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Abstract

Introduction: Prior research shows that clinical demand and supplier capacity significantly affect the throughput and the
wait time within an isolated unit. However, it is doubtful whether characteristics (i.e., demand, capacity, throughput, and wait
time) of one unit would affect the wait time of subsequent units on the patient flow process. Focusing on cardiac care, this
paper aims to examine the impact of characteristics of the catheterization unit (CU) on the wait time of cardiac surgery unit
(SU).

Methods: This study integrates published data from several sources on characteristics of the CU and SU units in 11 hospitals
in Ontario, Canada between 2005 and 2008. It proposes a two-layer wait time model (with each layer representing one unit)
to examine the impact of CU’s characteristics on the wait time of SU and test the hypotheses using the Partial Least Squares-
based Structural Equation Modeling analysis tool.

Results: Results show that: (i) wait time of CU has a direct positive impact on wait time of SU (b~0:330,pv0:01); (ii) capacity
of CU has a direct positive impact on demand of SU (b~0:644,pv0:01); (iii) within each unit, there exist significant
relationships among different characteristics (except for the effect of throughput on wait time in SU).

Conclusion: Characteristics of CU have direct and indirect impacts on wait time of SU. Specifically, demand and wait time of
preceding unit are good predictors for wait time of subsequent units. This suggests that considering such cross-unit effects
is necessary when alleviating wait time in a health care system. Further, different patient risk profiles may affect wait time in
different ways (e.g., positive or negative effects) within SU. This implies that the wait time management should carefully
consider the relationship between priority triage and risk stratification, especially for cardiac surgery.
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Introduction

The impact of highly fluctuating demand (patient inflow) and

available service capacity on the performance of a health care system

deserves long standing attention [1][2]. As a key characteristic of a

health care system, demand is often represented by the number of

visits to services [3][4] or the expenditures on services [5][6].

There are many factors affecting the demand of a health care

system, including increasing number of patients due to the aging

and rising population [7], the growing incidence of diseases such as

diabetes [8], the development of diagnostic and treatment

technology [7], patient status such as the seriousness of the illness

[9], the position of the patient on a waiting list [10], the

geographic distance to the services [11], patient personal profile

(e.g., demographics [12], socioeconomic condition [13][14]), and

unpredictable patient behaviors like balking, reneging, jockeying,

and repeating [15][16][17][18].

Another important characteristic of a health care system is

capacity, which denotes the resources (e.g., financial, human,

physical) available to meet the demand [19][20]. Capacity is usually

judged by the quantity and quality of resources at hand [7][21] or

the working time available [22]. Commonly interested factors

affecting the capacity include human resources such as skilled

doctors and assistants (e.g., nurses, anesthetists) [21], physical

resources such as beds and equipments [7], management strategies

such as resources utilization and allocation [23], resource planning

and scheduling [23][24].

The third important characteristic of a health care system is

performance. Two common indicators of performance are throughput

and wait time [15] [25][26]. Throughput is typically quantified by

counting the number of patients who have received a needed

health care service in a given time period [27]. It is thus a way to

observe the utilization of resource. Different from throughput, wait

time is the amount of time a patient has to wait for receiving a

needed health care service [25][28]. Wait time is a particular

concern in health care, especially for such key services as

catheterization and cardiac surgery. Long wait time is not only

an impediment to quality care but also a risk factor for patients
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[29][30]. There are various measurements for wait time, such as

median wait time (i.e., the point at which half of the patients have

received their treatment with the other half still waiting), and

queue length (i.e., the total number of patients in the waiting list)

[25][28]. Wait time is often different depending on patient urgency

categories. In a government dominated health care system (e.g.,

Hong Kong, or Canada), each patient who waits in the key units is

assigned an urgency rating score according to the presenting

symptoms [31][32][33]. Wait time strategies are adopted based on

different urgency categories [25]. The higher urgent score a

patient has, the shorter time s/he will wait.

Prior research has investigated the relationships among demand,

capacity, throughput, and wait time empirically for a long time. It has

revealed that demand has a significant impact on capacity [34],

throughput, and wait time in various units (e.g., congested recovery

room, emergency department) [21] [35][36][37]. Capacity has

also been found to exert a significant negative influence on

throughput and wait time [21][35][36][37][38]. Although some

researchers argue that capacity has a positive impact on demand

(higher capacity attracting more patients coming to hospitals,

especially the non-urgent patients) [39][40], such argument has

not been supported with plenty empirical evidence [41]. In

addition, although prior research suggests that the improvement

of throughput often accompanies the reduction of wait time [42],

the impact of throughput on wait time has not been empirically

investigated.

