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Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis.
Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance
during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and,
as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases
for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to
better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence
suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle
damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. p53 can also regulate
the expression and function of mitotic kinases, suggesting the existence of a network of mutual regulation, which can be positive
or negative, between mitotic kinases and p53 signaling. Therefore, deciphering this regulatory network will provide knowledge to
overcome current limitations of targeting mitotic kinases and further improve the results of targeted therapy.

1. Introduction

Mitosis involves a highly orchestrated and fine-tuned
sequence of events to properly transfer genetic informa-
tion to the next generation by cell division [1, 2]. It is
usually divided into five phases (prophase, prometaphase,
metaphase, anaphase, and telophase) based on structure and
behavior of the spindle and chromosomes, and cytokinesis
begins at the end of mitosis [1, 3]. This whole process
must be tightly regulated to prevent improper segregation
of chromosomes [4, 5]. For this reason, cells employ a
surveillance mechanism, known as the “spindle checkpoint”
to ensure high fidelity of chromosome segregation in mitosis
by sending a “wait signal” and thus delaying anaphase until
all the chromosomes are properly aligned on the spindle
apparatus (reviewed in [6]). When cells fail to delay anaphase
in response to activation of spindle checkpoint, it will
lead to an earlier anaphase onset, possibly causing chro-
mosome instability, aneuploidy, and tumorigenesis [7–11].

Aneuploidy, an abnormal number of chromosomes, is a
characteristic feature of cancer cells and a common cause
of many genetic diseases [12, 13]. Aneuploid cells occur by
an improper segregation of the chromosomes during cell
division [12, 13]. The most common cause of aneuploidy
is mitotic errors due to defects in “proper” mitotic kinase
signaling in multiple cell cycle checkpoints, resulting in
unfaithful chromosome segregation [12, 14, 15].

Multiple phosphorylation and proteolysis events play
important roles in the regulation of mitotic progression
and cytokinesis [1, 2]. Numerous proteins involved in
these posttranslational events have been identified, including
kinases and cysteine proteases [16–18]. One of the best
understood kinases in the regulation of mitosis is cyclin-
dependent kinase 1 (Cdk1) [2]. Cdks are highly conserved
serine/threonine protein kinases that regulate cell cycle pro-
gression and subsequent cell division in eukaryotic cells and
ubiquitously expressed throughout the cell cycle (reviewed
in [19]). Among all Cdk family members, only five of them,
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Cdk1, Cdk2, Cdk3, Cdk4, and Cdk6, have been implicated
in controlling cell cycle [20, 21]. While other Cdks are
mainly involved in the early phase of cell division, Cdk1
plays a key role in several mitotic processes [2, 21, 22]. The
regulation of Cdk1 has been extensively reviewed elsewhere
[23–25]. Briefly, during the G2/M transition, the activation
of the mitotic kinase Cdk1/Cyclin B phosphorylates a variety
of substrates, such as a kinesin-related motor protein Eg5
[26], lamin [27], and condensin [28], to initiate mitotic
entrance and control its progression and mitotic exit [2, 26,
27, 29]. The kinase activity appears in late G2 and peaks at
metaphase [30]. At the end of the metaphase, the anaphase
promoting complex (APC) (also known as cyclosome,
APC/C), which is an E3 ubiquitin ligase [31], recruits cyclin
B for ubiquitination and degradation to allow mitosis to
proceed [32, 33]. Therefore, it is undoubtful that the perfect
regulation of Cdk1/cyclin B activity is critical for normal
mitotic progression. Since the discovery of Cdks, much
attention has been given to the other mitotic kinases, such as
Aurora kinases, Polo-like kinases (Plks), monopolar spindle
1 (Mps1), benzimidazoles 1 homolog (Bub1), and Bub1-
related kinase 1 (BubR1), due to their pivotal roles in mitosis
[16] as well as the relevance to cancer. Studies indicate that
Aurora kinases and Plks are mainly involved in regulating the
centrosome cycle and mitotic spindle formation, while Mps1,
Bub1, and BubR1 regulate the spindle assembly checkpoint
[34, 35]. Therefore, the tight regulation of their kinase
activities is required for proper mitotic progression, which
is essential for maintaining genomic integrity [5].

