved 42
patients for internal and 42 for external validation sets. They
combined 12 feature selection methods with 8 classification
methods using 5~50 selected features and optimized 8 ADC
radiomics models. The prediction performance and stability
were subsequently measured by each AUC and relative
standard deviation (RSD) of each model. As a result, the ADC
model combining RFE feature selection with RF classification
yielded the highest diagnostic value with an AUC of 0.983 in the
training cohort. The ADC model showed robustness exceling
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expert readers and was further assessed respectively in the
internal validation cohort (AUC 0.984) and external validation
cohort (AUC 0.944) to promote generalizability.

To standardize the procedure and improve efficacy, Wu et al.
generated a novel radiomics system utilizing feature extraction
and selection methods and classification framework based on
dictionary learning and sparse representation (46). Simply using
T2WI and CE-T1, they tested the technical feasibility of the
system using 49 selected radiomics features out of 968 features
extracted from 102 patients with PCNSL or GBM (training:
test=67:35). The sparse representation radiomics system had
superior PCNSL and GBM differentiation performance
(training cohort: 98.51% accuracy, test cohort: 94.51%
accuracy). Furthermore, the IDH1 prediction performance of
the novel system exceeded traditional methods based on
calculation by 11%.

Prediction of Treatment Effect
and Recurrence
Tumor recurrence in early posttreatment stage is commonly
reported in HGGs. Assessing posttreatment MRI changes
according to RANO standard within 0-72 hours is a common
and effective method to evaluate the degree of surgery.
Pseudoprogression (PsP) is a diagnostic dilemma presented as
expanded and/or new regions of edema and enhancement,
especially within the 2-5 months from the initiation of
adjunctive therapies, which mimics tumor recurrence and
radiation necrosis. The mechanism of PsP may be attributed to
three factors: (1) non-tumor tissue chemoradiation damage, e.g.,
hemorrhage, ischemia, aseptic inflammation, edema and
necrosis; (2) blood-brain barrier breakdown; or (3) other
factors, e.g., signal artefacts from metal implants.

A recent retrospective radiomics study comprising 76 patients
of histopathology-proved progressive disease (PD) and 22 of PsP
from three centers by Elshafeey et al. provided evidence on
perfusion MRI on accurately discriminating PD and PsP. Its
reported model based solely on Ktrans maps had matching
diagnostic value with the rCBV model in discriminating
between PsP and PD. The final prediction model combining
Ktrans with rCBV maps generated by SVM used the top 60
radiomics features ranking with MRMR, which achieved an
accuracy of 90.82% and an AUC of 89.10% in discriminating
between PsP and PD. Subsequent validation also showed
statistical significance by LOOCV (AUC 89%) (50). Based on
dynamic FET PET radiomics, Lohmann et al. aimed at
establishing a reliable diagnostic test for differentiating PsP
from tumor progression in gliomas patients (52). In the tumor
segmentation process, data augmentation was implemented to
increase the number of datasets from 34 patients to 102. The
radiomics model was automatically generated using TPOT based
on random forest classification, with an AUC of 0.74 in both
training and test cohorts.

Kim et al. investigated the feasibility of multiparametric MRI
radiomics incorporating diffusion and perfusion to identify
tumor recurrence within 3 months following standard therapy
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(48). They developed and validated a radiomics model
comprising CE-T1WI, FLAIR, ADC, and CBV maps using 61
patients as training cohort and 23 patients as validation cohort.
Initially 6472 features were extracted and then 12 significant
radiomics features passed selection using LASSO to construct the
integrated model. And the model presented best diagnostic
performance (AUC, 0.90) over any single imaging technique or
parameter model. The internal validation (AUC, 0.96) and
external validation (AUC, 0.85) cohorts strengthened
the outcome.

Towards differentiating tumor recurrence from radiation
necrosis, Wang et al. carried out a radiomics study involving
112 patients as training cohort and 48 patients as test cohort. The
multidimensional quantitative model integrated clinical
information (patients’ individual features and gliomas grade)
and radiomics information (MRI techniques (T1WI, T2WI, CE-
T1WI and FLAIR) and PET images using both 18F-FDG and
11C-MET), while the radiomics model only included radiomics
information. Fifteen textural features were selected from the
images for the construction of radiomics model and integrated
model. And the integrated model showed significant superiority
over radiomics model (both training and test cohorts: p < 0.001)
and was proved to be accurate and effective in the prediction of
differentiating postoperative tumor recurrence from radiation
necrosis (training cohort: AUC 0.988, test cohort: AUC
0.914) (53).

Brain necrosis after radiotherapy is a common complication
in approximately 3%–24% of patients (102), mostly with primary
or metastatic cancer of the head, neck, and CNS. Bevacizumab
has shown its potential in symptomatic relief and radiographic
response compared with general corticosteroid therapy in
randomized study (103), however, some patients are unable to
gain benefit or even worsen. To predict the treatment effect of
bevacizumab in brain necrosis patients, Cai et al. developed a
radiomics model based on a total of 149 patients including 42 as
an external validation cohort, which yielded an AUC of 0.916 in
the training cohort and 0.912 and 0.827 in the validation
cohorts (51).

Immune checkpoint inhibitors (ICI) hold great promise for
GBM treatment, however the suppressive microenvironment of
GBM characterized by poor antigen presentation and low T-cell
activation and infiltration limits the ICI application. Aslan et al.
investigated mechanisms of resistance to ICIs blocking PD-1 and
CTLA-4 and acquired immune heterogeneity in the allogeneic
intracranial inoculated mice with Gl261 tumor cells (49). To
determine the response of ICI in mice post inoculation and
identity PsP, they built a radiomics signature based on CE-T1WI
and T2-WI. From 101mice inoculated with Gl261 tumor cell before
and during ICI treatment, they extracted 423 features and built a
gradient boosting classifier containing all 423 z-score-normalized
radiomics features with an accuracy of 82.7%. Subsequent in-vivo
and ex-vivo experiments proofed that PD-L1/PD-1/CD80 axis plays
an important role in ICI resistance induced by CD4 T cell
suppression, tumor-associated macrophages, and Treg extension
in the microenvironment of GBM.
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Predicting Patient’s OS and Complications
According to a large-scale randomized trial, the median survival
time of GBM is 14-15 months, which can be prolonged by
adjuvant temozolomide with radiotherapy (104). However, the
current radiotherapy plans ignore the biological heterogeneity of
individuals and use the same dose, resulting in significant
difference in patients’ OS (105). Radiomics and radiogenomics
can provide an imaging biomarker on predicting the individual
radiotherapeutic response, which helps to adjust the dose and
make a personalized treatment plan. By combining the clinical
risk factors and radiomics signature which was built with 152
patients with GBM to predict the radiotherapeutic response, Pan
et al. developed a nomogram to predict the OS, with C-indexes
up to 0.764 and 0.758 respectively in the training cohort and
external validation cohort (54).

The study by Dastmalchian et al., including 31 patients with
GBM, LGGs, and metastases and 20 top selected features, proved
that the radiomics approach has robust potentiality to
differentiate between these tumors and to predict OS of GBM
(56). They found a significant difference between patients with
different selected features such as T1/T2 entropy and secondary
features like high-gray run emphasis (p <0.05). And the cut-off
values dichotomizing the GBM patients’ median survival were
calculated by grading these features. For example, lower entropy
values in solid tumor regions (p: 0.034) in T2 maps correlate
with longer survival of 11 months and 6.7 months for those
below the cut-off value, and higher entropy values in peritumoral
white matter regions (p: 0.009) in T1 maps correlate with longer
survival of 18 months and 6.8 months for those below the cut-
off value.

Since the mutation of IDH1-R132H and MGMT in GBM
patients is strongly associated with the OS and PFS, Bae
integrated radiomics with clinical and genetic profiles and built
several models to predict the prognosis of 217 GBM patients
(training: test=3:1) (59). From 796 features derived in T1WI,
T2WI, FLAIR, postcontrast 3D T1WI, and DTI, they selected 18
significant features and trained multilayers RSF models. Except
for the integrated model, the model containing only radiomics
features was the most significant with successful validation in the
test cohort (OS: iAUC 0.652, PFS: iAUC 0.590).