Health care units and services have generally evolved in silos

focusing on satisfying their own customers [43]. Accordingly,

extant research has focused on the relationships among the

characteristics within a specific unit. However, we argue that it is

inadequate to examine the within-unit relationships in isolation

[43][44], because, in the real world, all the units in a health care

system are networked via patient flow. For example, based on the

cardiac treatment guidelines [45][46], units involved in the cardiac

care are sequentially connected according to patient visits

(Figure 1). Two units with a directed link denote they are

temporally related, i.e., patients usually visit the unit the arrow

points toward (i.e., subsequent unit) after visiting the unit the

arrow points away from (i.e., preceding unit). There usually exits a

‘‘funnel and filter’’ effect [47, p.163] (i.e. preceding units deter-

mine the actual numbers and the throughput for patients

proceeding into the subsequent units) between two temporarily

related units. In the context of the catheterization unit (CU) and

the cardiac surgery unit (SU), a ‘‘diagnostic-therapeutic’’ cascade

effect [48, p.2797] (more catheterization diagnostic tests per-

formed are also likely to have more cardiac surgeries) may also

exist [49][50]. Thus, investigating the impact of the cross-unit

relationships, in addition to within-unit relationships, may reveal

more important insights for wait time management [44].

In sum, the impact factors for a health care unit’s performance

(i.e., wait time, and throughput) have been studied from the demand-

side and capacity-side perspectives (shown in Figure 2). The

relationships among demand, capacity, throughput, and wait time have

been investigated within a unit. However, little attention has been

paid to the relationships among the characteristics in a cross-unit

context, a gap this study aims to fill. In this study, we explore

whether and how the characteristics of one unit exert an influence

on the characteristics (wait time in particular) of other temporally

related units (Figure 2 shows the overall research framework). We

choose the CU and the SU as our research context, because (i)

they both provide key services [25][28], (ii) they are temporally

connected [51], and (iii) published data about the two units are

available (http://www.ccn.on.ca/). We propose a two-layer wait

time model (see detailed discussion in the next section) to

Figure 1. The unit framework of cardiac care drawn from the cardiac treatment guidelines [45][46]. (ECG: Electrocardiogram; PTCA:
Percutaneous transluminal coronary angioplasty; PCI: Percutaneous coronary intervention.)
doi:10.1371/journal.pone.0021959.g001
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investigate the CU’s characteristics on the wait time of SU, with

each layer representing a unit. Both within-unit and cross-unit

relationships are represented in the model.

We employ the Structural Equation Modeling (SEM) [52][53]

to explore the underlying relationships among the characteristics

of two units (i.e., CU and SU). Compared to traditional statistic

techniques (e.g., regression, ANOVA), the SEM (i) has the ability

to construct latent variables (abstract concepts cannot be measured

directly) [54], and (ii) permits exploring and confirming complex

(e.g., hierarchical or non-hierarchical, recursive or non-recursive)

variable relationships concurrently, in addition to traditional

pairwise variable relationships [54][55]. As a result, the SEM

enables us to identify the complete causal paths of the cross-unit

relationships among latent variables (i.e., demand, capacity, throughput,

and wait time in this study), which are not supported by any

traditional statistic method individually.

The data for this study is obtained from the Cardiac Care

Network of Ontario and the Ontario Physician Human Resources

Data Centre. We choose such data because it has been collected

and released by the Ontario government regularly for more than

ten years. It provides comprehensive information on health care

services in Ontario for carrying out our research.

Methods

Hypotheses and Research Model
It has been recognized that matching the fluctuating demand

for health care systems with the capacity available is vital for

bettering the outcomes (e.g., morbidity and mortality rate, or wait

time) [56]. Thus, there has been extensive research examining

the relationships among demand, capacity, throughput, and wait time,

especially within a single unit.

Prior research has shown that demand has a positive impact on

throughput and wait time. For example, Asaro et al. [37] found in the

context of an emergency department that increasing the arrivals

(i.e., demand) increased the throughput and the wait time.

Harindra et al. [21] showed that clinical demand was an

important factor for the access inequalities (i.e., wait time) of

catheterization in Canada. Schoenmeyr et al. [35] revealed a

sensitive relationship between the caseload (i.e., demand) and the

wait time in a congested recovery room. Harewood et al. [36]

found that annual wait time for routine endoscopic procedures

lengthened dramatically because of a significant increase in annual

procedure demand on endoscopy services. Therefore, we hypoth-

esize that demand has a positive impact on throughput (Hypothesis
1, H1) and wait time (Hypothesis 2, H2).

