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Introduction
Systemic lupus erythematosus (SLE) is an autoimmune illness 
primarily affecting women, typically occurring during their 
reproductive years. The development of SLE is influenced by 
multiple variables, such as the formation of autoantibodies, 
dysregulation of B cells, abnormalities in T cells, failure of the 
complement system, and signaling of type I interferons.1 These 
variables result in persistent inflammation and the involvement 
of multiple organs. Individuals with SLE have an increased 
susceptibility to experiencing complications during pregnancy. 
These encompass pre-eclampsia (PE), fetal or neonatal death, 
as well as possible fetal illnesses caused by restricted growth 
and preterm labor. The incidence of PE, especially early-onset 
pre-eclampsia (EOPE), in patients with SLE is greater than 
that in the general population.

Pre-eclampsia is a condition that occurs during pregnancy 
and is characterized by elevated blood pressure and the possibil-
ity of organ damage, particularly in the kidneys. Pre-eclampsia is 
a condition that occurs during pregnancy and is characterized by 
elevated blood pressure and the possibility of organ damage, par-
ticularly in the kidneys. Pre-eclampsia usually occurs after 20. 
Pre-eclampsia usually occurs after 20 weeks of pregnancy, affect-
ing around 2% to 8% of pregnancies worldwide.2 From a clinical 
perspective, PE can be classified into 2 subgroups according to 
their onset, each with separate pathophysiological origins. Early-
onset pre-eclampsia, which occurs before 34 weeks of gestation, 
often manifests with more severe symptoms and complications 
for both the mother and the infant. The prevailing belief is that 
it originates from inadequate placentation. Conversely, late-
onset pre-eclampsia (LOPE), occurring at or after 34 weeks of 
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pregnancy, is primarily driven by maternal cardiovascular risk 
factors and placental insufficiency.3 Initiating low-dose aspirin in 
early pregnancy (<16 weeks) can effectively reduce the risk of 
EOPE.4 Extensive epidemiological research has shown that 
mothers who have experienced EOPE, and their children have a 
higher likelihood of developing cardiovascular disease in their 
later life.5,6 Our research specifically concentrates on the analysis 
of EOPE due to its significant implications.

Recent research suggests that the activation of complement, 
the migration of neutrophils, and the generation of proinflam-
matory cytokines and antiangiogenic molecules play a signifi-
cant role in the impaired development of the placenta in both 
autoimmune illnesses and nonautoimmune models of PE.7,8 
Moreover, evidence indicates a connection between higher lev-
els of neutrophils and the presence of neutrophil extracellular 
traps (NETs) in the placental intervillous spaces. This is 
accompanied by inflammatory and vascular alterations in indi-
viduals with SLE and PE.9,10 These data suggest that there 
may be common pathogenic pathways between SLE and PE.

Nevertheless, the underlying causes of both SLE and EOPE 
have yet to be fully understood. Only a limited number of stud-
ies have investigated the molecular pathways that connect SLE 
and PE using bioinformatics analysis. Examining the overlap-
ping transcriptional profiles of SLE and PE could elucidate 
their similar underlying causes and offer a more comprehensive 
understanding of the pathophysiological mechanism of PE.

We employed various integrative bioinformatics tools in our 
work to reveal crucial genes and probable pathways that are 
connected with SLE and PE. We obtained 2 data sets of 
peripheral blood mononuclear cells (PBMCs) from individuals 
with SLE and 7 PE data sets of placental and maternal periph-
eral blood transcriptome expression profiles from the Gene 
Expression Omnibus (GEO) collection. Our study aimed to 
identify crucial genes shared by both SLE and PE and investi-
gate their association with immune-infiltrating cells to gain a 
deeper understanding of the development of PE. In addition, 
we verified the identified essential genes in multiple data sets to 
determine their diagnostic potential for PE. Our study employs 
a thorough bioinformatic method to investigate the pathogenic 
mechanisms of PE that are associated with SLE for the first 
time.

Materials and Methods
Microarray data

We obtained 2 microarray data sets (GSE81622, GSE50772) of 
PBMCs from patients with SLE and 7 microarray data sets 
(GSE10588, GSE25906, GSE190639, GSE48424, GSE14722, 
GSE75010, and GSE149437) from patients with PE from the 
NCBI Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/).