Papp et al. evaluated the prediction value on dichotomized OS
using an integrated model comprising 56 features including 11C-
MET PET radiomics characteristics in vivo, histopathological
characteristics ex vivo, along with patients’ individual
information to predict survival in glioma patients without
treatment (58). The cut-off value determines 36 months as the
survival prediction threshold and the prediction weight for each
model was assessed in training cohorts and the validation
cohorts. When it came to validation, they introduced the
Monte Carlo cross-validation (MCCV) different from k-fold
validation in that the sample may appear multiple times in the
same set (training set/test set). The MCCV proved the highest
AUC for the integrated model as 0.9, following the patient-based
and histopathology-based models.

It has been reported that in GBM patients, females exhibit
longer OS compared to males, which may be associated with
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hormonal, metabolic, and immune variances. Based on the
discovery, Beig et al. developed sexually dimorphic radiomics
risk score (RRS) models to predict patients’ OS. The OS
prediction model combines age molecular features, extent of
resection, and RRS, showing good performance in both male and
female cohorts [0.73/0.88(C-index, male), 0.73/0.69(C-index,
female)]. By further analyzing radiogenomics associations
between MRI-based phenotypes and transcriptomic data
correspondingly, they found that RRS is associated with a
series of biological activities including angiogenesis, apoptosis,
cell differentiation, cell proliferation, and cell adhesion (60).

Verduin et al. involved the training (n = 142) and validation
cohort (n = 46) to establish a combined model for prognosis of
OS in IDH-WT GBM patients based on quantitative radiological
features, qualitative Visually Accessible Rembrandt Images
(VASARI) features, and clinical information. The accuracy and
reproducibility of the combined model was analyzed using
Harrell’s C-index (training cohort: 0.72, validation cohort:
0.73). They additionally developed a prediction model towards
molecular mutation status comprising IDH, MGMT
methylation, and EGFR amplification in 95 patients for the
training cohort and 38 patients for the validation cohort. In
this model, 5 VASARI and 5 radiomics features mainly selected
from T2WI were considered to be most prognostically relevant,
with performance towards MGMT methylation (AUC: 0.667)
and EGFR amplification (AUC: 0.707) yielding significance in
external validation cohorts (61).

A radiomics study on PFS and OS stratification by
Kickingereder et al. included 181 GBM patients available of
imaging information (CE-T1, FLAIR, and T2WI), DNA
methylation profiling (MGMT methylation status and global
DNA methylation pattern), treatment (surgery, TMZ
chemotherapy and/or radiation), and patients’ individual
information (62). In the prognostic analysis, a total of 386
features were selected independently in a test-retest MRI
cohort. Subsequently, 8 of these were further used to construct
a radiomics signature using sole radiomics information. When
using only epigenetic and clinical information, the prediction
error for PFS (29%) and 37% for OS (27%) is not appreciable,
which were reduced by 36% for a model after integrating
radiomics signature. The radiomics signature showed
significance beyond models using other information (P ≤ 0.01).

The epilepsy complicated by LGGs is mainly attributed to
compression and stimulation of the brain tumors that cause the
degeneration and gliosis of the brain cells around the tumors which
constitute the epileptic foci complex. Wang Y aimed at predicting
epilepsy types to guide more targeted antiepileptic therapy in a
retrospective study. A novel radiomics nomogram was developed
with 4 selected discriminative MRI features regarding location and
molecular background in 205 LGG patients, which displayed
excellent quantitative clinical prediction performance (AUC:
0.863) (106). Qian et al. suggested a radiomics risk score to
alternatively identify the OS in LGGs. When combined with
independent clinical prognostic parameters such as WHO grade,
age at diagnosis, and seizure, the nomogram based on the risk score
exhibited high prognostic accuracy (C-index: training cohort: 0.92,
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test cohort: 0.70) (57). They subsequently implemented
radiogenomic analysis of high-risk positively associated genes,
further revealing the underlying correlated biological processes
including hypoxia, angiogenesis, and apoptosis. For the
prediction of PFS, Liu et al. worked out a practical nomogram
incorporating clinicopathologic factors and a radiomics signature
based on 300 patients with LGGs (C-index, training cohort: 0.684;
validation cohort: 0.823) (55), and demonstrated similar biological
processes through radiogenomic analysis.
BRAIN METASTASES

Approximately 20% of the cancer patients with other primary
sites develop brain metastases, outnumbering primary brain
tumors 10:1, but the actual statistic is estimated to be even
more since plenty of them do not go through regular MRI
examination. The top three extracranial primary cancer types
with high intracranial metastatic tendency are lung cancer, breast
cancer, and melanoma, which respectively have incidences up to
20-56%, 5-20%, and 7-16% (107–110). Meanwhile, the incidence
of brain metastases’ occurrence after primary cancer varies
according to race, age, and primary cancer. Brain metastases’
main symptom is parallel to space occupying lesions, which
varies with the lesion location.