In analyzing the current research on the relationship between

demand and capacity, Baker [34] noted that the desire to meet patient

demands was a dominant driving force for capacity changing.

Buerhaus [57] pointed out that demand increasing for aging

population may result in expanding nursing workforce (human

resources) to avoid threatening the health care quality. Justman et

al. [58] indicated that HIV scale-up needed to develop laboratory

systems and infrastructures (i.e., physical resources). Several

researchers have argued that capacity has a positive impact on

demand [39][40]. For instance, Smethurst and Williams [39][40]

noted that for each specific disease, there were many more patients

who did not visit the doctors than those who did visit (i.e., ‘‘hidden’’

Figure 2. The research framework with the summarization of the impact factors for throughput and wait time.
doi:10.1371/journal.pone.0021959.g002
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patients [39, p.653]). To meet these potential overwhelming

demand, the supplier may increase the capacity. Changes in the

capacity may trigger changes in demand because more patients are

then attracted to the service providers. However, this argument has

not been evidently tested [41]. Therefore, in this study, we

hypothesize that demand has a positive impact on capacity

(Hypothesis 3, H3), and capacity does not have an effect on demand.

Regarding the impact of capacity on throughput and wait time, prior

research has indicated that capacity is important to ensure better

performance (e.g., throughput, wait time) of a health care system. For

instance, Harindra et al. [21] found that supplier capacity was an

important factor determining access inequalities (i.e., wait time) of

catheterization in Canada. Schoenmeyr et al. [35] showed that the

physical capacity of supplier (e.g., beds) had a significant impact on

the wait time in a congested recovery room. Trzeciak and Rivers

[38] also found that inpatient capacity (e.g., beds) had an effect on

the throughput in an emergency department. Harewood et al. [36]

further showed that modifications in routine clinical practice (i.e.,

service capacity) could significantly affect a procedure’s wait time.

A few studies have revealed that improving the capacity may help

improve the throughput and the wait time of a health care unit.

Mukherjee [59] found that improving the management of

physicians (e.g., staffing mix) improved patient throughput. Others

showed that improving the capacity management (such as

employing intelligent patient scheduling) shortened the wait time

efficiently [60–61]. Therefore, in this study, we hypothesize that

capacity has a positive impact on throughput (Hypothesis 4, H4)

and wait time (Hypothesis 5, H5) within a unit.

Little prior research has investigated the relationship between

throughput and wait time. Brenner et al. suggested that the

improvement of throughput often accompanied the reduction of

wait time [42]. An intuitive explanation is that given a stable

demand (i.e., determined number of arrivals) in a unit, if resources

(physical or human resources) in this unit can be more efficiently

used, the patients may be treated quicker. So that the wait time of

each patient may be shortened. Therefore, in this study, we

hypothesize that throughput has a negative impact on wait time

(Hypothesis 6, H6) within a unit.

Prior research has examined the relationships of characteristics

among several units within a hospital. Reported by Alter et al.

[47 p.163], the catheterization has a ‘‘funnel and filter’’ effect on

the cardiac surgery. That means the demand and the capacity of

CU determine the actual numbers and the throughput for patients

proceeding into the SU. Similarly, prior research has revealed that

the CU and the SU have a ‘‘diagnostic and therapeutic’’ cascade

effect [48, p.2797][49][50]. This implies that more catheterization

diagnostic tests performed in CU may trigger more patients to

undergo cardiac surgeries. Some studies have examined the

interrelationships among different units within a hospital for bed

allocation [62][63][64]. Results showed that bed allocations for

patients were influenced by the capacities of all the units.

However, such research does not explain clearly how and to what

extent the capacity of one unit may influence the wait time of

another. In addition, to the best of our knowledge, no prior

research has studied whether and to what extent the wait time of

one unit influences the wait time of a temporally related unit. In

this study, we explore such a wait time relationship between the

CU and the SU and hypothesize that (i) demand of CU has a

positive impact on demand of SU (Hypothesis 7, H7), (ii) capacity

of CU has a positive impact on demand of SU (Hypothesis 8, H8),

and (iii) wait time of CU has a positive impact on wait time of SU

(Hypothesis 9, H9).

Based on the literature review, we postulate a two-layer wait

time model (Figure 3) to represent the hypothesized within-unit

and cross-unit wait time relationships. In this model, the

relationships of four characteristics within the CU and the SU

are illustrated in Layer 1 and Layer 2. Cross-unit wait time

relationships are represented via the effects between the two layers.