Many studies have reported that deregulation of these
mitotic kinases causes mitotic failure and aneuploidy and is
closely associated with genomic instability and tumorigenesis
[2, 36–38]. To defend against tumorigenesis caused by
mitotic failure and guard genome stability, cells have utilized
tumor suppressors, such as p53 [39] and BRCA1 [40] in
a mitotic regulatory network. Because of its importance,
tremendous efforts have been made to better understand
the role of the functional crosstalk between mitotic kinases
and tumor suppressors during mitosis. The p53 is one of
the most frequently mutated or deleted genes in human
cancers and plays a role in many cellular processes, including
cell growth, differentiation, senescence, and DNA repair
(reviewed in [41]). In addition, p53 is a key decision maker
between cell cycle arrest and apoptosis in response to DNA
damage [42, 43]. The loss-of-function of p53 can trigger
an increase in genome instability and cancer predisposition,
suggesting that p53 is essential for the maintenance of
genome stability (reviewed in [44]). The human p53 is
located on chromosome 17 (17 p13) and consists of an N-
terminal transactivation domain, a central specific DNA-
binding domain and a C-terminal domain, containing a
tetramerization domain and regulatory region [45]. At least
20 phosphorylation sites exist in human p53 [46] and
importantly, several N-terminal phosphorylation sites, such
as Ser-15 [47], Thr-18 [48], and Ser-20 [49] are critical
for preventing oncogenic E3 ligase MDM2-mediated p53
ubiquitination and degradation [50]. On the other hand,
phosphorylation at C-terminal and a few N-terminal sites,
such as Ser-362/366 [51] and Thr-55 [52] often suppresses

its tumor suppressive function by destabilizing p53. These
findings suggest that phosphorylation events may play signif-
icant roles in regulating p53 protein stability and function.

Under normal circumstances, cells induce the p53-
dependent transcriptional activation, cell cycle arrest, and
apoptosis in response to mitotic defects or DNA damage
[53, 54]. However, cells lacking functional p53 due to
deregulation of mitotic kinases, such as Aurora A [55], Plk1
[56], and Bub1 [57], do not undergo these cellular events
and thus lead to genome instability, resulting in aneuploidy
[15]. Phosphorylation of p53 by Mps1 [58] and BubR1 [59]
stabilizes p53 and appears to antagonize the function of
Aurora A, Plk1, and Bub1 in p53 signaling. Studies have
shown that p53 can also regulate the expression and function
of these kinases [60–64], suggesting that there may be mutual
regulatory interactions between mitotic kinases and p53 in a
mitotic signaling network (Figure 1).

In this paper, we will specifically focus on the classic
mitotic kinases, including Aurora kinases, Plks, Bub1, Mps1,
and BubR1, and their roles in regulating p53 protein stability
and activity.