Evaluation of Mutation Status
Since there is inter-heterogeneity between the primary tumor
and metastases, assessing the mutation status in the metastases
region and comparing with the primary tumor are meaningful in
guiding individualized treatment. EGFR inhibitors, such as
erlotinib and gefitinib, received distinct responses in GBM and
NSCLCs patients originated from different EGFR mutation sites.
In NSCLCs, the mutation sites typically locate in the kinase
domain that facilitate sensitivity to first-generation EGFR
inhibitors. Unlike NSCLCs, the mutation sites of GBMs locate
in extracellular domain that promote resistance (111).

Ahn used CE-T1 MRI to predict the EGFR mutation in
histologically certified primary lung cancer patients’ brain
metastases (33 with EGFR WT, 29 with EGFR mutation)
(112). Among all the combination of 7 feature selection
methods and 4 classification methods, the RF classification
model applying RF selection yielded highest AUC of 86.81%
on predicting EGFR mutation status. Subsequent analyses
subgrouping BMs by measurable size revealed smaller BMs
correlate with better discrimination capacity (AUC 89.09% in
the small BMs subgroup, combining SVM classification with
RF selection).

Park used DTI and T1-contrast to classify the EGFRmutation in
99 BMs from 51 NSCLC patients, verified by biopsy. Among all the
combinations of 5 feature selection methods and 4 classification
methods, the linear discriminant algorithm classifier using 5
features selected by tree-based methods showed the best
diagnostic performance, resulting in an AUC of 0.73 (113).

Chen did a retrospective study using CE-T1, T2WI, and
FLAIR to predict the mutation on EGFR, ALK, and KRAS
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mutation in BMs from patients diagnosed primary lung cancer,
verified by genotype testing. The model on EGFR, ALK, and
KRAS incorporating both radiomics and clinical information
resulted in AUC values of 0.912, 0.915, and 0.985 (114).

Identifying Primary Tumor
The clinical manifestations of BMs are analogous to primary
brain tumors. Generally, systemic metastases, cachexia, and
multiple foci in CNS may indicate BMs, however, there are up
to 15% with unknown primary tumor (115). Kniep
retrospectively studied 189 patients with primary breast cancer,
lung cancer (NSCLC and SCLC), gastric cancer, or melanoma,
who developed BMs, and analyzed CE-T1 and nonenhanced
T1WI and FLAIR through machine learning algorithm (29). The
results showed that all the RF classifiers surpassed senior
neuroradiologists’ reading. After combing radiomics and
clinical data, the 5-class model showed best prediction
performance with lowest AUC (0.64) for NSCLC and highest
AUC (0.82) for melanoma.

Prediction of Recurrence
As noninvasive treatments such as radiation and chemotherapy
have more extensive application in BMs, the most common
application of radiomics in BM in recent years may be prediction
of treatment and progression.

Prasanna proposed a novel entropy feature called co-
occurrence of local anisotropic gradient orientations
(COLLAGE) which is of great prognostic value in evaluating
radiation necrosis and tumor recurrence on gadolinium-contrast
T1WI (116). They proved in 75 patients with metastatic brain
tumors that, with additional independent multisite validation,
COLLAGE features exhibited statistically significant different
skewness (P <0.05) in recurrent tumor patients compared to
patients with pure tumor and cerebral radiation necrosis > 80%.