Cardiac Care Statistic Data
The data used in this study mainly comes from two data sources

in Ontario, Canada. The first one is the Cardiac Care Network of

Ontario (CCN, http://www.ccn.on.ca/), a network of 18 member

hospitals providing cardiac services in Ontario. Since 2004, CCN

reports the wait time facts quarterly for selected cardiac

procedures (i.e., catheterization, cardiac surgery, and percutane-

ous coronary intervention) in member hospitals across Ontario.

The reported data includes the number of completed cases in a

month, the average number of patients waiting at the end of a

month, and the monthly average median wait time. In this study,

Figure 3. An illustration of a two-layer wait time model. (Cath: the abbreviation of catheterization; Surgery: the shorter form of cardiac
surgery; H1-H9: the research hypotheses; +/2: a positive or a negative relationship between the variables towards the arrow.)
doi:10.1371/journal.pone.0021959.g003
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we are particularly interested in the units of catheterization and

cardiac surgery, because a regional priority rating score system has

been established for these two units (but not other units) in Ontario

[32–33]. CCN thus provides more detailed statistics for CU and

SU than for other units. Table 1 shows the major information

provided by the CCN data. From Table 1, we can observe the

variability of the throughput and the wait time for a specific unit.

We propose an equation (Equation 1) to calculate the monthly

average number of arrivals from the existing statistic data, so that

the demands of CU and SU can be estimated successfully.

Arrivali,j~Throughputi,jzQueueLengthi,j{QueueLengthi{1,j ð1Þ

where, Arrivali,j is the monthly average number of arrivals in

quarter i of unit j, Throughputi,j is the monthly average number of

patients who have received treatment in quarter i of unit j, and

QueueLengthi,j is the average number of patients waiting at the

end of a month in quarter i of unit j. The second data source is the

Ontario Physician Human Resources Data Center (OPHRDC,

https://www.ophrdc.org/Home.aspx), a definitive source for

information on physician usage in Ontario. It provides data about

physicians in Ontario by specialties (e.g., cardiac surgery,

diagnostic radiology) annually. In this study, the capacity of SU

is exactly measured by the number of physicians specialized in

cardiac surgery. The capacity of CU is approximately measured

by the number of physicians operating diagnostic radiology,

because catheterization is one of the tests utilizing radiology, and

information about the physicians operating catheterization is

unavailable. However, since the OPHRDC data is organized by

Local Health Integration Networks (LHINs, not-for-profit corpo-

rations based on geographic regions to determine the community’s

health service needs and priorities), not by hospitals, it needs to be

processed so as to align with the CCN data. Table 2 shows the

CCN member hospitals and the corresponding LHINs. From this

table, we can see direct correspondences between the LHINs and

CCN Member Hospitals, except the LHINs of Toronto Central

(TC) and North East (NE), which have more than one CCN

hospital. To facilitate data analysis, the two LHINs’ data should be

decomposed to generate data for related hospitals.

The main idea behind data decomposition is to utilize

hospitals’ physician ratio (calculated from the number of specific

physicians in a hospital to the total number of the specific

physicians in the corresponding LHIN in year of 2010) in TC and

NE to compute the number of physicians for relevant hospitals

from 2005 to 2008. The physician ratios for CU and SU in each

hospital in TC and NE can be obtained from the website of The

College of Physicians and Surgeons of Ontario (CPSO, http://

www.cpso.on.ca/), the governing body for medical doctors in

Ontario. Then, after observing the OPHRDC data, we found

that in TC and NE, the changes in CU ranged from 0 to 9

physicians per LHIN year to year (the total average number of

catheterization physicians per hospital in the two LHINs was 60);

and the changes in SU ranged from 0 to 1 physician per LHIN

year to year (the total average number of cardiac surgery

physicians per hospital in the two LHINs was 7). Therefore, we

can assume that the physician ratios in TC and NE are relatively

stable, i.e., the physician ratios are the same in each year since

2005. So that the number of specific physicians in each hospital

can be calculated successfully by the specific physician ratio of

each hospital multiplied by the number of the specific physicians

in the corresponding LHIN each year.

By integrating and processing the two sets of data as discussed

above, we obtain comprehensive information about the 11

hospitals (enumerated in Table 1) that provide catheterization

and cardiac surgery. Table 3 outlines the characteristics of the two

units and their measurements with the data summary. Specifically,

we focus on the data from 2005 to 2008 (15 quarters in total),

because the year of 2004 is the end of the first six-year cardiac

expansion plan [7] and the start of the second ten-year cardiac

improvement plan [25] [65]. In total, there are 165 data points for

CU and SU (one hospital one quarter is regarded as a data point).

In the next subsection, we will describe the statistical analysis

methods used to investigate within-unit and cross-unit wait time

relationships.

Table 1. Cardiac Care Network of Ontario cardiac surgery
statistics (January 2008–March 2008).

Hospital C UM(d) SM(d) EM(d) W

Hamilton HSC 127 1 6 12 69

Hôospital Régional de Sudbury 36 7 6 19 21

Kingston General Hospital 47 3 15 20 30

London HSC 115 2 5 17 33

Southlake Regional HC 75 5 7 28 42

St. Mary’s General Hospital 61 3 5 9 24

St. Michael’s Hospital 89 5 6 15 26

Sunnybrook HSC 56 3 4 16 22

Trillium HC, Mississauga 79 2 4 9 22

University Health Network 129 2 6 13 135

University of Ottawa Heart Institute 98 6 21 52 100

C: the number of completed cases; UM: the median wait time of urgent
patients; SM: the median wait time of semi-urgent patients; EM: the median
wait time of elective patients; W: the number of waiting at the end of a month;
d: the abbreviation of days. This table is drawn based on the CCN data (http://
www.ccn.on.ca/pdfs/st-sur-2008-01-03.pdf).
doi:10.1371/journal.pone.0021959.t001

Table 2. The relationship between CCN member hospitals
and the LHINs.

LHIN CCN Member Hospitals

South West London Health Sciences Centre

Waterloo Wellington St. Mary’s General Hospital

Hamilton Niagara
Haldimand Brant

Hamilton Health Sciences

Mississauga Halton Trillium Health Network

Toronto Central Toronto East General Hospitals*

St. Michael’s Hospital

University Health Network

Sunnybrook Health Sciences Centre

Central Southlake Regional Health Centre

South East Kingston General Hospital

Champlain University of Ottawa Heart Institute

North East Sault Area Hospital*

Hôospital Régional de Sudbury Regional Hospital

*: the hospital not providing the cardiac surgery procedure. This table is drawn
based on the CCN information (http://www.ccn.on.ca/content.
php?menuID = 14&subMenuID = 21&subMenu2ID = 14).
doi:10.1371/journal.pone.0021959.t002
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Statistical Analysis
In this study, we employ the structural equation modeling

(SEM) to test the proposed two-layer wait time model (Figure 3) as

well as the related hypotheses. The SEM is a second generation

data analysis technique [66] for estimating complex relationships

among multiple constructs [52]. The SEM and traditional statistic

methods (e.g., regression, ANOVA, LOGIT) differ in important

ways [54]: whereas traditional statistic methods can only test

pairwise relationships between observed variables, the SEM can

construct latent variables (abstract concepts that cannot be

measured directly) and assess complex (e.g., hierarchical, recursive)

causal paths among such variables. Therefore, the SEM technique

has been increasingly used in social science, behavioral science and

management science, for modeling complex and multivariate

relationships [53][67][68][69].

There are two classes of SEM: Partial Least Squares (PLS)-

based SEM and covariance based SEM [54]. In this study (which

is exploratory rather than confirmatory), the PLS-based SEM is

employed because it is more suitable for theory building (i.e.,

allowing both confirmatory and exploratory modeling), whereas

the covariance based SEM is more suitable for theory testing (i.e.,

more efficient in confirmatory modeling) [54].

In the data analysis process, the measurements for the wait time

are modeled as formative indicators [54] [70] rather than

reflective ones [54] [70]. A formative model is used when a latent

construct (i.e., factor, such as demand, capacity, throughput, and wait

time in this study) is viewed as an ‘‘explanatory combination’’

[71, p.422] of its manifest variables (i.e., measurements) [72]. In

contrast, in a reflective model, the latent construct is viewed as

causing the manifest variables [71]. In this study, the manifest

variables for wait time are not interchangeable or correlated with

one another because they measure the wait time from different

perspectives. Therefore, the latent variable wait time is the

summation of its corresponding manifest variables. In other

words, the measurement items of wait time would be formative of

the construct of wait time.

In addition, we utilize the data of CU and SU in the same

quarter to test the cross-unit relationships. Because the longest wait

time for a patient in the CU is around one month, we can assume

that the great majority of patients who need cardiac surgery will be

transferred from the CU to the SU within the period of a quarter.

In the next section, we will present the results from the PLS

analysis.

Results

In this section, we discuss the findings of data analysis from two

aspects: (i) how do the characteristics impact one another within a

unit; (ii) how do the characteristics of CU impact the character-

istics of SU, and particularly on wait time of SU.

In this study, the software SmartPLS (http://www.smartpls.de/)

is utilized for path modeling and PLS-based data analysis. The

results are shown in Figure 4.

Within-Unit Relationships
As illustrated in Figure 4, in support of H1-H3, demand has a

significant positive effect on throughput, capacity, and wait time,

respectively. The path coefficients for the effect of demand on

throughput for CU and SU are b~0:585 (t = 18.677, pv0:01) and

b~0:797 (t = 35.115, pv0:01), respectively. The path coefficients

for the effect of demand on capacity are b~0:921 (t = 127.754,

pv0:01) and b~0:574 (t = 25.219, pv0:01) for CU and SU,

respectively. The path coefficients for the effect of demand on wait

time are b~0:619 (t = 2.908, pv0:05) and b~0:472 (t = 6.111,

pv0:01) for CU and SU, respectively. These results confirm

findings from prior research [21][24][35–37], providing further

evidence that demand is an important predictor for capacity,

throughput and wait time within a health care unit.

In support of H4, capacity has been found to have a significant

positive impact on throughput. For CU, the path coefficient for the

effect of capacity on throughput is b~0:410 (t = 13.162, pv0:01). For

SU, the path coefficient is b~0:155 (t = 5.914, pv0:01). These

results also confirm findings from prior research [38][59],

suggesting that improvement in capacity will lead to improved

throughput within a unit.

Hypothesis H5 is only partially supported by our data. For CU,

capacity has a significant negative impact on wait time (b~{0:252,

t = 2.465, pv0:01), thus supporting H5. However, for SU, capacity

has a significant positive impact on wait time (b~0:115, t = 3.071,

pv0:01). Thus H5 is not supported. This finding is different from

that of prior research [35–36], which suggests that improvement in

a unit’s capacity can significantly shorten its patients’ wait time.

The positive effect of capacity on wait time for SU can be

explained by the view of Smethurst and Williams [39–40]. Their

work figured out that the hospital waiting lists were ‘‘self-

regulating’’ [39, p.652]. That means when capacity increases for

meeting the demand, the demand also change in response, thus

creating a demand that is even greater [39–40]. This is because a

mass of ‘‘hidden’’ patients [39, p.653] (who have diseases but are

not willing to go to hospitals) may be attracted to visit hospitals for

believing be treated quicker. Hence, expanding the capacity in SU

may help the wait time temporarily but, it will then increase, even

get much longer than before because of more patients coming.

Hypothesis H6 is not supported by the data. Whereas throughput

has a significant positive impact on wait time (b~0:352, t = 1.659,

pv0:1) for CU, the effect of throughput on wait time is negligible for

SU (b~0:049, t = 0.593, pw0:1). This finding suggests that

throughput and wait time have similar changing patterns in CU

(although not in SU), which is contrary to the expectation that the

Table 3. A summary of the secondary data used in this study.

Characteristics Measurements CU SU

Demand Monthly average number of arrivals in a quarter 340 82

Capacity Number of physicians, yearly 60 7

Throughput Monthly average number of completed patients 346 83

Wait time Median wait time of U/S/E patients 1/10/15 3/6/19

Average number of waiting at the end of a month 101 58

CU: Catheterization unit; SU: Cardiac surgery unit; U: the urgent category; S: the semi-urgent category; E: the elective category.
doi:10.1371/journal.pone.0021959.t003
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improvement of throughput results in the improvement of wait

time.

A possible explanation for the positive relationship between

throughput and wait time in CU can be found if considering the

queue jumping behavior of urgent patients. Queue jumping means

that urgent patients can skip the queue and jump to any position

on a waiting list because of their treatment priority [73]. If more

urgent patients arrive, units would like delay the treatment for the

semi-urgent and elective patients in order to serve high priority

patients in time, indirectly making these non-urgent patients wait

longer. The overall wait time for the unit may also be increased as

a result. In addition, the reason for the absence of any significant

relationship between throughput and wait time in SU could be that

SU has much fewer urgent patients than CU does. For instance, in

the fiscal year of 2004, the percentage of urgent patients for CU in

Ontario is 49% (out of a total of 52628 patients), while the

percentage of urgent patients for SU is only 23% (out of a total of

7825 patients in total) [25]. This finding implies that in some cases,

throughput and wait time may not be directly related to reflect the

quality of a unit’s performance.

Cross-Unit Relationships
As show in Figure 4, H7 is not supported by our data (b~0:022,

t~0:277, pw0:1). Demand of CU does not have a significant

impact on demand of SU. While in support of H8, capacity of CU has

a significant positive impact on demand of SU (b = 0.644, t~8:498,

pv0:01).

The two findings can explain the formation of the ‘‘funnel and

filter’’ effect [47, p.163] between the CU and the SU. Findings

denote that on one hand, more arrivals in the CU usually lengthen

the waiting list, but do not affect the throughput proceeding to the

SU heavily. This may be because the CU always has a waiting list

in reality (observed from the historical data published by CCN).

On the other hand, to a large extent, the capacity of CU

determines the actual numbers and the throughput for patients

proceeding into the SU, so that the ‘‘funnel and filter’’ [47, p.163]

is formed.

In support of H9, the results of our analysis reveal that wait time

of CU has a significant positive impact on wait time of SU

(b~0:330, t~9:859, pv0:01). It provides strong evidence that

wait time of CU is an important predictor for wait time of SU. A

possible explanation for such an effect is delay cascade [74].

Unnikrishnan et al. [74] simulated and observed that delays would

cascade in an emergency department (ED) network (all the EDs in

different hospitals were networked by the transfer paths of

ambulances). In other words, delays in an ED will result in wait

time increasing in other EDs nearby. The cardiac care has a

similar unit network (Figure 1) in a hospital. Therefore, delays in

one unit may spread to other related units in the unit network,

forming the direct cross-unit wait time relationship as a result.

Figure 4. PLS test results based on a formative measurement model. (Cath: the abbreviation of catheterization; Surgery: the shorter form of
cardiac surgery.)
doi:10.1371/journal.pone.0021959.g004

Table 4. A summary of hypotheses testing results.

Hypotheses Supported?

H1-H4, H8, H9 Fully supported

H5 Partially supported

H6, H7 Not supported

doi:10.1371/journal.pone.0021959.t004
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Table 4 summarizes the hypotheses testing results. Besides, an

examination of our results (Figure 4) reveals both direct and

indirect causal paths from characteristics of CU to wait time of SU.

In addition to a direct causal link from wait time of CU to wait time

of SU, demand of CU and capacity of CU also have indirect effect on

wait time of SU. In other words, wait time of SU may be influenced

by the CU via the following causal paths: (i) wait time of CU ? wait

time of SU; (ii) demand of CU ? capacity of CU ? demand of SU ?
wait time of SU; (iii) demand of CU ? capacity of CU ? demand of SU

? capacity of SU ? wait time of SU. Demand of CU appears to be

the most essential driving force for the wait time dynamics in the

CU as well as in the SU.

Discussion

In this study, we have examined whether and how character-

istics of a preceding unit can affect the wait time of the cardiac

surgery unit. Different from prior research, this study employs the

structure equation modeling approach to assessing such cross-unit

wait time relationships from the secondary data published in

Ontario, Canada. The results of our analysis have validated the

proposed two-layer wait time model, thus providing empirical

support to the hypothesized relationships among four character-

istics (i.e., demand, capacity, throughput, and wait time) both within a

unit and across units.

The key findings in this study are as follows. First and foremost,

our results show that wait time of CU has a direct positive impact

on wait time of SU. This is a novel result, as prior research has

seldom examined the influence of one unit’s wait time on wait time of

a subsequent unit on the patient flow process. A possible

explanation for such effect is delay cascade in the cardiac care

unit network (Figure 1), proposed by Unnikrishnan et al. [74].

In addition, the results of our analysis provide empirical

evidence for previous findings that: (i) within a unit, demand has a

positive effect on capacity, throughput, and wait time; (ii) within a unit,

capacity has a positive effect on throughput; (iii) across units, the

demand of one unit will be positively influenced by the capacity of the

preceding unit.

We have also obtained some surprising findings: (i) the

relationship between capacity and wait time differs in units with

different profiles (e.g., different patient proportion in each urgency

category); (ii) throughput has a positive effect on wait time within a

unit; (iii) there exist direct and indirect wait time relationships

between temporally-related units; (iv) demand of CU is an essential

predictor for the other characteristics of CU and SU.

However, there may be other factors affecting a unit’s

performance in addition to demand, capacity, and cross-unit

relationships. For example, the patient risk profile (i.e., the value

of predicted operative mortality) has been identified as a factor

that may affect the triage or referral patterns and the allocation of

resources [75]. Although the exact effects of patient risk profiles on

a health care system’s performance (wait time in particular) are still

unclear, it is desirable to explore their relationships in order to

gain some insights in this regard by means of incorporating the

information of patient risk into our two-layer wait time model.

There are various methods for calculating the value of risk for

patients undergoing catheterization (e.g., SYNTAX, http://www.

syntaxscore.com/) and cardiac surgery (e.g., EuroSCORE,

http://www.euroscore.org/, and Higgins Score [76]) based on

several risk factors. For example, the surgical risk factors for

isolated coronary artery bypass graft (CABG) surgery include age,

sex, precious CABG, left ventricular function, and coronary

anatomy, etc. [51][77]. The Institute for Clinical Evaluative

Science of Ontario has published data on the distribution of risk

profiles in isolated CABG (i.e., the major type of cardiac surgery)

in years of 2005 and 2006, in the Ontario hospitals [51]. Thus, by

utilizing this published risk profile data (represented as the

percentage of low-, medium-, and high-risk patients for catheter-

ization in a hospital), we have further investigated the relationship

between risk profiles and wait time. In doing so, the missing data of

each hospital’s risk profiles for the years of 2007 and 2008 is

substituted by the mean value (a common method for handling

missing data in statistical data analysis [78–79]) of its available risk

data [51]. By integrating our original cardiac care data with the

riskprofile data, we have conductd an additional PLS analysis to

test the extended two-layer wait time model, with risk profiles

added as an extra predictor of wait time in SU (see Figure 5).

The results of the analysis (Figure 5) reveal that the pattern of

within- and cross-unit relationships (i.e., hypotheses H1-H9)

among characteristics (i.e., demand, capacity, throughput, and wait time

in CU and SU) remain unchanged. In addition, risk profiles, when

represented differently (i.e., as percentage of low-risk patients,

percentage of medium-risk patients, or percentage of high-risk

patients), can have differential effects on wait time in SU.

More specifically, the percentage of low-risk patients has a

significant negative effect on wait time (see Figure 5(a)). The exact

explanation for this finding is still unclear as almost no prior work

has addressed this issue to our best knowledge. However, it may be

intuitively understood that the treatment process of low-risk

patients is relatively easier than higher-risk patients, and hence, the

length of stay (including the pre-operative, operating, and post-

operative stay) of low-risk patients may be shorter than higher-risk

patients. Therefore, if there are more low-risk patients in SU, the

total wait time of this unit will be decreased.

Interestingly, the percentage of medium-risk patients has a

significant positive impact on wait time (see Figure 5(b)). This

may be due to the event of unexpected upgrading to more urgent

categories (e.g., upgrading the medium-risk patients from semi-

urgent category to urgent category) for patients proceeding to

cardiac surgery [80–81]. The upgrading event may trigger the

queue jumping behavior [73], which will hinder the normal

treatment schedule and result in a longer wait time. This

observation is consistent with the prior findings that proportion-

ately more patients in the more urgent categories than in the less

urgent categories may have wait times in excess of the maximum

acceptable [82].

The percentage of high-risk patients does not have a significant

effect on wait time (see Figure 5(c)), contrary to our expectation.

Prior work indicates that high-risk patients tend to be assigned

higher priorities in the triage process [80], and thus more high-risk

patients may imply more urgent patients. Since urgent patients are

more likely to undergo expedited surgery, this may delay the

treatment for non-urgent patients, resulting in prolonged overall

wait time [73]. Although, at the moment, we do not have a sound

explanation for this unexpected lack of effect, the observed

inconsistency between the effect of high-risk profile and that of

medium-risk profile may be due to the actual methodology used to

stratify patient risk profiles and priority categories, an issue that

deserves further investigation.

Finally, the PLS-based SEM method proves to be an

appropriate tool for assessing the hypothesized within-unit and

cross-unit wait time relationships illustrated in our two-layer wait

time model. With its capability of multivariate modeling and latent

variable construction, the SEM approach enables us to validate

the relationships among characteristics both within a unit and

across two temporally-related units in this study.

It should be pointed out that there remain some limitations in

this study. First, the CCN publishes only the monthly data

Cross-Unit Wait Time Relationships in Cardiac Care
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Figure 5. PLS test results for extended two-layer wait time model with risk profiles in SU. (Cath: the abbreviation of catheterization;
Surgery: the shorter form of cardiac surgery.)
doi:10.1371/journal.pone.0021959.g005
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averaged in a quarter. In order to avoid data overlapping, the time

range of each data sample is thus set to 3 months. Secondly, since

the number of physicians operating catheterization is unavailable,

we have substituted it with the number of physicians specialized in

diagnostic radiology. This substitution may not exactly reflect the

true capacity of the catheterization. Also, we have used the current

physician ratio obtained from CPSO to decompose the aggregated

OPHRDC data from LHIN-based to hospital-based. Data

produced by this conversion process may not be very accurate

because the physician ratio may change from year to year.

Moreover, we have used only one indicator for demand, capacity,

and throughput, which may not capture all the dimensions of the

relevant constructs. Nevertheless, this study represents a valuable

attempt to use the SEM method to explore factors affecting wait

time from a multi-unit perspective, based on secondary data. Our

findings can also provide valuable insights to researchers and

practitioners in other government dominated health care systems

in their efforts to reduce wait time.
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