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Thus far, none of the preclinically successful and promising immunomodulatory agents for type 1 diabetes mellitus (T1DM) has
conferred stable, long-term insulin independence to diabetic patients. The majority of these immunomodulators are humanised
antibodies that target immune cells or cytokines. These as well as fusion proteins and inhibitor proteins all share varying adverse
event occurrence and severity. Other approaches have included intact putative autoantigens or autoantigen peptides. Considerable
logistical outlays have been deployed to develop and to translate humanised antibodies targeting immune cells, cytokines, and
cytokine receptors to the clinic. Very recent phase III trials with the leading agent, a humanised anti-CD3 antibody, call into
question whether further development of these biologics represents a step forward or more of the same. Combination therapies of
one or more of these humanised antibodies are also being considered, and they face identical, if not more serious, impediments
and safety issues. This paper will highlight the preclinical successes and the excitement generated by phase II trials while offering
alternative possibilities and new translational avenues that can be explored given the very recent disappointment in leading agents
in more advanced clinical trials.

1. Introduction

Type 1 diabetes is an autoimmune disease clinically char-
acterized by hyperglycemia underlai by a significant loss of
pancreatic insulin-producing beta cell mass. Even though
normoglycemia is achieved with pharmacologic insulin
replacement, the underlying autoimmune response that im-
pairs and eventually eradicates the beta cells is not treated.
Insulin replacement cannot prevent the peripheral compli-
cations, a major source of patient morbidity and mortality.
Strategies like beta cell replacement with cadaver donor islets
still face the impediment of autoimmunity in addition to
allogeneic rejection. There is therefore a need to develop
methods that directly suppress or eliminate autoimmunity
and allow a possible regenerative process.

Activated autoreactive T cells are the mediator of beta cell
destruction and therefore a prime therapeutic target. Other
T cell subpopulations help determine the responsiveness

of cytotoxic T-cells. T helper (Th) cells are one of these
populations and are divided into 3 groups based on their
cytokine production profiles: proinflammatory Th1 and
Th17 and anti-inflammatory Th2. The balance of Th cell
populations is an important regulator of the immune system
and is often examined after immunotherapy treatments,
along with anti-inflammatory T-regulatory (Treg) cells. In
addition to these cell types, antigen-presenting cells (APCs)
such as dendritic cells (DCs) and B cells are responsible
for the direct activation of T cells in response to specific
antigens. Various techniques of immunomodulation have
been employed in animal models to directly or indirectly
regulate cytotoxic T-cell activation utilizing these different
target cell populations. Here we will discuss their progress
through clinical trials and offer some commentary on
whether they represent incremental advances, huge leaps in
terms of curative outcome and/or improvement of insulin
requirements, or more of the same.
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2. To Prevent or to Reverse?

The identification of multiple genetic susceptibility loci over
the past decade, when coupled with the presence in high
titers of the traditional autoantibody markers in first-degree
relatives of T1DM patients, offers a preventive interventional
opportunity. By initiating immunomodulation in such pre-
clinically diabetic individuals, it is theoretically possible to
mitigate clinical onset of the disease. Statistically, a variety of
modeling outcomes suggest that such an approach could be
beneficial, although much of the optimism rests on biological
data from mouse studies which may not be mirrored in
humans. Furthermore, even though genetic and humoral
risk may be considerable, they do not always result in clinical
disease [75]. The therapist thus faces two dilemmas: (i) are
the benefits of prevention worth the risks of the adverse
events of current immunomodulation approaches? and (ii)
are the benefits of prevention worth the considerable logis-
tical outlays required to screen and treat all those who meet
“high-risk” status? The first is the most germane, especially
since the long-term effects on the immune system of newer
immunomodulation agents are unknown. Furthermore,
there are the real risks that latent infections due to dormant
viruses could become productive and life threatening as
well as the possibility that modulation of immune cells
could provoke latent or low-grade autoimmunity other than
T1DM. These valid arguments form the cornerstone against
which any preventive immunomodulation approach will
have to push to successfully enter clinical trials other than
phase I safety studies.

On the other hand, attempting immunomodulation in
individuals who exhibit clinical disease is better justifiable as
the autoimmunity is not speculative (unlike in prevention
approaches) but a fact. This then leads to the question
of what is considered the point of “too late” at which
immunomodulation is ineffective and only adverse events
will plague the patient without any possibility of real benefit.

The most straightforward answer is to identify a
time window that defines a period between the onset of
clinical disease and the last possible point inside which
immunomodulation will result in the preservation and/or
restoration of a beta cell mass adequate enough to reduce
the concentration of, or even obviate, exogenous insulin
replacement. Traditionally, this window has been termed
the “honeymoon” period; however, a number of studies
suggest that it can extend further on, as C-peptide can be
detected in adult individuals who have the disease for many
years [76, 77]. The diabetic inflammation of the islets of
Langerhans need not be associated with beta cell destruction.
It is now well accepted that insulitis impairs beta cell
sensing of glucose with/without concomitant impairment in
insulin production and secretion in the absence of signifi-
cant irreversible physical elimination of beta cells [78–80].
Studies also show that beta cells can be differentiated from
pancreatic progenitors when inflammation is controlled and
suppressed. In fact, under some conditions, suppression of
islet inflammation also can be permissive for the replication,
even if limited, of existing beta cells [81–84]. The key then
is to find a means of first suppressing the islet inflammation

to restore the function of residual beta cells and then, once
this is secured, to identify a method to ensure that beta-cell-
reactive T cells are prevented from reaching the islets and/or
that their function is silenced. This second requirement
necessitates the establishment of some form of tolerance
or regulation of autoreactive immune cells. A product that
achieves both concurrently would be best.

3. Biomarkers of Efficacy

Although a number of surrogate measurements are accepted
in clinical trials, thus far there are no bona fide biomarkers of
therapeutic success. The presence of autoantibodies supports
the autoimmune nature of T1DM and differentiates it from
type 2 diabetes and other forms of metabolic glucohome-
ostasis impairment, but their disappearance cannot yield
information on success of therapies. Cellular proliferation to
islet-specific proteins and peptides can differentiate normal
from disease-susceptible individuals; however, no causal
relationship between disease process and specific cellular
response has been established. Frequencies of cell popula-
tions in peripheral blood associated with immune regulation
(i.e., Foxp3+ Tregs) have been suggested as markers of disease
severity and stage and success of immunomodulation, but
there is very little functional evidence in support of these
propositions. Thus, in the absence of specific and therapy-
related biomarkers, the field has accepted physiologic end-
points as surrogates of therapy efficacy.

In the absence of bona fide biomarkers of immune
efficacy, physiologic measurements become of paramount
importance. Examples, for T1DM, include maintenance or
increase of pretreatment C-peptide levels, improvement of
mixed meal-stimulated insulin production and consequent
reduction of glucose levels in blood, improvements in
glycated HbA1c and, in certain instances, reduction of
exogenously administered insulin or complete cessation
thereof for a period of time. As will be discussed later, the
values between pretreatment and posttreatment physiologi-
cal measurements in a number of recent immunomodulation
clinical trials, in particular if promoted and implemented
close to the clinical onset of the disease, have required
stringent statistical analysis to identify differences, and in
many respects, the pronouncements of success for some
immunomodulation treatments require considerable faith in
the outcome of statistical treatments of the data.

The frustration with many immunomodulation trials is
the disconnect between preclinical data in mouse and rat
models of T1DM and the physiologic outcomes in T1DM
patients.

4. Preclinical Models: Is Efficacy Predictive
of Outcome in Humans?

Currently, there are only two spontaneously occurring,
genetically susceptible animal models of T1DM: the heav-
ily popular nonobese diabetic/LtJ strain (NOD) and the
diabetes-prone biobreeding rat (BB) [85]. The intensity with
which many studies are performed in these two strains
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overlooks some obvious, for the sake of clinical translation,
inconvenient facts. First, the two strains are analogous
to clones of two individual humans. Second, the differences
between man and murine (or rat) immune systems, re-
sponses, and immunopathology of T1DM is as different as
are the known and perceived similarities [85]. The lym-
phopenia that characterises the BB rat model is counterin-
tuitive to how autoimmunity develops in this species, even
though the target of immune dysfunction and destruction
are the islets. Further confounding the issue is the presence
of other autoimmunities and inflammatory conditions in the
NOD mouse, calling into question just how tissue restricted
is its autoimmunity. Another difference lies in the difference
in the incidence and prevalence of the disease between female
and male NOD mice, a difference that is not observed in
humans. The predictable time-at-onset of disease in NOD
mice and BB rats is not as simple to extrapolate to humans.
Interindividual heterogeneity in humans lies in the different
HLA susceptibility alleles, the non-HLA susceptibility loci,
the primary autoantigen(s), and the actual composition
of peripheral tolerogenic cell populations that wax and
wane during preclinical disease progression. Even at the
time of clinical onset, the actual mass of functional and
potentially functional residual beta cells is unknown, and this
heterogeneity can determine success or failure of a particular
immunomodulator.

What is sobering is that, of more than 230 therapeutic
strategies employed (to various levels of success) in NOD
mice and BB rats, fewer than ten have proven to be of any
clinical utility, and therefore, only a few have progressed to
advanced trials [85, 86]. This should caution the investigator
that the outcomes in NOD mice can be instructive for some
human patients but not all. The overwhelming number
of studies in NOD mice and the few viable therapeutics
translated to the clinic offer the following lessons: (i) early
prevention is simple in NOD mice (more than 65% of
studies began some form of therapy between 4–6 weeks);
(ii) treating new-onset diabetic NOD mice is difficult; (iii)
dosage of the agent, especially putative autoantigen peptide
formulation may make or break the success; (iv) most
studies in NOD mice cease the monitoring at less than 40
weeks of age; (v) nonspecific microbes can influence the
outcome in NOD mice. Considerable effort and logistics
have been deployed in the past two decades to use insulin
administration as a prophylactic intervention [87], and
more recently, to employ an anti-CD3 monoclonal antibody
in new-onset human disease [88–90]. The optimism and
enthusiasm in both these high-profile multicenter trials was
supported by data on the resoundingly successful prevention
and “reversal of disease” in NOD mice [91–93]. Nevertheless,
insulin administration has yet to demonstrate any successful
preventive outcome in humans [87, 94–97], and very recent
phase III trials of one embodiment of the anti-CD3 antibody
failed to reach the primary end-point (http://www.rttnews
.com/Content/BreakingNews.aspx?Id=1451366&S M=1
&SimRec=1 and http://www.bizjournals.com/washington/
www.bizjournals.com/washington/quick news/2010/10/mac-
rogenics-lilly-abandon-diabetes-drug.html). While “more of
the same” autoantigen interventions can be justified by the

apparent absence of adverse events noted in the insulin trials
(and more recent GAD- and HSP-derived peptide studies),
the choice of “more of the same” approaches that involve
immunodepletion (chemical or biologic agent-mediated),
even if supported by data from NOD mice and BB rats,
has to be tempered by unsupportive data in advanced trials
as well as borderline outcomes in early-phase trials where
heavy statistical treatment might be used to demonstrate
efficacy, even if minor. Nevertheless, in the absence of any
other animal model, the NOD mouse and the BB rat will
continue to be the proving grounds of preclinical efficacy.

5. Translation of Successful Preclinical
Studies into the Clinic: the Outcomes and
the Potential in Humans

The cyclosporin A and the steroid-azathioprine trials proved
that established T1DM was reversible [98–100] and, more
importantly, that a reserve of beta cell mass was able to
restore normoglycemia contingent on suppression of inflam-
mation and autoimmunity [101, 102]. Nevertheless, once
cyclosporin A administration was suspended/terminated,
the disease reappeared with a vigor no different than that
during pretreatment. From a historical perspective, the first
successful immunomodulation-based reversal of T1DM was
achieved by lymphocyte-specific serum in BB rats [103].
It would be 20 years later that this approach would be
attempted in humans [104], although the significant side
effects precluded the justification to further explore this
approach. Since then, a number of preclinical studies, mainly
in NOD mice, have been clinically-translated.

In 1985, Eisenbarth and colleagues reported that steroid-
supplemented antithymocyte globulin administration into
new-onset T1DM patients reduced insulin requirements.
However, this approach was abandoned due to the throm-
bocytopenia that the procedure was generating [105]. Since
then, antithymocyte globulin has been reconsidered and,
in new-onset patients, carefully adjusted dosing slowed C-
peptide decline [106]. Antithymocyte globulin binds to the
CD3 complex on T cells as one of its many targets and causes
significantly greater T-cell depletion. Thus, its justification
is hampered by significantly greater adverse events and
immunosuppression compared to anti-CD3 antibodies.

The initial excitement generated over insulin administra-
tion was tempered by the outcome of a major clinical study
which showed few, if any, beneficial outcomes [87]. More
recent clinical studies using monoclonal antibodies targeting
CD3 and CD20 have also been disappointing despite the
convincing and robust successes in preclinical studies
[65, 89] (http://www.rttnews.com/Content/BreakingNews
.aspx?Id=1451366&SM=1&SimRec=1 and http://www.biz-
journals.com/washington/quick news/2010/10/macrogenics-
lilly-abandon-diabetes-drug.html).

Long before confirmation in genetic models, insulin and
proinsulin were strong contenders as the T1DM-initiating
autoantigens [107–114]. As autoantigens, many proposed
that the exposure of the T1DM immune system to exogenous
insulin in a manner that could modulate immunity towards
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insulin-specific tolerance could prevent disease in predia-
betic states and perhaps delay the progression to overt clinical
hyperglycemia in more advanced, but subclinical, states
[115–118]. Persistent oral insulin treatment of NOD mice
delayed T1DM onset and reduced disease incidence in NOD
mice [119]. The addition of adjuvants provided a practical
benefit in reducing the amount of exogenous insulin required
to achieve the beneficial effects [120]. Largely based on the
data supporting the view that mucosal delivery of soluble
peptides promotes tolerance to them, a number of efforts
targeted, in addition to oral, intranasal insulin or insulin-
derived peptide , aerosolisation into prediabetic NOD mice.
In these studies, diabetes was significantly delayed [71, 117,
121, 122]. These very promising studies with what essentially
was a simple intervention led to the DPT-1 multicenter trial
which determined the efficacy of oral insulin in first- and
second-degree relatives of T1DM patients deemed to fall into
high-risk status based on metabolic, immune, and genetic
evidence [73, 123]. Other than a possible benefit in individ-
uals with the highest autoantibody titers, the DPT-1 study
failed to delay or prevent T1DM. A similarly disappointing
outcome resulted in another prevention trial where insulin
was administered intranasally Näntö-Salonen et al, [124].
However, a very small subgroup of autoantibody-positive
patients was identified in which some effect was shown. The
general view of nonpharmacologic insulin therapy is that, if
beneficial, it probably will be restricted to very well-defined
and characterised subpopulations of patients. It is unclear
what can distinguish these patients from a general at-risk
population.

A number of other trials were initiated since then without
any significant benefits. The IMDIAB trial showed that oral
insulin provided no benefit over placebo after a one-year
followup in terms of mean C-peptide secretion and insulin
requirements. The ORALE trial, comparing low- with high-
dose oral insulin (2.5 mg/day versus 7.5 mg/day), after one
year could not discern any benefit in decelerating the loss of
physiologic beta cell function [125]. It was recently shown
that combined intranasal insulin with CD3 antibody was
able to reverse new-onset T1DM in NOD mice, although
the effect was quite likely due to the CD3 antibody and the
characteristics of the NOD mouse cohorts and not due to the
insulin [126].

The most recent attempts at using insulin to improve
functional beta cell mass involve intramuscular injection
of human insulin B chain in incomplete Freund’s adjuvant
as well as subcutaneous injection of a DNA plasmid vec-
tor encoding proinsulin see [127] and http://www.bayhill-
.bayhilltherapeutics.com/. The outcomes of these proposals
rest on the publication of phase II studies which are currently
at various stages of implementation.

As strong an argument for GAD can be made in the
etiopathogenesis of T1DM as for insulin. The 65 KDa iso-
form of GAD has been demonstrated to be a target of early-
insulitic T cells in vitro and in vivo [128, 129]. Administration
of GAD into very young NOD mice suppresses anti-GAD
T-cell reactivity as well as disease onset [129, 130]. GAD
is equally effective when administered into older NOD
mice [130]. The relevance of GAD to human T1DM relies

on the presence of GAD autoantibodies in prediabetic
humans and is one of three reliable markers of susceptibility
[131].

Two clinical trials have used human GAD65 with alum
as adjuvant to determine improvement of physiologic beta
cell function. One was conducted in LADA patients [132]
and determined that this formulation increased fasting and
stimulated C-peptide at 24 weeks compared to baseline, a
benefit that was associated with an increase of CD4+ CD25+
Tregs. The other study considered the effects of GAD65 in
alum in recent-onset T1DM individuals (10–18 years of
age) on the rate of decline of stimulated C-peptide [133].
The study revealed a slower rate of decline of stimulated
C-peptide in GAD-treated diabetics compared to the placebo
group.

Early studies showed that intrathymic administration of
Hsp60-derived peptides was prophylactic in NOD mice even
though Hsp60 was not considered a bona fide autoantigen
involved in T1DM initiation [134]. More experiments in
NOD mice revealed that the p277 peptide of Hsp60 was quite
effective in suppressing disease progression [135]. These data
compelled the development of a human equivalent of p277
(DiaPep277; a 24 amino acid synthetic peptide derived from
the C terminus of human hsp60).

DiaPep277 has been evaluated in phase II studies [136],
and data demonstrate some degree of preservation of
stimulated C-peptide secretion.

Since then, three other studies have been conducted
in new-onset T1DM patients [137–139]. In two of these
studies, adult patients were the study population, and these
recipients exhibited better, yet limited, C-peptide production
than placebo-treated individuals. In contrast, DiaPep277 did
not offer any objective benefits in young new-onset patients
[137].

T-cell depletion targeting the CD3 complex with the
OKT3 monoclonal antibody was successfully employed
about two decades ago [91]. Administration of the antibody
into diabetic NOD mice resulted in complete remission
of disease [91, 92]. One caveat of this particular antibody
was that, under some situations, it could activate T cells
and therefore it was not considered suitable for human
use. Soon thereafter, FcR nonbinding embodiments were
manufactured which exhibited either IgG1 Fc chain or which
eliminated glycosylation sites of the original OKT3 clone.
These variants were found to be less activating than OKT3
[140, 141]. Herold and colleagues initially demonstrated
that a short-term administration of the nonglycosylated
variant into new-onset T1DM patients suppressed the loss
of beta cell function as measured indirectly by surrogate
physiologic markers [90, 142]. Some patients maintained
improved physiologic markers of beta cell function for as
much as two years following the treatment in the absence of
systemic immunosuppression. A second round of anti-CD3
antibody injections was postulated as necessary to maintain
the beneficial outcome. However, additional injections of
the antibody were shown to confer more serious, previously
undocumented clinical complications.

T1DM is unquestionably a T-cell-mediated disease; how-
ever, other cell populations have been implicated in the onset,
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and early progression, of the disease, including B-lympho-
cytes. Accumulated findings in NOD mice demonstrated that
B-cell depletion could be beneficial [143–145], even some
studies suggested the contrary [146] where adoptive transfer
of T1DM into NOD-SCID mice was possible in the absence
of B cells and antibodies. B cells can also participate in disease
exacerbation by promoting epitope spreading as shown by
Tian and colleagues [147]. Indeed, capture of autoantigens
such as GAD65 by B-cell surface immunoglobulin (Ig) is fol-
lowed by processing and presentation of T-cell determinants
by B cells, a step that is crucial for activation of autoreactive
T cells and induction of diabetes [148–150]. B-cell-mediated
processing of self-Ags may contribute to the generation of an
inflammatory microenvironment in the pancreas, which is
critical for overcoming the regulatory barrier(s) to initiation
of diabetes in NOD mice [151]. Antigen-specific B cells
and their antibodies are essential in catalyzing determinant-
spreading reaction via (a) generation of novel previously
cryptic epitopes through altered antigen processing or (b)
facilitation of T-cell activation through generation of ligands
with higher affinity for TCR and delivery of costimulatory
signals. Ag processing through surface receptor-mediated
internalization, for example, Fc receptors and soluble Ig,
is different from that occurring through pinocytosis and
phagocytosis [152].

Pescovitz and colleagues demonstrated a small but
statistically significant improvement in physiologic markers
of beta cell function in new-onset patients [65]. Nevertheless,
the improvement was transient as placebo and rituximab-
treated patients eventually (by two years) exhibited an iden-
tical decline in beta cell function. One possible mechanism
could involve the restriction of epitope spreading by B cells
after rituximab-mediated deletion, or the repopulation by
B-cells that process and present epitopes that compete with
diabetes-relevant epitopes.

Autoreactive T cells have been frequently associated with
the production of TH1-type proinflammatory cytokines. It
is reasonable, therefore, to use cytokine blockade as a unique
or part of a combination therapeutic strategy. IL-1beta,
TNFalpha, and type 1 interferons have been historically the
first to exhibit direct beta cell cytotoxicity [153–155].

Recently, administration of etanercept, a soluble TNFal-
pha receptor, in an early-phase efficacy trial resulted in a
reduction in the loss of C-peptide in T1DM patients [156]. It
is important to note, however, that TNFalpha blockade may
have unwanted outcomes; TNFalpha can prevent diabetes
in older NOD mice even when splenocytes from diabetic
NOD mice are adoptively transferred [157]. Furthermore,
TNFalpha blockade may require careful consideration of the
age of the individuals being treated since blockade in younger
NOD mice prevented disease, while in older NOD mice it
accelerated T1DM.

Even though IL-1beta is now known to exert early-
onset impairment in beta cell function and mediates early-
phase recruitment of immune cells into islets [158–161],
it is unclear if IL-1beta blockade will have any beneficial
outcome in prevention of disease or reversal of new-onset
disease. In certain populations characterised by metabolic

diabetes (LADA, type 2 diabetes), recent trials with the IL-
1 receptor antagonist protein (IRAP, Anakinra) improved
glucose control [162], and mechanistically it appears that
this benefit is achieved by blockade of IL-1beta impairment
of immune cell activity (i.e., inflammation) and blockade
of IL-1beta effects on beta cell impairment. It is unclear
if administration of the IL-1 receptor antagonist protein
(Anakinra) will be of any benefit in new-onset cases,
especially as the autoimmunity in new-onset disease is largely
IL-1beta independent.

6. Unconventional Therapies That Might Be
Clinically Justifiable

An unexpected recent discovery revolves around the realisa-
tion that alpha 1 antitrypsin (A1AT) may possess direct anti-
inflammatory and perhaps tolerogenic effects, although they
are very likely nonantigen specific. A1AT is a serpin whose
administration into new onset T1DM NOD mice reversed
disease [163]. In addition to its apparent anti-inflammatory
effects on insulitis, it promoted regeneration of beta cells
and, very likely in an indirect manner, it improved insulin
sensitivity. As unclear as the mechanism of action of A1AT
may be, equally unclear is the mechanism of another
unconventional T1DM treatment using the antileukemia
drug, Gleevec [164].

7. Combination Therapies

Recent discussions have focused on combining an immuno-
modulator successful in preventing/reversing T1DM in
preclinical studies and human trials with autoantigen(s)
and/or biologic agents that on their own improve the
function and/or the mass of residual beta cells. These
discussions have also proposed combining two or more
immunomodulators. Examples include combining the anti-
CD3 antibody with beta-cell-protective and function-
enhancing GLP-1 agonists [165, 166], IL-1-neutralising
antibodies with the anti-CD3 antibody (http://www.dia-
betestrialnet.org/studies/index.htm), and anti-CD3 anti-
bodies with traditional pharmacologic immunosuppres-
sives like rapamycin (http://www.diabetestrialnet.org/stud-
ies/index.htm).

The problem with these approaches is that the non-
anti-CD3 antibody of the combination, on its own had
either no effect on prevention or reversal or is not part
of any known mechanism that can suppress autoimmunity.
Additionally, combining agents where each alone confers
obvious side effects could imperil the patient in an additive or
multiplicative manner. Last, any benefits a T-cell-depleting
antibody may confer on preferential expansion of regulatory
T cells could be negated by the effect of pharmacologic
inhibitors on Treg function and differentiation. It is our
view that combining biologic agents in the absence of solid
preclinical data is premature and potentially harmful. It is
also unclear, even in the absence of additive adverse events,
what improvement addition of another immunomodulator
will have on the benefits of the CD3 antibody.

http://www.diabetestrialnet.org/studies/index.htm
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8. Patient-Specific Cell Therapy as
a Viable Approach

In 2007, Voltarelli and colleagues first reported that autol-
ogous nonmyeloablative hematopoietic stem cell transplan-
tation preceded by cyclophosphamide, granulocyte-colony
stimulating factor (G-CSF) stem cell mobilization, and
antithymocyte globulin rendered 14/15 new-onset T1DM
patients insulin nonrequiring for an average of 16 months
[167, 168]. It is unclear if such an approach will be approved
elsewhere, indeed in children, and the significant toxicity
in all patients calls into question whether this approach is
justified for an achievement of 16-month insulin-free state.
Nevertheless, hematopoietic stem cell transplantation is
clinically feasible and offers one means of either repopulating
a depleted immune system with a greater contingent of
suppressive immune cells compared to pretreatment or
establishing tolerance, even transiently. However, existing
autoreactive immune cells will still exist and safe approaches
to suppress them must still be employed.

Cell therapy, especially with dendritic cells, is a clinical
reality that has also recently been accepted by health
providers (http://www.provenge.com/). Overwhelming stud-
ies indicate that downregulated costimulation capacity in DC
can subserve a tolerogenic therapeutic outcome [169–175].
Costimulation-impaired (or downregulated), functionally-
immature DC administration achieves long term and stable
allograft survival in a variety of mouse and rat models
and prevents a number of autoimmune diseases [176–183].
Mechanistically, functionally immature DCs. act by inducing
anergy either via direct cell contact and/or cytokines [172,
184, 185] or, as described more recently, by upregulating the
number and function of immune cell subsets, especially the
regulatory populations which include Foxp3+ CD25+ CD4+
T cells and a class of CD8+ immunosuppressive T cells [186–
194].

Table 1 lists the models where immature DC admin-
istration has proven successful. In addition to anergy,
Foxp3+ CD25+ CD4+ T-cell numbers have been observed
to be increased by the exogenous supply of tolerogenic DC
[195–199]. Immature or semimature DC can induce the
differentiation of naturally-occurring (thymic) T regulatory
cells (CD4+ CD25+) as well as IL-10-producing CD4+ T
cells in vitro and in vivo [195, 198]. Overexpression of
the Jagged-1 gene in DC results in the augmentation of
antigen-specific TGFbeta-producing CD4+ CD25+ CD4+ T-
cells [200]. Functionally immature DCs convert naive T cells
into IL-10-secreting cells in vitro, and antigen-pulsed DCs
injected subcutaneously into humans augment the number
of IL-10-producing CD8+ T cells and trigger a reduction in
IFNgamma+ T cells [201, 202]. Despite the abundance of
data in support of immature DCs as functional inducers of
regulatory immune cells, other investigators have discovered
that the state of maturity may not be relevant for the induc-
tion of immunosuppressive endogenous T cells. For example,
similar to the studies by Morel and colleagues [2], mature
DCs were shown to expand CD4+ CD25+ CD4+ Foxp3+
T cells which were functionally suppressive and capable of
preventing diabetes in the NOD mouse [203–205]. Whether

this reflects a restimulation of existing CD4+ CD25+ T
cells or their expansion is unknown. We have shown that
DCs maintained in a functionally immature state following
in vitro treatment with NF-kappaB decoys and antisense
oligodeoxyribonucleotides (AS-ODNs) to the CD40, CD80,
and CD86 costimulatory molecules are diabetes preventive
in the NOD mouse [6, 8, 206] and may involve short-range
IL-7 signaling, quite likely inside the pancreatic lymph node
of NOD mice, to augment the number of CD4+ CD25+
Treg via suppression of apoptosis of a preexisting pool [206].
Multiple injections of AS-ODN-treated DCs in NOD mice
maintained the animals as diabetes free without affecting
the overall T-cell activity against alloantigens. Furthermore,
repeated administrations of co-stimulation-deficient DC
reverses hyperglycemia in new-onset diabetes NOD mice.
The promising results from this study, together with the low
risk of the procedure, helped in gaining approval by the
Food and Drug Administration (FDA) office for a phase I
clinical trial which has recently ended with very interesting
outcomes, the most important being the complete absence
of any adverse events. Adult (18 years or older) volunteers
with a documented evidence of insulin-requiring T1D of
at least 5 years duration were enrolled. Leukocytes of the
patients were obtained by apheresis, and DCs were generated
in vitro and engineered in GMP facilities with the addition
of AS-ODN. These DCs expressed low levels of CD80,
CD86, and CD40 and were then injected into the patient by
intradermal/subcutaneous administration at an anatomical
site proximal to the pancreas. The choice of this anatomic
region for DC delivery was based on the location of the
lymphatic conduits (microvessels) that drain the injection
site and favor migration to the pancreatic and para-aortic
lymph nodes. We conjecture, based on previous rodent
studies, that once inside the pancreatic lymph nodes, the
injected DCs will acquire molecules that have drained from
the pancreas. These molecules can be acquired by passive
drainage or can be transferred to the exogenously supplied
DC by antigen-presenting cells coming into the pancreatic
lymph nodes from apoptotic islets. Therefore, either by direct
uptake of “naked” molecules or antigen transfer by migra-
tory antigen-presenting cells, the exogenously administered
DC will acquire the antigen specificity. Alternatively, our
administered DC could be recruited from the lymph nodes
draining the injection site to the apoptotic islets where they
could indirectly deliver an anergizing signal to the T cells they
encounter. They can also induce regulatory immune cells.
The recent concept of contrasuppression, or alternatively,
aggregational suppression (network of intercommunicating
DC : Treg) could be operative in our system [207–211]. The
vicious cycle that promotes the T cell-mediated anti-beta-
cell-antigen-spreading phenomenon will be interrupted this
way, enabling the recovery of the physiologic endocrine
function of the gland with time. The abrogation of the
autoimmune diabetogenic insult should be sufficient to
promote rescue or regeneration of the insulin-producing
beta cells in the host endocrine pancreas, even after the onset
of the disease. Currently, there are no methods to directly
test this mechanism in vivo in humans; however, mouse and
nonhuman primate models offer a number of opportunities.

http://www.provenge.com/
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Table 1: Models of immunotherapeutic DC administration to prolong graft survival and to treat autoimmunity.

Autoimmune disease

Type 1 diabetes

(i) Pancreatic lymph node DC (untreated) [1]

(ii) Mature bone-marrow-derived DC (GM-CSF/IL-4 propagated) or transduced with IL-4 vector [2–4], or TGFbeta [5]

(iii) NF-kappaB oligonucleotide decoy propagated or NF-kappaB inhibition [6, 7]

(iv) Antisense oligonucleotide (CD40-, CD80-, CD86-) propagated [8]

(v) Vitamin D receptor ligands [9, 10]

(vi) Other DC embodiments [11–16]

Thyroiditis

(i) In vitro generation with TNFa and supernatant of a GM-CSF-transduced cell line [17, 18]

(ii) GM-CSF generated followed by in vivo administration of GM-CSF [19]

Experimental encephalomyelitis (Multiple sclerosis model)

(i) In vitro generation with TNFa and supernatant of a GM-CSF-transduced cell line [17, 18]

(ii) VIP and GM-CSF in vitro propagation [20, 21]

(iii) TGFbeta and MBP antigen [22]

Myasthenia gravis

(i) RelB knockdown [23]

Arthritis

(i) VIP and GM-CSF in vitro propagation [20, 21]

(ii) IL-4- or IL-10-expressing bone-marrow-derived DC and derivative exosome preparations [24–26]

(iii) CD95- (Fas ligand-) expressing bone marrow-derived DC [27, 28]

Gastritis

(i) IL-10- expressing DC [29]

Allergy/asthma

(i) IL-10- overexpressing vector [30]

(ii) Allergen overexpression [31]

Allotransplantation/xenotransplantation

Administration of bone-marrow-derived DC from transplant organ donor

(i) DC propagated in low-concentration GM-CSF [32–34]

(ii) DC propagated in GM-CSF, IL-10, TGFb and matured with LPS [35]

(iii) In vitro blockade of NF-kappaB by adding aspirin, vitamin D3 metabolites/analogues, glucosamine, N-acetyl-cysteine, corticosteroids,

cyclosporin A, rapamycin, deoxyspergualin, and mycophenolate mofetil [36–51]

(iv) Gene engineering in vitro; DC expressing IL-10, TGFbeta, CTLA-4Ig, indolamine-2,3 dioxygenase, