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Two conserved Rab GTPases, Rab1 and Rab2, play important roles in

biosynthetic-secretory trafficking between the endoplasmic reticulum (ER) and the

Golgi apparatus in mammalian cells. Both are expressed as two isoforms that regulate

anterograde transport via the intermediate compartment (IC) to the Golgi, but are also

required for transport in the retrograde direction. Moreover, Rab1 has been implicated

in the formation of autophagosomes. Rab1 and Rab2 have numerous effectors or

partners that function in membrane tethering, but also have other roles. These include

the coiled-coil proteins p115, GM130, giantin, golgin-84, and GMAP-210, as well

as the multisubunit COG (conserved oligomeric Golgi) and TRAPP (transport protein

particle) tethering complexes. TRAPP also acts as the GTP exchange factor (GEF) in

the activation of Rab1. According to the traditional view of the IC elements as motile,

transient structures, the functions of the Rabs could take place at the two ends of

the ER-Golgi itinerary, i.e., at ER exit sites (ERES) and/or cis-Golgi. However, there is

considerable evidence for their specific association with the IC, including its recently

identified pericentrosomal domain (pcIC), where many of the effectors turn out to be

present, thus being able to exert their functions at the pre-Golgi level. The IC localization

of these proteins is of particular interest based on the imaging of Rab1 dynamics,

indicating that the IC is a stable organelle that bidirectionally communicates with the ER

and Golgi, and is functionally linked to the endosomal system via the pcIC.

Keywords: ER-Golgi transport, Golgi apparatus, pre-Golgi intermediate compartment, endocytic recycling

compartment, Rab1, Rab2, golgins, tethering factors

INTRODUCTION

Yeasts genetics and biochemical dissection of cell free systems paved the way for the
identification of the transport factors that mediate two-way trafficking between the endoplasmic
reticulum (ER) and the Golgi apparatus in mammalian cells (Bonifacino and Glick, 2004;
Lee et al., 2004). However, although the molecular machineries operating in the early
secretory pathway—including coat proteins, Rab GTPases, tethering factors and SNAREs—have
been well characterized, their subcellular sites of function in living cells remain only
partially understood. One explanation is that our knowledge on the localization of these
proteins is still largely based on light microscopy (LM), and ultrastructural data is in
many cases limited or missing. On the other hand, the mapping of the homo- and
heterotypic tethering and fusion events at the ER-Golgi boundary has been complicated by the
recycling of the machinery proteins, resulting in interdependence of the antero- and retrograde
pathways. Furthermore, the secretory system of the budding yeast Saccharomyces cerevisiae,
in which many of the molecular players have been characterized, differs considerably
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from that of mammalian cells, as it consists of tubular networks,
but lacks the characteristic Golgi stacks. However, whether yeast
cells—or fungi and plants in general—are equipped with a
distinct organelle, comparable to the intermediate compartment
(IC) that operates in bidirectional trafficking between the ER exit
sites (ERES) and the Golgi stacks in mammalian cells, remains an
open question (Marie et al., 2008; Ito et al., 2012; Donohoe et al.,
2013; Kurokawa et al., 2014).

Also, despite its well established role as a pre-Golgi sorting
station in mammalian cells the IC remains enigmatic (Brandizzi
and Barlowe, 2013; Saraste andMarie, 2016). Namely, contrasting
with the popular view of the IC as a transient transport
intermediate more recent studies employing live cell imaging
have provided evidence for its stability and functional complexity
(Ben-Tekaya et al., 2005, 2010; Sannerud et al., 2006). Moreover,
they revealed the existence of a pericentrosomal subcompartment
of the IC (pcIC), which is functionally connected with the
centrosome and the endosomal system (Marie et al., 2009),
providing a novel perspective to consider the spatial arrangement
and function of the transport machineries operating in the early
biosynthetic-secretory pathway (Saraste et al., 2009). Based on
these results, this brief review addresses the functions of the IC-
associated GTPases Rab1 and Rab2, as well as their partners that
have been suggested to function in membrane tethering.