2. Negative Regulation of p53

2.1. Aurora Kinases. Aurora kinases belong to a highly
conserved family of serine/threonine kinases crucial for chro-
mosome segregation, condensation, and spindle assembly
[1]. The first Aurora kinase was discovered in Drosophila
melanogaster mutants having defects in mitotic spindle-pole
formation [65]. Subsequently, homologues of Aurora kinases
have been identified in various species. In budding yeast,
there is a single Aurora kinase, known as increase-in-ploidy
1 (Ipl1) [66]. The Ipl1 gene is essential for maintaining
genome stability through its roles in chromosome segrega-
tion, spindle checkpoint, mitotic spindle disassembly, and
cytokinesis [67, 68]. Caenorhabditis elegans has two Aurora
kinases, Aurora/Ipl1-related-1 and -2 (AIR-1 and AIR-2),
and they are thought to be key regulators of mitotic spindle
assembly and dynamics [69, 70]. Three members of Aurora
kinase family, Aurora A, B, and C, have been identified
in mammalian cells [1]. The Aurora kinase family share a
highly conserved C-terminal catalytic domain and a short
N-terminal domain [71], and function in the regulation of
mitosis and cytokinesis [72]. Deregulation of Aurora kinases
causes a defect in spindle assembly, checkpoint function,
and cell division, leading to chromosome missegregation
or polyploidization [73]. Not surprisingly, overexpression
of Aurora kinases is often found in a variety of human
cancers [74–76]. Since the discovery of Aurora kinases, many
efforts have been made to improve our understanding of
their biological and physiological function in mitosis and the
regulatory mechanisms relevant to cancer.

Aurora A is ubiquitously expressed in proliferating cells
and its activity is tightly regulated through the cell cycle [77].
Both the expression level and kinase activity of Aurora A are
significantly increased from the late G2 through the M phase
[74, 78] and become low during interphase [79]. Aurora A
plays a key role in mitotic spindle formation, centrosome
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Figure 1: A model for regulatory networks of mitotic kinases controlling p53 signaling.

maturation [80], and activation of cell cycle regulators, such
as Plk1 [81, 82] and Cdk1 [83]. Deregulated expression and
activity of Aurora A can generate aneuploidy phenotype
due to centrosome amplification and spindle multipolarity
[84]. Numerous substrates of Aurora A have been identified,
including p53 [85], human enhancer of filamentation 1
(HEF1) [86], TPX2 [87], Ajuba [88], Plk1 [81], BRCA1
[89], and transforming acidic coiled-coil 3 (TACC3) [90].
Human p53 is directly phosphorylated by Aurora A at two
sites, Ser-215 [85] and Ser-315 [55], in vitro and in vivo.
Phosphorylation of Ser-215 but not Ser-315 inhibits p53
DNA binding and its transactivational activity [85], whereas
phosphorylation of Ser-315 induces MDM2-mediated p53
ubiquitination and subsequent degradation [55]. These
findings suggest that Aurora A-mediated phosphorylation
of p53 plays a negative regulatory role in p53 protein
stability and its downstream signaling pathways. In response
to DNA damage, p53 interacts with the heterogeneous

nuclear ribonucleoprotein K (hnRNPK), a transcriptional
coactivator of p53, and induces the p53 signaling pathway
[91]. hnRNPK is phosphorylated on Ser-379 by Aurora A and
this phosphorylation disrupts its interaction with p53 [92],
suggesting that Aurora A can indirectly/negatively regulate
p53 function via hnRNPK phosphorylation. Interestingly, a
recent study shows that Aurora A can positively regulate p53
protein expression levels and vice versa [60]. In addition,
Xenopus p53 can block Xenopus Aurora A’s ability to trans-
form cells [61], further supporting the existence of crosstalk
between Aurora A and p53.

Aurora B is a member of the chromosome passenger
complex (CPC), a key regulator of chromosome segregation,
histone modification, and cytokinesis during mitosis [93,
94]. The CPC is composed of Aurora B and its nonenzymatic
regulatory subunits inner centromere protein (INCENP),
Borealin and Survivin [94], required for the activity, local-
ization, and stability of Aurora B [93]. Aurora B governs
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the spindle assembly checkpoint and manages the correct
chromosome segregation and cytokinesis during mitosis [72,
95]. Inhibition of Aurora B results in a failure of mitosis
due to defects in chromosome segregation and microtubule
dynamics [96], leading to endoreduplication and further
polyploidization [97, 98]. Aurora B phosphorylates p53 on
Ser-183, Ser-269, and Thr-284, all located within the p53
DNA binding domain; however, phosphorylation on these
sites does not lead to degradation of p53, instead, phospho-
rylation on Ser-269 and Thr-284 inhibits its transcriptional
activity [46]. These findings suggest that the hyperactivation
or overexpression of Aurora A and B may compromise
p53’s tumor suppressive function via its destabilization and
inactivation.

In contrast to Aurora A and B, the biological function
of Aurora C has not been well-defined. Aurora C was first
discovered in mouse sperm and eggs using a kinase screen
[99]. While Aurora A and B are ubiquitously expressed in
many different tissues and cells, especially actively dividing
cells [98, 100, 101], Aurora C is predominantly expressed
in the testis [99, 102], but not in other normal mouse
somatic tissues and cell lines and mitotic spermatogonia
[103]. In addition, its loss-of-function leads to a failure of
meiosis [103, 104], indicating that Aurora C plays a critical
role in meiosis. Recent studies show that Aurora B and
C have similar structural and functional properties [105].
Inhibition of Aurora C causes aneuploidy, just like Aurora B,
and furthermore, simultaneous inhibition of Aurora B and
C causes a higher frequency of aneuploidy [105]. Aurora
C can also support mitotic progression in the absence of
Aurora B [105]. Moreover, overexpression of Aurora C causes
abnormal cell division due to amplified centrosomes and
micronucleation [101, 106], suggesting that Aurora C may
be involved in mitosis as well. Unlike Aurora A and B, the
role of Aurora C in the regulation of p53 protein stability and
function has not been reported yet.

2.2. Polo-Like Kinase 1 (Plk 1). Plks are a family of highly
conserved serine/threonine protein kinases [107] named
after the polo gene of Drosophila melanogaster, whose muta-
tion causes a high frequency of abnormal mitosis and meiosis
[108]. Subsequently, its homologues have been found in
other species, including Cdc5 in Saccharomyces cerevisiae,
[109], Plo1p in Schizosaccharomyces pombe [110], Plc1, Plc2,
and Plc3 in Caenorhabditis elegans [111, 112], and Plx1, Plx2,
and Plx3 in Xenopus laevis [113–115]. In mammals, five Plks
have been identified: Plk1 (also known as serine/threonine-
protein kinase 13, STPK13), Plk2 (also known as serum-
inducible kinase, SNK), Plk3 (also known as fibroblast-
growth-factor-inducible kinase, FNK; proliferation-related
kinase, PRK; or cytokine-inducible kinase, CNK), Plk4
(also known as SNK akin kinase, SAK or serine/threonine-
protein kinase 18, STK18), and Plk5 [116–125]. All Plks
are abundantly expressed in tissues exhibiting high levels of
mitotic activity [120] and share two conserved domains, an
N-terminal Ser/Thr kinase domain and a C-terminal polo-
box domain (PBD) [107, 126].

It is now widely recognized that Plks are key regulators
of mitosis, meiosis, and cytokinesis [107, 127, 128] as well as

DNA damage response [107, 123, 126]. Deregulation of Plks
leads to centrosome abnormalities, aneuploidy, and genomic
instability [129], possibly leading to cancer development
[130]. This may explain why deregulated expression of Plks
is often detected in many types of cancer (reviewed in [37]).

Plk1 reaches peak expression during G2/M phase and
kinase activity during mitosis [128, 129]. Plk1 is the best
characterized family member among others and plays an
essential role in centrosome maturation and separation
[131], spindle assembly and formation [110], G2 checkpoint
recovery through activating cyclin-dependent kinase [132],
mitotic exit [113], and cytokinesis [133]. Studies have shown
that cancer cells display a higher dependency on Plk1
for cell proliferation and mitosis [134, 135] than primary
cells [136]. Deregulated expression and activity of Plk1
generate abnormal centrosomes [129] and initiate malignant
transformation [137]. Not surprisingly, deregulation of Plk1
is often found in many types of cancer, including melanoma
[138, 139], lung [140], head and neck [141, 142], breast
[143], and ovarian cancer [144] with poor prognosis.
Mounting evidence suggests that Plk1 negatively regulates
p53 through direct and indirect mechanisms [145]. p53
is phosphorylated by Plk1 in vitro and its transcriptional
activity and proapoptotic function are inhibited by direct
interaction and phosphorylation of Plk1 [146]. Plk1 can also
inhibit p53 phosphorylation at Ser-15, which is required
for blocking p53-MDM2 interaction, thereby facilitating
p53’s degradation [56]. Plk1 phosphorylates topoisomerase
I-binding protein (Topors) at Ser-718 [145]. Topors is a
p53 and topoisomerase I binding protein [147]and functions
as both ubiquitin and SUMO-1 E3 ligase for p53 [148,
149]. Phosphorylation of Topors on Ser-718 by Plk1 inhibits
sumoylation of p53, whereas ubiquitination and subsequent
degradation of p53 is enhanced, thereby suppressing p53
function [145]. G2 and S-phase-expressed 1 (GTSE1) is
critical for G2 checkpoint recovery [150, 151] and negatively
regulates transactivational and apoptotic activity of p53
[150, 152]. Phosphorylation of GTSE1 on Ser-435 by Plk1
promotes its nuclear localization and subsequently, shuttles
p53 out from the nucleus to the cytoplasm [151, 152], leading
to p53 degradation and inactivation during G2 checkpoint
recovery [151]. Plk1, p53, and Cdc25C have shown to form
a complex [56, 153]. Plk1 phosphorylates Cdc25C on Ser-
198 [132, 154] and presumably, this phosphorylation may
contribute to p53 destabilization [56, 153]. Interestingly,
there is evidence that p53 can serve as a negative regulator of
Plk1 by binding to the promoter of Plk1 and thus inhibiting
its activity [62, 63].

The Plk2 and Plk3 are serum-inducible immediate early
response genes [155] and activated near the G1/S phase tran-
sition [118, 156]. Evidence suggested that both Plk2 and Plk3
function as tumor suppressors in the p53-mediated signaling
pathways to protect cell from DNA damage or oxidative
stress (reviewed in [157]). Activation of Plk2 is required for
centrosome duplication [156] and may have an important
role in replication stress checkpoint signaling through the
interaction with Chk1, Chk2, and p53 [158]. Plk2 appears
to be a transcriptional target of p53 and its expression is
induced after DNA damage in a p53-dependent manner
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[159]. Promoter analysis has shown the possible existence
of p53 binding homology element (p53RE) in the basal
promoter of Plk2 and furthermore, Plk2 is transcriptionally
regulated by p53RE in human thyroid cells [160].

Plk3 plays an important role in the regulation of mitosis
and DNA damage checkpoint [161, 162]. Its kinase activity
peaks during late S and G2 phase [116]. The gene expression
signature of Plk3 has shown deregulated expression of Plk3
in various types of cancers [122, 163], such as head and neck
squamous cell carcinomas [164] and colon cancer [165].
Overexpression of Plk3 suppresses cell proliferation [166]
and induces chromosome condensation [167]. In response
to DNA damage, Plk3 is activated in an ATM-dependent
manner [162] and subsequently, mediates ATM-dependent
Chk2 phosphorylation and activation [161, 162]. Plk3 also
inhibits entry into mitosis by phosphorylating Cdc25C
[168, 169] and induces p53-dependent apoptosis [169]. In
addition, Plk3 interacts with and phosphorylates p53 at Ser-
20 [169], thereby preventing the interaction between p53 and
MDM2, with the effect of stabilizing p53.

Plk4 shares relatively little sequence homology with other
members of Plks [170]. Plk4 is essential for centrosome
duplication [171, 172] and mouse embryonic development
[173]. Its protein expression peaks during mitosis [174].
The loss-of-function of Plk4 causes a failure of cell division,
possibly leading to aneuploidy and polyploidy, which may in
turn contribute to tumorigenesis [171]. Plk4 interacts with
proteins involved in the cellular response to DNA damage,
such as p53 [175], Cdc25C [176], and Chk2 [177], suggesting
that Plk4 may play an important role in the DNA damage
response signaling [178]. Plk4 also binds to and phosphory-
lates p53 [173, 175, 178], possibly affecting protein stability
and activity of p53 [178], although phosphorylation site(s)
are currently unknown. Overexpression of Plk4 promotes
centriole overduplication [172] and is found in human colon
cancer [179].

A fifth member of the Plk family, Plk5, is mainly
expressed in differentiated tissues, such as the brain, eye, and
ovary [180], whereas it is undetectable in proliferating tissues
[181]. Plk5 is involved in the process of neurite formation
[181] and DNA damage response [123], rather than mitotic
process. Nucleotide sequence analysis of Plk5 shows that
the promoter region of Plk5 contains several p53 binding
motifs; however, no such regulatory mechanisms have yet
been found [123]. Interestingly, recent studies demonstrated
that Plk5 is significantly downregulated by promoter hyper-
methylation in human brain tumors and its overexpression
suppresses cell proliferation and malignant transformation
by Ras oncogene, suggesting that Plk5 may function as a
tumor suppressor gene in brain cancer [123, 181].

2.3. Budding Uninhibited by Benzimidazoles 1 Homolog
(Bub1). Bub1 belongs to a small group of serine/threonine
kinases that play multiple roles in chromosome segregation
and spindle checkpoint during mitosis [182]. Bub1 was
originally identified in genetic screens of Saccharomyces
cerevisiae along with mitotic arrest-deficient 1, 2, and 3
(Mad1, Mad2, and Mad3 (BubR1) in mammals), Bub3, and
Mps1 [183, 184]. All of these proteins play critical roles in the

mitotic checkpoint signaling [183, 184]. Deregulated Bub1
expression and its kinase activity have been associated with
chromosomal instability, aneuploidy, and several forms of
human cancer [185–187]. APC/C is involved in controlling
sister chromatid separation and mitotic exit [188]. Bub1
ensures that activation of APC/C is delayed until all the chro-
mosomes have achieved proper bipolar connections to the
mitotic spindle, by phosphorylating Cdc20, a key regulator
of APC/C activity [189]. Phosphorylation of H2A on Ser-121
by Bub1 in fission yeast prevents chromosome instability via
maintenance and localization of Sgo1 (Shugoshin), a protec-
tor of centromeric cohesion [190–192]. Bub1 interacts with
p53 at kinetochores in response to mitotic spindle damage
and negatively regulates p53-mediated cell death [57]. It has
shown that SV40 large T antigen (LT) phosphorylates p53
on Ser-37 in a Bub1-binding manner [193]. In addition,
purified Bub1 directly phosphorylates p53 on Ser-37 in vitro,
possibly inducing cellular senescence [193]. An interesting
observation has been reported that the loss of both Bub1
and p53 causes a failure in p53-mediated cell death signaling,
thereby leading to the accumulation of cells with aneuploidy
and polyploidy [194].

3. Positive Regulation of p53 Activation

3.1. Monopolar Spindle 1 (Mps1). Mps1 has an essential role
in centrosome duplication, checkpoint signaling, cytokinesis,
and development in organisms from yeast to mammalian
[195–197]. Kinases structurally related to human Mps1
were identified in various organisms, including Mph1p
in Schizosaccharomyces pombe [198], PPK1 in Arabidopsis
thaliana [199], xMps1in Xenopus laevis [200] and mMps1
in mouse [201]. Mps1 acts as a dual-specificity protein
kinase that can phosphorylate serine/threonine as well
as tyrosine residues [198, 202] and is highly expressed
during mitosis [203]. Deregulation of Mps1 causes a high
frequency of chromosome missegregation and aneuploidy
[203, 204] and fails to induce apoptosis in response to
spindle damage [196]. The kinase activity of Mps1 is critical
for maintaining chromosome stability by phosphorylating
other protein substrates [205, 206]. For instance, Mps1 is
crucial for Aurora B activity and chromosome alignment by
phosphorylating Borealin/Dasra B, a member of CPC that
regulates Aurora B [205]. In addition, Mps1 phosphorylates
Blm, which is a bloom syndrome product and a member of
the RecQ helicases [207], at Ser-144 [206]. Blm phospho-
rylation by Mps1 is important for the faithful chromosome
segregation [206]. Mps1 phosphorylates p53 at Thr-18, and
this phosphorylation is critical for the stabilization of p53
by interfering with MDM2 binding [58]. Mps1-mediated
p53 phosphorylation is also required for the activation of
p53-dependent postmitotic checkpoint [58]; thus, inhibition
of Mps1 kinase activity causes a defective postmitotic
checkpoint and chromosome instability [58, 208]. These
findings suggest that Mps1-mediated phosphorylation and
subsequent stabilization of p53 may play an important role
in the activation of p53 after spindle damage as well as the
prevention of aneuploidy/polyploidy [58, 208]. Interestingly,
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Table 1: Mitotic kinases-mediated p53 phosphorylation and the possible consequences.

Mitotic kinases Phosphorylation sites Outcome References

Aurora kinases

Aurora A
Ser-215 Inhibition of DNA binding and transcriptional activity [85]

Ser-315 Protein destabilization [55]

Aurora B
Ser-183 Unknown

[46]
Ser-269/Thr284 Inhibition of transcriptional activity

Aurora C Unknown

Polo-like kinases

Plk1 Unknown Inhibition of transcriptional and proapoptotic activity [146]

Plk2 Unknown

Plk3 Ser-20 Protein stabilization [169]

Plk4 Unknown Possibly affecting protein stabilization and transcriptional activation [178]

Plk5 Unknown

SAC kinases

Bub1 Ser-37 Possibly inducing cellular senescence [193]

Mps1 Thr-18
p53 stabilization

[58]p53-dependent postmitotic checkpoint activation

BubR1 Unknown p53 stabilization [59]

a recent study shows that increased expression of Mps1 is
associated with an increased p53 mutation, a basal-like phe-
notype of breast cancer and a poor prognosis outcome [209].
These findings suggest that both the expression and function
of Mps1 and p53 are highly correlated and critical for
effective and faithful mitosis to maintain genome stability.

3.2. Bub1-Related Kinase 1 (BubR1). BubR1 is the mam-
malian homolog of yeast Mad3 and Bub1 [185, 210]. It
has shown to play an essential role in mitotic checkpoint
activation and subsequent apoptotic events to prevent the
adaptation of abnormal and unstable mitotic cells with chro-
mosome instability [59, 211]. During mitotic checkpoint
activation, BubR1 directly binds to APC/C and Cdc20 and
subsequently, inhibits the E3 ligase activity of APC/C by
blocking the binding of Cdc20 to APC [212], suggesting that
BubR1 plays an essential role in stabilization of kinetochores-
microtubule attachment [213]. Several studies have shown
that BubR1 deficiency causes a loss of checkpoint control,
abnormal mitosis, genomic instability, and tumorigenesis
as well as a compromised response to DNA damage [214].
For instance, mice with BubR1 haploinsufficiency display a
genetic instability phenotype due to underlying defects in
DNA repair and chromosomal segregation [215]. Moreover,
the complete loss of BubR1 leads to early embryonic lethality
[216]. The reduced protein level of BubR1 promotes cellular
senescence in mouse embryonic fibroblasts [217]. Increasing
evidence suggests that a positive regulatory loop between
p53 and BubR1 exits [218]. BubR1 interacts with and
phosphorylates p53, thereby stabilizing p53 in response to
spindle damage [59]. The expression level of p53 protein
is reduced in BubR1-deficient cells, possibly leading to
malignant transformation [214]. In p53-null cells, inhibition
of BubR1 expression enhances chromosomal instability and
polyploidy; conversely, overexpression of BubR1 restores the

checkpoint function, suppresses centrosome amplification,
and selectively eliminates cells with amplified centrosomes
[64]. Interestingly, BubR1 transcription and expression are
largely controlled by p53 [64].Despite of its important func-
tion, mutations of BubR1 in cancers are very rare [1, 219].