The cause of PE is not fully comprehended. Nevertheless, 
defective placentation is widely acknowledged as a contribut-
ing factor in the onset of PE. Consequently, we commenced 

our work by comparing the gene expression profiles in the pla-
centa of individuals with EOPE and control groups. Table 1 
contained comprehensive information about the data sets.

Data processing

Microarray expression data sometimes exhibits batch effects 
and variances, which can make it challenging to compare sam-
ples from different batches. It is not appropriate to merge data 
sets without taking these batch effects and variances into 
account. To address this issue, we used batch correction on 2 
SLE data sets (GSE81622, GSE50772) using the combat 
function from the “surrogate variable analysis (SVA)” package 
in R 4.2.1 software (R Foundation for Statistical Computing, 
Vienna, Austria). Similarly, we applied batch correction on the 
GSE10588 and GSE25906 data sets for the PE analysis. As a 
result, we were able to generate combined SLE and PE expres-
sion data separately. When combining data sets from multiple 
platforms, we only selected genes that were shared across all the 
combined data sets. This ensured that the combined data sets 
were suitable for further studies.

Differentially expressed genes analysis

In our analysis of the combined SLE and PE data sets, we used 
the “limma” package in R to identify differentially expressed 
genes (DEGs). For the SLE data set, the criteria used were an 
adjusted P value <.05 and|log2 fold change| >.7, while for the 
PE data set, the criteria were an adjusted P value <.05 and|log2 
fold change| >.5.

Weighted gene co-expression network analysis

Weighted gene co-expression network analysis (WGCNA) is a 
robust bioinformatics technique that enables the analysis of 
gene expression data to identify clusters of genes with similar 
expression patterns. It allows researchers to uncover underlying 
biological processes (BP) and potential regulatory mechanisms 
by identifying highly interconnected gene modules. It aids in 
unraveling complex gene regulatory networks, identifying key 
driver genes, detecting biomarkers, and predicting gene func-
tions. Its ability to integrate multiple sources of information 
makes it a valuable tool for exploring gene expression data and 
gaining a deeper understanding of BP. In this study, we used 
WGCNA to discover intramodular hub genes in the integrated 
data set of SLE. First, we calculated the median absolute devia-
tions (MADs) and excluded the lowest 75% of genes with the 
smallest MADs. Second, the “goodSamplesGenes” function 
from the “WGCNA” package was used to assess genes and 
samples that did not match the specified quality standards.11 In 
addition, we used hierarchical clustering to detect any abnor-
mal samples. Third, the “WGCNA” package was employed to 
design a co-expression gene network with a scale-free property 
using the 1-step network construction function. Fourth, we 
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derived module eigengenes (MEs) by calculating each mod-
ule’s primary component of expression. Then, a Pearson corre-
lation analysis was used to identify the relationship between 
modules and illness phenotypes of interest. Based on the cor-
relations with SLE, we successfully identified crucial modules. 
Ultimately, we assessed the importance of the module by ana-
lyzing the scores of module membership (MM) and gene sig-
nificance (GS). Genes with a GS value greater than 0.2 and an 
MM value greater than 0.8 within important modules were 
identified as potential hub genes in the WGCNA analysis.

Functional enrichment analysis

To identify significant gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
associated with the DEGs from the integrated PE data set, we 
conducted enrichment analysis using the “enrich plot” and 
“clusterprofiler” packages in R. The significance was deter-
mined based on a P value <.05, indicating enriched biological 
functions and pathways.

Gene set enrichment analysis

Traditional enrichment analysis uses a threshold to filter genes, 
which can overlook genes with small yet significant changes. 
This is particularly the case when only a few DEGs are spread 
across many pathways. On the contrary, gene set enrichment 
analysis (GSEA) works at the gene set level instead of 

individual genes. It ranks all genes according to relevance 
(based on factors like fold change or P value). Then, it com-
pares how these rankings align with known functional gene 
sets. The key output from GSEA is the Enrichment Score 
(ES), which indicates if the gene set under study is related to a 
particular pathway. Thus, GSEA provides a more comprehen-
sive view as it considers all genes, not just those passing a spe-
cific threshold. This study employed both functional 
enrichment analysis of DEGs and GSEA to identify signifi-
cant pathways distinguishing PE from the control group. We 
used 2 reference gene sets obtained from the Molecular 
Signatures Database (MSigDB), specifically the “c2.cp.kegg_
medicus.v2023.2.Hs.symbols.gmt” and “h.all.v2023.2.Hs.
symbols.gmt.” Pathways with an adjusted P value <.05 were 
considered to be significantly enriched.

Protein-protein interaction network construction 
and screening shared hub genes

To investigate the potential interplay of the DEGs from the 
PE data set, we mapped them to a protein-protein interaction 
(PPI) network, which was constructed using the Search Tool 
for Retrieval of Interacting Genes, commonly known as 
STRING (https://www.stringdb.org).12 We set a minimum 
required interaction score of 0.400 to ensure the reliability of 
the network. Subsequently, we employed Cytoscape software 
(version 3.7.2) to visually represent the PPI network. To deter-
mine the most significant genes in the PPI network, we 

Table 1.  Basic information of GEO data sets in the study.

ID GSE Platform Sample Sources Group

Control SLE

1 GSE81622 GPL10558 25 30 PBMCs Discovery cohort

2 GSE50772 GPL570 20 61 PBMCs Discovery cohort

  Control PE  

3 GSE10588 GPL2986 26 17 Placenta Discovery cohort

4 GSE25906 GPL6102 37 23 EOPE Placenta Discovery cohort

5 GSE190639 GPL31059 13 13EOPE and 6 LOPE Placenta Validation cohort

6 GSE48424 GPL6480 19 6 nonsevere PE and 13 
with severe PE

Whole blood Validation cohort

7 GSE14722 GPL96 11 12 Placenta Validation cohort

8 GSE75010 GPL6244 77 80 Placenta Validation cohort

9 GSE149437 GPL28460 21 66 EOPE
168 PPROM
166 sPTD

Whole blood Validation cohort

Abbreviations: SLE, systemic lupus erythematosus; PBMCs, peripheral blood mononuclear cells; PE, pre-eclampsia; EOPE, early-onset pre-eclampsia; LOPE, late-onset 
pre-eclampsia; PPROM, preterm prelabour rupture of membrane; sPTD, spontaneous preterm delivery.

https://www.stringdb.org
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employed CytoHubba, a Cytoscape plug-in. The 20 genes with 
the highest maximal clique centrality (MCC) scores were iden-
tified as hub genes.

Validation of the expression of the key genes and 
diagnostic value in PE

We have identified the essential genes shared between the hub 
genes in the SLE data set and the top 20 hub genes in the inte-
grated PE data set. The mRNA expression levels of these key 
genes were confirmed by analyzing 3 PE gene expression profiles 
of the placenta (specifically GSE190639, GSE14722, 
GSE75010) and 2 PE gene expression profiles of maternal 
peripheral blood (GSE48424, GSE149437). In addition, a user-
friendly nomogram was generated using the “rms” package in R, 
based on the integrated PE data set. The diagnostic performance 
was assessed by measuring the sensitivity and specificity of both 
the nomogram and the key genes using receiver operating char-
acteristic (ROC) curves with the “pROC” package in R.

Association with immune cell infiltration

In the integrated SLE data set, we used the “Cibersort” pack-
age in R to quantify the relative proportions of infiltrating 
immune cells. Subsequently, a Pearson correlation analysis was 
performed to investigate the potential relationship linking the 
expression levels of identified key genes and the degree of 
immune cell infiltration.

Statistical analysis

The statistical analyses were conducted in R software (version 
4.2.1). A 2-sided P value < .05 was considered statistically sig-
nificant. The normal distribution of the variables was assessed 
using the Shapiro-Wilk test. We used the t-test and 1-way 
analysis of variance (ANOVA) tests for continuous variables 
that follow a normal distribution. We employed the Wilcox 
test and the Kruskal-Wallis test to analyze variables that do not 
follow a normal distribution.

Results
Data preprocessing

The methodology of our bioinformatics analysis was deline-
ated in Figure 1. We obtained 2 data sets of SLE (GSE81622, 
GSE50772) and 2 data sets of PE (GSE10588, GSE25906) 
from the GEO database. Following batch correction, we 
acquired integrated data sets that underwent additional nor-
malization. The combined SLE data set consisted of 91 SLE 
samples and 45 control samples obtained from PBMCs. The 
integrated PE data set consisted of 40 samples from patients 
with PE and 63 samples from control, all were placental tissues. 
As shown in Supplementary Figure 1, there was a significant 
decrease in discrepancies among the various data sets after the 
batch effect removal process.

DEGs and enrichment analysis

Applying thresholds of|log2 fold change| >.7 and adjusted P 
value <.05, we identified 180 upregulated and 72 downregu-
lated genes in the integrated SLE data set. Similarly, we dis-
covered 80 upregulated and 24 downregulated genes in the 
integrated PE data set by adhering to cut-off criteria of adjusted 
P value <.05 and|log2 fold change| >.5. The volcano plot in 
Figure 2A and B visualizes all DEGs.

We performed GO and KEGG enrichment analyses on the 
DEGs obtained from the PE data set. The analyses unveiled 
significant associations with diverse BP, molecular functions 
(MFs), and cellular components (CCs). The DEGs were found 
to be involved in a range of BPs, such as cell adhesion, leuko-
cyte activation, and placenta development. They also played a 
role in managing leukocyte proliferation and differentiation. 
Regarding MF, these genes were primarily associated with hor-
mone activity and growth factor receptor binding. Regarding 
CC, the genes were linked to areas of the cell instrumental in 
secretion and transport, like vesicles and granules. These DEGs 
appear to have significant roles in both immune response and 
placenta development (Figure 2C). The KEGG analysis fur-
ther indicated that these DEGs contributed substantially to 
pathways related to cell adhesion, coagulation, complement, 
and T-cell differentiation (Figure 2D).

Through the GSEA hallmarks gene set, we discovered that 
the genes in the PE-integrated data set responded actively to 
UV radiation, estrogen, hypoxia, and glycolysis. However, they 
were less active in pathways related to specific metabolic tar-
gets, fat metabolism, peroxisome, and oxidative phosphoryla-
tion (Figure 2E). These alterations could be linked to disrupted 
cellular homeostasis, altered energy metabolism, or impaired 
cellular functions, leading to the activation of genes involved in 
DNA repair and cellular stress response. When we analyzed 
the data with the KEGG gene set for GSEA, it indicated inhi-
bition of translation and protein degradation pathways (Figure 
2F), which implied a potential impairment in protein synthesis 
and degradation processes.

PPI network construction and hub genes selection

We used the STRING database to construct a protein-protein 
interaction (PPI) network for 104 DEGs from the integrated 
PE data set. Subsequently, the results were visualized in 
Cytoscape (Figure 3A) and analyzed using the cytoHubba 
plug-in. By implementing the MCC algorithm, we pinpointed 
the top 20 genes as potential hub genes (Figure 3B).

The construction of WGCNA and the identif ication 
of hub genes in SLE

We then conducted a WGCNA on the integrated SLE data set 
to explore hub genes in SLE. Upon choosing the highest 25% 
of variant genes from the data set, we obtained a total of 11,603 
genes and 136 samples for analysis. A hierarchical clustering 
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analysis was performed with a threshold of 120. An outlier sam-
ple (GSM2159873) was identified and excluded from further 
analyses (Supplementary Figure 3). We used a soft-threshold-
ing power of 6 and established a minimum module size of 50. 
This led to the identification of 21 modules, which were then 
subjected to further analysis (Figure 4A and B). Subsequently, 
we assessed the association between the gene modules and SLE 
by generating a heatmap using the Pearson correlation coeffi-
cient (Figure 4C). Nine modules exhibited significant positive 
correlations with SLE. Among these, 3 modules (MElightcyan: 
r = −.62, P = 2e−15; MEyellow: r = −.52, P = 1e−10; MEgrey60: 
r = −.49, P = 1e−09) displayed strong negative correlations. On 
the contrary, 6 modules (MEpurple: r = .52, P = 1e−10; MEgreen: 
r = 0.5, P = 5e−10; MElightgreen: r = .46, P = 2e−08; MEroyalblue: 
r = .46, P = 2e−08; MEbrown: r = .44, P = 7e−08; MEgreenyellow: 
r = .43, P = 2e−07) exhibited positive correlations with SLE. To 
gain a deeper comprehension of the relationship between 
MM-GS and SLE in the 9 aforementioned modules, we 
depicted their correlations individually (Supplementary Figure 
3). Based on the criterion of|MM| > 0.8 and|GS| > 0.2, 347 
potential hub genes were selected from these modules. 
Ultimately, through the intersection of the DEGs with  

the candidate hub genes acquired from the WGCNA, we suc-
cessfully identified a total of 104 hub genes in SLE. To investi-
gate a possible link between hub genes associated with SLE and 
the development of PE, 2 key genes were identified from the 
intersection of a Venn diagram that included the top 20 hub 
genes in PE and the hub genes in SLE. These 2 genes were then 
subjected to further analysis (Figure 4D).

Validating 2 key gene expression patterns  
and assessing the diagnostic value of the  
nomogram model

We verified the expression levels of 2 key genes, BCL6, and 
MME, across 5 different data sets. The data sets GSE190639, 
GSE14722, and GSE75010 contained placenta expression 
profiles, whereas GSE48424 and GSE149437 were obtained 
from maternal peripheral blood samples. Both SLE PBMCs 
and PE placenta exhibited increased expressions of BCL6 and 
MME in the diseased group. Nevertheless, there was a signifi-
cant reduction in the expressions of these markers in peripheral 
blood samples obtained from patients with PE, as depicted in 
Figure 5A to G. The samples in data set GSE149437 were 

Figure 1.  Study flowchart. DEGs, differentially expressed genes; GS, gene significance; MM, module membership; WGCNA, weighted gene co-

expression network analysis; GSEA, gene set enrichment analysis; PPI, protein-protein interaction; ROC, receiver operating characteristic curve.
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Figure 2.  Analysis of DEGs in SLE and PE data sets: (A) The DEGs’ volcano plot in the SLE data set. Genes with|log2 fold change| >2 are highlighted in 

green; (B) The DEGs’ volcano plot in the PE data set. Genes with|log2 fold change| >1 are highlighted in green; (C) DEGs’ GO enrichment results in the 

PE data set; (D) DEGs’ KEGG enrichment pathways in the PE data set; (E) GSEA hallmarks gene set enrichment pathways in the PE data set; (F) GSEA 

KEGG gene set enrichment in PE data set. DEGs, differentially expressed genes; SLE, systemic lupus erythematosus; PE, pre-eclampsia; GO, gene 

ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.



Dai et al	 7

classified into 3 groups according to gestational age: <14 weeks, 
14 to 28 weeks, and >28 weeks. Our findings indicated that the 
expression levels of BCL6 and MME exhibited a significant 
decrease only in the third trimester, as shown in Figure 5G. 
Subsequently, we developed a prognostic model for PE based 
on the findings, with particular emphasis on the gene expres-
sion levels of BCL6 and MME. The predictive model can be 
represented as follows: prediction model = −46.05 + 1.24BCL6 
+ 3.05MME. To accurately assess our model, we constructed a 
nomogram and evaluated its precision by using a calibration 
curve (Figure 5 H and I). The diagnostic efficacy of each gene 
was assessed using ROC curves. The predictive value of our 
model, as demonstrated in Figure 5J, exceeded that of individ-
ual gene predictions in the discovery cohort. The Nomogram 
achieved an area under the curve (AUC) of 0.88 (95% CI: 
0.80-0.95), while BCL6 achieved an AUC of 0.79 (95% CI: 
0.70-0.88), and MME achieved an AUC of 0.85 (95% CI: 
0.77-0.93). A consistent pattern was observed in all 5 valida-
tion cohorts (Supplementary Figure 4), indicating the strong 
predictive effectiveness of our PE model.

Infiltrating immune cells in SLE and PE data  
sets and Correlation between key genes and 
immune cell infiltrate

First, we applied the Cibersort algorithm to decipher immune 
cell profiles, aiming to understand immune regulation and 
identify links between diagnostic markers and immune cell 
infiltration in SLE. Figure 6A graphically illustrated the distri-
bution of 22 types of immune cells in each sample. Here we 
noticed that SLE samples had higher proportions of neutro-
phils, plasma cells, monocytes, and dendritic cells activated 

when compared to the control group (Figure 6B). We then 
studied the correlation between the expression levels of 2 key 
genes, BCL6 and MME, and the proportions of infiltrated 
immune cells. As depicted in Figure 6C, BCL6 and MME 
were positively correlated with neutrophil accumulation in 
SLE.

Next, we performed a similar immune infiltration analysis 
in the integrated PE data set and GSE48424 data set. Notably, 
PE placenta samples exhibited elevated proportions of Plasma 
cells and Eosinophils compared to the control group in the 
integrated PE data set (Figure 7A). While in the GSE48424 
data set, higher proportions of CD8+ T cells, T cells memory 
resting, and Macrophages were observed in the peripheral 
blood samples of individuals with PE, when compared to the 
control group (Figure 7C). Furthermore, we found that in the 
integrated PE data set, there was a weak correlation between 
the expression levels of BCL6 and MME genes and the pro-
portions of infiltrating immune cells (Figure 7B). However, in 
the GSE48424 data set, the expression levels of these 2 genes 
showed a strong positive correlation with neutrophil infiltra-
tion and a strong negative correlation with CD8+ T cells 
(Figure 7D), yet there was no statistically significant difference 
in neutrophil infiltration between the PE group and the con-
trol group in peripheral blood collected after the diagnosis of 
PE in the GSE48424 data set.

Discussion
Our study stands as a pioneer in exploring the potential linkage 
between SLE and PE, with related research being relatively 
scarce. Our bioinformatic analysis of SLE and PE data sets 
aims to identify shared pathogenic genes between these 2 dis-
eases. Interestingly, we identified 2 genes, BCL6 and MME, 

Figure 3.  PPI network: (A) PPI network of DEGs in the PE data set and (B) Top 20 DEGs extracted by cytoHubba. PPI, protein-protein interaction; DEGs, 

differentially expressed genes.
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which exhibited differential expression patterns across differ-
ent sample types. Both genes showed upregulation in PBMCs 
from SLE patients and placental tissues from PE patients. 
This suggests their potential involvement in the immune dys-
regulation observed in SLE and the placental dysfunction asso-
ciated with PE. Even more compelling, we formulated a 
diagnostic nomogram based on these genes. Patients’ total 
scores, computed by summing each gene’s score, hold substan-
tial clinical relevance. High-scoring patients could be screened 
for PE, paving the way for early interventions to enhance 
maternal and fetal outcomes. Thus, our novel nomogram offers 
a valuable tool for managing these patients.

BCL6, short for B-cell lymphoma 6, is a zinc finger tran-
scription factor located on chromosome 3q27. It plays a crucial 
role in the development of germinal center (GC) B-cells and 
follicular helper T (Tfh) cells by specifically targeting a range 
of genes involved in different cellular functions, including dif-
ferentiation, survival, DNA damage response, and cell-cycle 
regulation.13,14 Prior research has demonstrated the novel func-
tion of BCL-6 in the development of lupus by enhancing the 
production of interleukin (IL)-10 and IL-21, as well as stimu-
lating IgG production by B cells.15 Moreover, recent findings 
have highlighted important functions of BCL6 in trophoblas-
tic cells with observations of elevated protein levels of BCL6 in 

Figure 4.  Analysis of hub genes in SLE via WGCNA; Identify key genes between SLE and PE: (A) Determination of soft-thresholding power; (B) The 

dendrogram of coexpression gene clusters in the SLE data set; (C) Heatmap of the correlation between modules and SLE; (D) The Venn diagram shows 

that 2 key genes are identified in SLE and PE. SLE, systemic lupus erythematosus; WGCNA, weighted gene co-expression network analysis; PE, 

pre-eclampsia.
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Figure 5.  The validation of 2 key genes in PE and nomogram construction: (A) The expression of the 2 genes between PE and control in the integrated 

PE data set; (B) The expression of the 2 genes between SLE and control in the integrated SLE data set; (C) The expression of the 2 genes between 

EOPE, LOPE, and control in the GSE190639 data set; (D) The expression of the 2 genes in maternal peripheral blood samples from patients with severe 

PE, nonsevere PE, and control in the GSE48424 data set; (E) The expression of the 2 genes between PE and control in the GSE14722 data set; (F) The 

expression of the 2 genes between PE and control in the GSE75010 data set; (G) The expression of the 2 genes in maternal peripheral blood samples of 

EOPE, PPROM, and sPTD in the GSE149437 data set; (H) The nomogram for diagnosing PE; (I)Calibration curve to assess the accuracy of the 

nomogram; (J)The predictive value of the nomogram and the 2 genes in PE by the ROC. PE, pre-eclampsia; SLE, systemic lupus erythematosus; EOPE, 

early-onset pre-eclampsia; LOPE, late-onset pre-eclampsia; PPROM, preterm prelabor rupture of membrane; sPTD, spontaneous preterm delivery; ROC, 

receiver operating characteristic.
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Figure 6.  Immune cell infiltration analysis between SLE and control in the integrated SLE data set: (A) The bar plot of the proportion of 22 kinds of 

immune cells in different samples; (B) The boxplot displays the differences in immune cell expression between SLE and control; (C) Correlation analysis 

of immune cell infiltrations with 2 key genes. SLE, systemic lupus erythematosus.
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Figure 7.  Immune cell infiltration analysis between PE and control in the PE data set and GSE48424: (A) The boxplot displays the differences in immune 

cell expression between PE and control in the integrated PE data set; (B) Correlation analysis of immune cell infiltrations with 2 key genes in the 

integrated PE data set; (C) The boxplot displays the differences in immune cell expression between PE and control in the GSE48424 data set; (D) 

Correlation analysis of immune cell infiltrations with 2 key genes in the GSE48424 data set. PE, pre-eclampsia.
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pre-eclamptic placentas, particularly those that are preterm.16 
These findings were corroborated by our study. The protein 
seemed to be predominantly localized in the nucleus of villous 
cytotrophoblasts (vCTBs) beneath the syncytial layer.17-20 
Increased expression of BCL6 seemed to correlate with 
enhanced ARNT2, LEPTIN, and FLT1, hallmark genes of 
PE. In the “BCL6-ARNT2” pathway, specific to preterm PE, 
ischemic stress of trophoblasts coupled with overexpression of 
BCL6 and ARNT2 led to increased FLT1 expression. This 
contributed to the antiangiogenic state, hypertension, and 
EOPE.21

Notably, while the BCL6 protein was majorly localized in 
the nuclei of vCTBs in term placentas, it was also highly 
expressed in cell column trophoblasts (CCTs) of anchoring villi 
in first-trimester placentas.22 Elevated BCL6 might be a 
molecular mechanism that facilitates the proliferation of cyto-
trophoblasts under low oxygen conditions in early pregnancy. 
However, the knockdown of BCL6 seemed to enhance the 
expression of fusion-related genes in trophoblastic cell lines as 
well as in primary vCTBs.23 This suggested that BCL6 acted 
as a negative regulator for differentiation and fusion of vCTBs 
into the STB, and increased BCL6 in pre-eclamptic placentas 
may hinder proper differentiation and successful fusion, con-
tributing to PE pathogenesis. In conclusion, while BCL6 
seems to play various cellular roles in trophoblasts, further 
investigations are needed to define BCL6 expression levels 
across different stages of pregnancy, understand its functions, 
identify interaction partners, and ascertain its involvement in 
molecular networks. These could provide a more comprehen-
sive understanding of the pathogenesis of PE.