RAB1 DEFINES A NOVEL
PERICENTROSOMAL IC DOMAIN

As mentioned above, the IC is commonly thought to consist
of tubulovesicular membrane clusters that form de novo at
ERES, move along MTs to the cis-Golgi and—depending on
whether the Golgi is regarded as a maturing or stationary
organelle—transform into new Golgi cisternae or fuse with the
Golgi stacks (Brandizzi and Barlowe, 2013; Saraste and Marie,
2016). The alternative view of the IC as a stable compartment
derives mainly from studies on the dynamics of fluorescent IC
markers in living cells. First, visualization of p58/ERGIC-53, a
cargo-receptor that cycles at the ER-Golgi interface, showed its
presence in long-lived, relatively stationary structures close to
ERES (Ben-Takaya et al., 2005; Sannerud et al., 2006). Second,
the employment of the GTPase Rab1A as a specific IC marker
revealed a dynamic network of interconnected tubular and
saccular elements operating between the peripheral ERES and
the central Golgi apparatus. However, instead of moving directly
to the cis-Golgi, the pleiomorphic carriers arriving from the
ERES are first targeted to a distinct domain of the IC that
associates with the centrosome, termed the pericentrosomal
IC (pcIC) (Marie et al., 2009). Notably, the pcIC is a stable
compartment, which maintains its pericentrosomal positioning
and compositional properties, when the Golgi apparatus is
experimentally broken down by the fungal compound brefeldin
A (BFA) (Marie et al., 2009; Mochizuki et al., 2013), or undergoes
physiological disassembly during mitosis (Marie et al., 2012).

Fortunately, while the pcIC during interphase is concealed
by the Golgi ribbon, it separates from the latter when cells
start to move or enter mitosis—i.e., events that involve

centrosomemotility, resulting in Golgi repositioning or complete
disassembly (Bisel et al., 2008; Marie et al., 2012). This separation
(see Figure 1) allowed the demonstration of its function as the
primary target for the pleiomorphic cargo carriers that originate
at peripheral ERES and move to the cell center along MTs
(Marie et al., 2009). In addition, the separated pcIC maintains
two-way communication with the Golgi apparatus via tubular
and vesicular carriers, and operates as a way station in BFA-
stimulated tubular transport of Golgi enzymes to the ER (Marie
et al., 2009). Thus, bidirectional trafficking via the pcIC may
involve both COPI-dependent and -independent mechanisms.

The function of the pcIC as a central trafficking “hub” that
is independent from the Golgi stacks is also demonstrated by
its close relationship with the endocytic recycling compart-
ment (ERC) (Figure 2). Namely, the spatial connection of these
compartments, defined by Rab1 and Rab11, respectively, is
maintained after Golgi disassembly by BFA and allows the direct
exchange (“Golgi bypass”) of certain newly synthesizedmolecules
and internalized plasmamembrane receptors between the IC and
the endosomal system (Saraste et al., 2009). For example, when
the normal recycling of the transferrin receptor from the ERC
to the plasma membrane blocked in the presence of BFA, it can
return to the cell surface via the pcIC (Marie et al., 2009).

In conclusion, due to its division into vacuolar (saccular) and
tubular subdomains, spatial complexity and connection with the
centrosome, the IC shares striking similarity with the endosomal
system (Saraste and Goud, 2007; Saraste et al., 2009). Thus, many
of the Rab proteins that function at the ER-Golgi boundary
(Gilchrist et al., 2006; Liu and Storrie, 2015), such as Rab1 and
Rab2, could be expected to have organizational roles resembling
those that have been well established for the endosomal Rabs
(Wandinger-Ness and Zerial, 2014).

IC LOCALIZATION AND FUNCTION OF
RAB1 AND RAB2

Rab GTPases coordinate multiple steps of transport along the
secretory and endocytic pathways, including the formation,
motility, tethering and fusion of vesicular, and tubular transport
intermediates. By switching between inactive, GDP-bound
(cytosolic) and active, GTP-bound (membrane-associated)
states they are thought to function as master regulators of
membrane trafficking and to ensure the directionality of
transport (Stenmark, 2009). In their active conformation Rab
proteins interact with various effectors and recruit these to
specific membrane domains, thereby also determining organelle
structure and identity (Barr, 2013). The functions of multiple
Rabs acting along the same pathway can be connected via
mechanisms involving e.g., GTP exchange factors (GEFs) or
GTPase-activating proteins (GAPs) that regulate the switch
between the active and inactive forms, respectively. An example
is provided by the Ypt1(Rab1)-Ypt31/32(Rab11)-Sec4(Rab8)
cascade that co-ordinates the secretory pathway in the budding
yeast (Mizuno-Yamasaki et al., 2012; Lipatova et al., 2015).