4. Conclusions

Thanks to advances in proteomics technology, many of the
substrates for mitotic kinases have been identified, such as
those listed above; however, the functional significance of
these phosphorylation events has not been explored thor-
oughly. Therefore, dissecting the functional consequences of
mitotic kinase-mediated phosphorylation should be given
high priority to better understand their roles in mitosis.

It appears that there is a very well-organized interactive
feedback loop between p53 and mitotic kinases in cell
cycle progression. p53 tightly and negatively regulates the
expression and activity of mitotic kinases, such as Aurora
A, Plk1, and Bub1, thereby inhibiting cell proliferation
and survival signaling in normal mitosis [61–64]. Protein
stability and transcriptional and apoptotic activity of p53
can be also negatively regulated by mitotic kinases-mediated
phosphorylation of p53 (summarized in Table 1) [55, 56, 85,
146]. On the other hand, Mps1 and BubR1 are thought to
be positive regulators of p53 and may have an important
role in antagonizing the function of Aurora kinases, Plk1,
and Bub1 in the regulation of p53 signaling during mitosis
[209, 220]. When this critical feedback loop is disrupted
(e.g., by mutation of p53 or deregulation of mitotic kinases),
p53 cannot be activated when damage occurs to the mitotic
spindle, thereby inducing mitotic slippage and preventing
apoptosis (Figure 1) [221, 222]. Based on these studies, we
speculate that the status of both mitotic kinases and p53 may
be critical for cell fate decisions in mitotic cells.
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Despite promising preclinical data of targeting mitotic
kinases for cancer therapy, many challenges still remain to
be overcome, such as safety issues and selection of patient
population. Studies have demonstrated that current mitotic
inhibitors that target mitotic kinases have major side effects
because mitotic kinases are mainly expressed in actively
proliferating cells (both normal dividing cells and cancer
cells) [2]. Therefore, selecting the right drugs and doses for
right patients may be the key to successful cancer therapy.

Studies have shown that depletion/inhibition of Aurora
A, Aurora B, Plk1, or Bub1 induces cellular senescence or
cell death in a p53-dependent or -independent but p73-
dependent manner in many different cell types [217, 223–
231]. Importantly, p53-deficient/mutated cells are more sen-
sitive to inhibitors targeting Aurora kinases or Plk1 than cells
with wild-type p53, due to a significant increase in cellular
senescence and cell death [227, 231, 232], suggesting that
patients with p53 deficiency and mutations may benefit from
inhibitors targeting Aurora kinases, Plk1, or Bub1. Mps1 and
BubR1-mediated p53 phosphorylation are required for p53
activation to properly induce cell death in a p53-dependent
manner in response to mitotic spindle damage [58, 59, 209].
Inhibition of Mps1 or BubR1 appears to be disabling a p53-
mediated cell death signaling pathway, possibly leading to
accumulation of aneuploid/polyploid cells in response to
mitotic spindle damage or oncogene-induced DNA damage
[59, 217]. Moreover, a recent study shows that deple-
tion/inhibition of Mps1 fails to kill p53-deficient/mutated
cells more efficiently than cells expressing wild-type p53
[233], suggesting that Mps1 or BubR1 inhibition may offer a
better therapeutic benefit for cancer patients expressing wild-
type p53. These finding suggest that the status of p53 is a very
attractive maker capable of selecting patients who will benefit
from these mitotic kinase inhibitors.
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