Huang retrospectively analyzed 161 patients with NSCLC
(576 brain metastases) postoperatively by Gamma Knife
radiosurgery and found zone percentage related to progression
(117). After feature selection by consensus clustering, analysis of
univariate Cox proportional hazards model comprising clinical
variables, and radiomics features revealed potential prognostic
factors that were subsequently selected to build a multivariate
Cox proportional hazards model, which indicated that a textural
feature called higher zone percentage was independently
pertained with higher local tumor control rates (HR 0.712; P =
0.022). Similar to the result, multivariate proportional hazards
model in cause-specific condition also filtered higher zone
percentage (HR 0.699; P = 0.014).

To predict diagnosing treatment effect after stereotactic
radiosurgery, Peng investigated 82 lesions of BM with obvious
progression from 66 patients who underwent SRS based on CE-
T1 and T2WI MRI (30). Five top-performing radiomics features
out of 51 extracted features filtered by univariate logistic
regression were selected to build a subsequent hybrid IsoSVM
model, which was assessed by the LOOCV (AUC 0.79).
Mouraviev retrospectively analyzed 408 BM lesion in 87
patients who underwent SRS based on their pretreatment CE-
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T1, T2WI, and FLAIR (28). For 440 extracted radiomics features,
they applied RF feature importance and ranked these features for
selection. The top 12 features comprising radiomics and clinical
data are optimized for best prediction model, with the highest
AUC (mean = 0.793).
LIMITATIONS

Radiomics is a rapidly expanding field and is still in extensive
clinical exploration stage, with many obstacles to overcome. We
may discuss the limitations from the aspects of standardization,
robustness, repeatability, reproducibility, and generalizability.

Standardization is the basis of robustness, producibility, and
generalizability. Current standards lack results validation,
incomplete results reports, and unidentified confounding
variables in the source database, especially for retrospective
data. To solve the above problems and standardize radiomics-
specific reporting, Lambin et al. put forward an evaluation
system comprising 16 weighted metrics to determine the
workflow completeness, model quality, and clinical adaptation
potentiality of radiomics studies, in the form of the radiomics
quality score (RQS) (12). The establishment of RQS extended a
number of initiatives, such as the Transparent Reporting of a
multivariable prediction model for Individual Prognosis OR
Diagnosis (TRIPOD) consensus (118).

As is discussed in the Radiogenomics section, radiomics and
radiogenomics can only identify the correlation, thus lacking
robustness and credibility without tissue biopsy. As for radiomics
itself, the accurate segmentation of ROIs is the most challenging
step that largely affects the robustness of outcome. Due to a
tumor’s heterogeneity and polymorphism, manual segmentation
is used in most imaging studies. Its advantages are high accuracy
and fine delineation of irregular tumor boundaries, but it is
greatly affected by subjective factors and is time-consuming and
inefficient, with low repeatability. Recently, novel volume data
segmentation methods based on deep learning models, such as
CNNs named after the shape of the feature map structure (U-net
(119) V-net (120), W-net, UNet++ (121) and Y-net), and
DeepMedic have made a breakthrough in the clinical radiology
segmentation. Current studies demonstrated the utility of CAD,
which combines automated brain tumor segmentation with
radiomics, in helping physicians to detect following initial
observation (122, 123). Most normal tissues like bones and
organs can be segmented semi-automatedly or fully automatedly.

However, current protocols of autosegmentation approaches
are diverse and lack unified standards. From the studies we
reviewed, more intelligent algorithms such as deep learning are
rarely used in radiomics of brain tumor compared to lung cancer,
prostate cancer, and colorectal cancer. Current segmentation,
feature selection, and classification methods in brain tumors are
mainly manual operations using shallow machine learning
methods, such as random forest, SVM, and LASSO. What’s
more, the ratio of articles with test-retest analysis is low for
currently available original research, which also adds doubts
upon repeatability and reproducibility of radiomics analysis.
Though the sensitivity, specificity, and/or AUC of the reviewed
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studies are considerable, few are prospective studies that were
later followed up or confirmed by biopsy.

Another problem is that the clinical translation of radiomics
studies in multicenter studies faces difficulty in repeatability and
reproducibility. For example, MR images may capture noise
caused by physiological motion, magnetic field, eddy current,
and unsteadiness of the scanning hardware. Then during image
reconstruction, noise is post-processed to be wiped out prior to
ROIs determination (124). As MR images omit physical
parameters, such as magnetic field strength and voxel size, the
various settings of image acquisition, reconstruction algorithm,
and image processing makes MR radiomics more challenging
than CT to ensure repeatability and reproducibility (125–127).

To test the generalizability of prediction model, there are the
internal validation and external validation using other centers’
data. Current studies in brain tumor still lack big populations,
especially from multiple centers. A systematic review by Park
et al. evaluated 51 original radiomics research articles in neuro-
oncology with RQS and showed that only 29.4% performed
external validation, with few studies discussing clinical utility and
none of them conducting phantom study or cost-effectiveness
analysis (128).

There are also ethic problems in that, while the development
of AI algorithms requires not only fundamental techniques, but
also legislation and perhaps ethics, there are issues on whether
researchers or governments should be motivated to share private
validated data for machine learning (129). What’s more, it is
possible for AI algorithms to be tampered with improper
intention to make profits.
FURTHER DEVELOPMENTS IN
BRAIN TUMOR

Radiomics accelerates the development of precision medicine. In
addition to providing accurate and well-organized personal
radiological diagnostic information to identify different states
for each patient, large quantities of features extracted from
numerous pathologically confirmed patients can contribute a
lot to a large-scaled database for tumor classification. The Picture
Archiving and Communication System (PACS) has enabled the
acquisition, display, processing, storage, transmission, and
management of medical images to be digitized and networked
in a uniform standard (130, 131), with parallel progress in
Europe (132) and developing countries (133, 134).
Additionally, there are strong public repositories which record
these systematic electronic radiological data with open access, for
instance, The Cancer Genome Atlas (TCGA) (135), The Cancer
Imaging Archive (TCIA) (136), and The Quantitative Imaging
Network (QIN) (137).

As the database improves, it can be used for deep learning to
evolve over time to build more sophisticated classifiers and may
help discover more internal connections between image features
and gene expression. Open availability of source code and data is
encouraged for current radiomics studies to promote technical
development. The development of fully automated approaches
based on deep learning will start from solving the most common
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clinical problems with plenty of data (138). These clinical
problems may concern occasions where professional
neuroradiologists are in heavy demand or analyzation is too
cumbersome for neuroradiologists, like predicting IDHmutation
status in gliomas (35).

The development of radiomics also compels the development
of histopathology. Sampling is a crucial step in identifying the
tumor, but it relies on the location of the lesion and is often
affected by operator’s subjective factors and intra-heterogeneity
and inter-heterogeneity of tumor. If radiomics is performed before
sampling, it can segment the lesion and suggest the most
interesting area so that we can puncture the target tissue
accurately. Multicenter radiomic research requires establishing
norms for the radiomics study protocols and for their reporting in
the literature, which also supplements traditional imaging reports
with quantitative indicators and more standard structures.

Based on multiple noninvasive biomarkers, more explicit
characteristics of tumor can be assessed, and the progression of
tumor can be recorded and visualized (139). For example, liquid
biopsy enables the analysis of molecules or macrostructures in
low concentration from body liquid that shows minimal
invasiveness towards patients who are susceptible to tumor or
cannot withstand biopsy. Cucchiara et al. integrated liquid
biopsy and radiomics to monitor clonal heterogeneity of
EGFR-Positive NSCLC (140). As a result, more individualized
treatment plans can be tailored and patients with imperceptible
premalignant lesions or who undergo surgery can also benefit,
though the expense is another problem to be discussed. Future
studies should focus on improving the sensitivity and specificity.
CONCLUSION

Radiomics was born from traditional radiology, bioinformatics,
and machine learning and provides clinicians with economical,
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automatic, and accurate diagnosis on brain tumors by mining
high-dimensional data correlated with lesions extracted from
images. The overall imaging and evaluating by radiomics not
only presents the inner heterogeneity of the lesion but also
indicates the microenvironment surrounding the tumor region,
making it possible to guide targeted agents before experiment or
to be aligned with biopsy to maximize the clinical implications.
Though many guidelines are published or being developed, there
are still gaps in standard radiomics reporting. As more
sophisticated segmentation and analyzation techniques are
exploited, along with big data to reach multicenter
interoperability, we believe radiomics will soon expand rapidly
beyond a small research area and transform into a clinical
surrogate diagnosis tool.
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