The best characterized Rabs operating in ER-Golgi trafficking
in mammalian cells, Rab1 and Rab2, are both expressed as
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FIGURE 1 | Confocal microscopic localization of the two Rab1 isoforms and the effectors of Rab1 (p115, GM130) and Rab2 (GM130, GMAP210) that

have been suggested to function in membrane tethering in the early secretory pathway. Normal rat kidney (NRK) cells stably expressing GFP-Rab1A (Marie

et al., 2009) were stained with antibodies against Rab1B, p115, GM130, or GMAP210. The images show cells in which the pcIC, an extensive tubular network under

the nucleus (large arrowheads), has separated from the Golgi ribbon concomitantly with the movement of the centrosome to the cell center. Rab1A and B display

similar localizations; that is, in addition to the Golgi ribbon they both associate with the pcIC, as well as with peripheral IC elements in the vicinity of ERES (small

arrowheads). It should be noted that Rab1A and the tethering factors display variable overlap in the pcIC, suggesting their association with its different subdomains.

Bars: 10µm.

two isoforms (A and B) that share a high degree of sequence
similarity (∼92 and 86%, respectively). They were first shown
to function in anterograde ER-Golgi transport and suggested to
operate in a sequential manner (Tisdale et al., 1992). However,
subsequent studies have shown that they—like Ypt1 in yeast
(Kamena et al., 2008)—are also required for retrograde transport.
Rab1 has been localized to retrograde IC tubules (Palokangas
et al., 1998; Sannerud et al., 2003; Marie et al., 2009), while
both Rab1 and Rab2 regulate the binding of COPI coats to IC
membranes (Tisdale and Jackson, 1998; Alvarez et al., 2003). Of
note, although COPI coats function in retrograde trafficking, a
recent study re-emphasized their additional role in anterograde
transport at the Golgi level (Park et al., 2015). Finally, an LM-
based screen identified the Rab1 and Rab2 isoforms as key
regulators of retrograde transport of Golgi enzymes to the ER in
BFA-treated cells (Galea et al., 2015), further demonstrating their
requirement for bidirectional ER-Golgi communication.

Besides ER-Golgi trafficking, the isoforms of Rab1 and Rab2
are also important for Golgi biogenesis (Wilson et al., 1994; Haas
et al., 2007; Rendón et al., 2013; Liu and Storrie, 2015), indicating
that the two prosesses are intimately coupled. Accordingly, their
knock-down results in the fragmentation of the Golgi ribbon
(Galea et al., 2015). Interestingly, a recent study showed that
the Golgi fragmentation phenotype could be induced by single
knock-down of each of the four isoforms. Moreover, normal
Golgi organization could only be rescued by the re-expression of
the same isoform, but not by any of the others, suggesting that

the isoforms have non-redundant functions (Aizawa and Fukuda,
2015).

There is also evidence indicating that the Rab1 isoforms
associate with different domains of the IC and regulate distinct
steps of trafficking. By live cell imaging Rab1A highlights
dynamic IC tubules that display microtubule (MT)-dependent,
bidirectional movements throughout the cytoplasm (Sannerud
et al., 2006; Marie et al., 2009), while Rab1B appears to
preferentially localize to more stationary, punctate IC structures
(Monetta et al., 2007). These may correspond to the saccular
(vacuolar) IC elements where Rab1B interacts with GBF1, a GEF
for ARF1, which regulates the budding of COPI vesicles (Alvarez
et al., 2003; Figure 2, inset). Notably, the entry of cells into
mitosis results in the cessation of tubular IC dynamics, but not
the budding of IC-derived COPI vesicles (Marie et al., 2012),
which could be due to differential phosphorylation of the two
Rab1 isoforms (Bailly et al., 1991). However, it should be noted
that Rab2 which also acts in COPI recruitment is not subjected to
mitotic phosphorylation (Bailly et al., 1991).

Initial in vitro studies suggested that Rab1 also mediates
intra-Golgi transport (Plutner et al., 1991). However, subsequent
studies using electron microscopy (EM) showed that the Golgi-
type signal seen by LM (Figure 1) is not due to the presence of
Rab1 in the Golgi cisternae themselves, but results from the co-
alignment of pleiomorphic IC elements along the cis-face of the
Golgi stacks (Griffiths et al., 1994; Saraste et al., 1995; Satoh et al.,
2003; Marie et al., 2012). These EM studies and cell fractionation
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FIGURE 2 | Different models on the organization of the ER-Golgi interface and the functions of Rab1 or Rab2 effectors (bold) or Rab1 GEFs (TRAPPs)

in trafficking. Two alternative pathways connecting the peripheral ERES and the Golgi stacks (green) are shown (A and B), while Golgi-adjacent ERES is a common

feature of both models. The pcIC is depicted as a separate entity (see Figure 1), since its normal dynamic relationship with the Golgi apparatus remains unknown. At