Similar to BCL6, the MME gene, also located on human 
chromosome 3q21-27, is known as a common acute lympho-
blastic leukemia antigen, neutral endopeptidase, or cluster of 
differentiation 10 (CD10). It is part of the CD system and 
belongs to the peptidase M13 family. Expression of MME is 
observed in early lymphoid progenitors, neutrophils, and 
endothelial cells.24,25 As a zinc-dependent metalloprotease 
enzyme, MME can degrade various peptides such as amyloid 
beta-peptide, substance P, brain natriuretic peptide, oxytocin, 
and bradykinin.26,27 It is involved in numerous pivotal BP. It 
has been reported that MME played a role in the hindered 
development of SLE endothelial progenitor cells into fully 
mature endothelial cells. This was partially due to the produc-
tion of IFNα by CD10+ SLE LDNs.28 In addition, mature 
CD10+ LDNs have been linked to the severity of noncalcified 
plaque burden and lower high-density lipoprotein (HDL) cho-
lesterol efflux capacity in SLE patients.29,30 Substrates of 
MME can induce migration and aggregation of neutrophils, 
acting as mediators of neutrophil inflammatory responses. In 
addition, previous studies have shown an increase in MME 
expression in the placentas during PE, suggesting its potential 
involvement in regulating peptide activity at the fetal-maternal 
interface.31 Evidence also indicated that active MME released 
into maternal circulation from the placenta was significantly 
elevated in PE, potentially leading to complications such as 

hypertension and heart failure.32 The results of KEGG sug-
gested a close relationship between DEGs in PE and protein 
degradation-related pathways. In conclusion, MME appeared 
to play critical roles in the pathology of SLE and PE.

Pathological inflammation in early pregnancy causing pla-
cental dysfunction, followed by the influx of placental factors 
into maternal circulation leading to endothelial damage and 
clinical signs, are generally accepted stages in PE develop-
ment.33 Importantly, we found both BCL6 and MME were 
positively correlated with neutrophils in SLE. We hypothesize 
that in lupus pregnancies, overexpression of these 2 key genes 
in the first trimester may result in trophoblast differentiation 
disorders, maternal vascular malperfusion, placental oxidative 
stress, and an antiangiogenic state, eventually leading to PE 
manifestations.

Owing to constraints in collecting placental samples and the 
late manifestation of PE symptoms, we verified the expression of 
2 key genes, BCL6 and MME, in maternal circulation. 
Interestingly, when exploring their potential as early diagnostic 
biomarkers for PE in the GSE149437 data set, we found that 
during early to midpregnancy, the expression levels of BCL6 and 
MME in peripheral blood were elevated, although not statisti-
cally significant. However, in the third trimester, a significant 
downregulation of these genes was observed in peripheral blood 
samples from PE patients. In the third trimester after the diag-
nosis of PE, various physiological changes occur as the disease 
advances, affecting multiple systems and organs. This downregu-
lation might reflect changes related to disease progression, reso-
lution, or other factors associated with PE. These changes may 
be influenced by the complex interplay of various BP occurring 
in the late stages of pregnancy and the pathophysiology of PE. 
Overall, these findings highlight the complexity of gene expres-
sion dynamics in different sample types and stages of pregnancy. 
The differential expression patterns observed in peripheral blood 
and placental tissues suggest tissue-specific responses and under-
line the intricate nature of the underlying pathophysiology 
involved in PE. As there is not enough evidence, it is important 
to note that further experimental validations are required and 
further research is needed to elucidate the functional implica-
tions of BCL6 and MME in the context of immune dysregula-
tion, placental dysfunction, and the pathogenesis of PE. In 
addition, larger-cohort studies and more comprehensive investi-
gations are required to understand the specific roles of these 
genes and their potential as therapeutic targets.

In our study, we addressed the disparity of smaller placental 
transcriptomics studies by using advanced bioinformatics tech-
niques to amalgamate microarray data sets across multiple plat-
forms, thus generating large patient sample data sets. Our use 
of 5 different data sets, including peripheral blood samples, for 
key gene verification, added considerable strength to the study. 
However, it is important to note that this is a preliminary anal-
ysis and more in-depth research is needed to identify pheno-
type-specific networks. Further large-scale studies and 
functional analyses of key genes in PE are required to elucidate 
the mechanisms involved in PE pathogenesis.
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Conclusion
Our study predicts that key genes differentially expressed in 
SLE and associated with neutrophils may play significant roles 
in the pathogenesis of PE, especially EOPE. These findings lay 
the ideal groundwork for future experimental confirmation.
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