ERES, homotypic fusion of ER-derived COPII vesicles or their heterotypic fusion with the IC elements involve TRAPPI and p115, the GEF, and effector of Rab1,

respectively. However, it should be noted that the TRAPPI complex in mammalian cells remains enigmatic. (A) Traditionally, IC-to-Golgi transport is viewed as a

one-step process based on MT-based direct movement of IC elements from peripheral ERES to the cis-Golgi region, where they undergo homotypic fusion to

generate new Golgi cisternae in a process that may involve e.g., GM130, an effector of both Rab1 and Rab2. Instead of operating in IC or cis-Golgi events many of

the Rab1 effectors (such as COG, giantin, and golgin-84) could play a role in intra-Golgi trafficking. (B) An alternative model presenting the IC as a dynamic membrane

network, which is stably anchored next to the centrosome. Accordingly, transport from peripheral ERES to the Golgi is a two-step process via the pcIC, opening for

possible new roles for Rab1, Rab2 and their effectors. These include homotypic fusion of pcIC elements (GM130), retrograde transport from the pcIC to peripheral

ERES (GMAP-210), and two-way trafficking between the pcIC and the Golgi stacks (p115, giantin, golgin-84, COG), as well as between pcIC and the ERC (TRAPPIII).

The Rab1 isoforms are expected to be present throughout the IC network (blue), while the localization of the Rab2 isoforms is less well known. For simplicity, the

endosomal connection is not included in model A. The inset (bottom left) depicts a basic IC element, showing differential association of Rab1A and Rab1B with its

tubular and saccular (vacuolar) membrane domains, raising the possibility that Rab1 effectors, such as p115 and GM130, may display non-overlapping distributions

within these elements.

experiments (Sannerud et al., 2006) have also clarified that
Rab1 does not associate with the ER (see Figure 1). Thus,
these collective results do not support the frequent assignment
of the Rab1 isoforms as ER or Golgi proteins, but establish
them as specific markers of the IC. The recently established
localization of Rab1A and Rab1B to the pcIC (Marie et al., 2009,
2012; Mochizuki et al., 2013; Figure 1) is in accordance with
this conclusion. Moreover, it opens the possibility that, besides
peripheral IC elements (Sannerud et al., 2006; Monetta et al.,
2007), these Rab1 isoforms are also recruited to the pcIC and
may play distinct roles in its bidirectional communication with
the Golgi stacks or the ERC (Figure 2).

Although Rab2 was the first familymember shown to associate
with the IC (Chavrier et al., 1990; Lotti et al., 1992), and to
mediate the budding of COPI vesicles (Tisdale and Jackson,
1998), its overall localization has not been well characterized.

Also, the dynamics of Rab2 has not been recorded in living
cells. Interestingly, however, Rab2A was recently shown by LM to
overlap with ERGIC-53 and Rab1B (Sugawara et al., 2014; Galea
et al., 2015), confirming its IC localization.

THE PARTNERS OF RAB1 AND RAB2

Most of the well-characterized effectors of Rab1 and Rab2 belong
to the golgin family of peripheral or integral membrane proteins
that based on their C-terminal anchoring and elongated shape
(long coiled-coil domains) are capable of tethering membranes
prior to their eventual fusion (Munro, 2011; Chia and Gleeson,
2014). As the name implies, the golgins have been assigned
various Golgi-specific functions. Originally suggested to form
a dense matrix supporting the integrity of the Golgi stacks,
they have subsequently been implicated in the linking of the
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Golgi ribbon (Puthenveedu et al., 2006; reviewed by Xiang and
Wang, 2011). Furthermore, the specific localization of golgins to
different Golgi domains, and their overlapping abilities to bind
multiple Rabs along their length were proposed to endow the
Golgi stacks with “tentacles” that collectively capture incoming
transport vesicles (Munro, 2011; Wong and Munro, 2014).

The first identified Rab1 effector was p115, a myosin-like
coiled-coil protein that interacts with several other transport
factors and COPI coats and appears to play multiple roles in
bidirectional ER-Golgi trafficking and Golgi biogenesis (Alvarez
et al., 1999; Allan et al., 2000; Sztul and Lupashin, 2009). The
other partners of Rab1 include the prototype golgin GM130,
as well the integral membrane proteins giantin and golgin-84
(Moyer et al., 2001; Weide et al., 2001; Diao et al., 2003; Beard
et al., 2005; Rosing et al., 2007), which besides linking COPI
vesicles to Golgi membranes may also participate in other types
of tethering events (Malsam et al., 2005; Wong and Munro,
2014). In addition to GM130, Rab2 interacts with the golgin
GMAP-210 (Short et al., 2001; Sinka et al., 2008; Sato et al.,
2015), whose tethering function is based on its ability to sense
membrane curvature (Drin et al., 2008). Via their interactions
with golgin-45 andGM130, respectively, Rab2 and Rab1may also
be linked to GRASP55 and GRASP65, which play key roles in
Golgi organization (Short et al., 2001; Xiang and Wang, 2011).

Notably, besides membrane tethering, the golgins are also
involved in membrane-cytoskeleton interactions. Thus, GMAP-
210 has been suggested to link Golgi membranes to the
centrosome-nucleated MT cytoskeleton (Rios et al., 2004), while
GM130 participates in the nucleation of MTs from cis-Golgi
membranes (Rivero et al., 2009).

Rab1 and Rab2 also interact with multi-subunit tethering
complexes, such as the COG complex that organizes COPI
vesicle-mediated recycling of Golgi enzymes (Willett et al., 2013)
and TRAPP, which also functions as a GEF for Ypt1/Rab1
(Barrowman et al., 2010). In yeast the TRAPP complex exists as
three forms (I-III) of which at least TRAPPII and III seem to
have mammalian counterparts (Yamasaki et al., 2009; Scrivens
et al., 2011; Bassik et al., 2013; Lamb et al., 2016). TRAPPI
and II function successively in early and late Golgi trafficking
in the yeast secretory pathway, while TRAPPIII activates Ypt1
during autophagy (Barrowman et al., 2010; Lipatova et al., 2015).
Similarly, Rab1 has been shown to regulate the formation of
autophagosomes in mammalian cells (Winslow et al., 2010;
Zoppino et al., 2010; Huang et al., 2011; Mochizuki et al., 2013;
Lamb et al., 2016).

PRE-GOLGI ROLES OF RABS AND
TETHERS

Based on the traditional view of the IC as transient vesicular-
tubular clusters (VTCs), anterograde transport from ERES to
cis-Golgi could represent a one-step process. Accordingly, Rab1,
Rab2, and their partners could exert their functions at the two
ends of the MT-dependent pathway, i.e., during the formation
of the IC elements at ERES and/or their homo- or hetero-
typic fusion at cis-Golgi. In addition, some of the Rabs would

be required for membrane recycling from IC/cis-Golgi back to
the ER. According to this view (Figure 2; model A), multiple
tethering factors could operate in a sequential—or possibly
redundant—fashion at the same transport step. It has been
suggested that an additional role of the tethers is to couple antero-
and retrograde trafficking (Sztul and Lupashin, 2009).

By contrast, taking into account the stable connection of
the pcIC with the centrosome, the communication between
ERES and cis-Golgi is expected to involve two transport steps.
Accordingly, the IC elements arriving from the peripheral ERES
first fuse with the pcIC, which most likely represents a dynamic
membrane system normally located close to the Golgi ribbon.
Consequently, a second transport step would be required for
trafficking between the pcIC and the Golgi stacks. This new
model is supported by the observed localization the Rab1
isoforms and COPI coats to the pcIC (Marie et al., 2009;
Mochizuki et al., 2013). Interestingly, many of the Rab1 and Rab2
effectors are present in the pcIC, as shown for p115, GM130, and
GMAP-210 in Figure 1. Thus, they could participate in two-way
trafficking between this compartment and the Golgi stacks, or
even be required for its communication with the ERC (Figure 2,
model B). The localization of GM130 and GMAP210 to the pcIC
(Figure 1) also provides indirect proof for the presence of Rab2
itself in this compartment.

Notably, the pcIC localization of these Rabs and their effectors,
such as p115, GM130, giantin and golgin-84, persists in BFA-
treated cells (Seemann et al., 2000; Steet and Kornfeld, 2006;
Marie et al., 2009; Mochizuki et al., 2013; Roboti et al., 2015),
showing their specific association with the IC. Moreover, during
mitosis, when ER-Golgi transport is inhibited and the Golgi
undergoes reversible disassembly, these proteins maintain their
association with the pcIC membranes at the spindle poles (Marie
et al., 2012).

The IC localization of many of the golgins has already
been shown previously. Although first implicated in intra-
Golgi transport, p115 was subsequently shown to associate
with peripheral IC elements and function at an early stage of
ER-Golgi trafficking (Alvarez et al., 1999, 2001; Allan et al.,
2000). Moreover, immuno-EM detected p115 in pleiomorphic,
tubulovesicular elements at the cis-face of the Golgi stacks
(Nelson et al., 1998), most likely corresponding to the IC
elements that also harbor Rab1 (Marie et al., 2012). Similarly,
there is additional evidence showing that the other golgins are
not restricted to the vicinity of the Golgi apparatus, but also
associate with the IC and operate in ER-Golgi trafficking. For
example, GM130 has been localized to IC elements and suggested
to function in their homotypic fusion to generate the Golgi
ribbon (Marra et al., 2001, 2007). Notably, GM130 preferentially
associates with tubular networks at the cis-face of the mammalian
Golgi ribbon or the separate Golgi stacks of Drosophila cells
(Martínez-Alonso et al., 2005; Sinka et al., 2008; Vivero-Salmerón
et al., 2008), rather than the Golgi cisternae. Recently, GMAP210
was localized to the IC and shown to be required for multiple
antero- and retrograde transport steps at the ER-Golgi boundary.
Interestingly, experiments with BFA indicated that its depletion
blocks retrograde Golgi-to-ER transport at the level of the drug-
resistant pcIC (Roboti et al., 2015).
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Thus, the golgins could be involved in the multiple transport
steps at the ER-Golgi interface. Besides acting in membrane
tethering and fusion processes at ERES, they could participate
in transport events that take place between the peripheral IC
elements and the pcIC, and/or function in pcIC-Golgi trafficking
(Figure 2, model B). This new scenario raises the possibility
that the COPI vesicles in the vicinity of the Golgi apparatus—
defined by the tethers golgin-84 and p115 (Malsam et al., 2005),
and proposed to function in both antero- and retrograde intra-
Golgi trafficking (Orci et al., 1997)—could instead mediate
transport between the pcIC and the Golgi stacks. Furthermore,
the persistent association of GM130 and p115 with the pcIC
during the cell cycle (Marie et al., 2012) could explain their effects
on the organization of the centrosome and the mitotic spindle
(Kodani et al., 2009; Radulescu et al., 2011).

Regarding the multi-subunit tethers, COG has been shown
to associate with tubulo-vesicular clusters resembling the IC in
the vicinity of the Golgi stacks (Vasile et al., 2006) and influence
trafficking at the ER-Golgi boundary (Steet and Kornfeld, 2006).
Subunits of the mammalian TRAPP complexes co-localize with
IC/cis-Golgi markers p58/ERGIC-53, GM130, and COPI, and
their knock-down seemed to arrest anterograde transport at
the level of the peripheral IC elements (Yamasaki et al., 2009;
Scrivens et al., 2011). Moreover, the common TRAPP subunit
mBet3 has been detected in BFA-resistant structures resembling
the pcIC (Yu et al., 2006). Notably, it was recently shown
that the mammalian TRAPPIII complex links the functions
of Rab11 and Rab1 in the delivery of membranes from the
ERC to forming autophagosomes, providing evidence for its
role in constitutive trafficking between the pcIC and the ERC
(Lamb et al., 2016).

SUMMARY AND PERSPECTIVES

Imaging of Rab1 dynamics in living cells uncovered a
novel spatial aspect of ER-Golgi communication by showing

the permanent anchoring of the dynamic IC network to
the centrosome. The pcIC clearly represents a specialized
compartment distinct from the Golgi stacks, as shown by its
BFA-resistant nature, division at the onset of mitosis, and
communication with the ERC. However, as this compartment
reveals itself only under special circumstances, a major challenge
for the future is to clarify its relationship with the traditional
Golgi system. In light of relevant literature I have explored
here the possibility that the functional landscape of the primary
ER-Golgi Rabs and their “tethering partners” could be more
complex than previously anticipated, taking into consideration
the stable nature of the pcIC and its functional connection
with the centrosome and the endosomal recycling system.
Besides identifying its transport machineries, and its role in Rab
activation, future studies could provide important information
on this pericentrosomal membrane system by addressing its
non-trafficking roles.
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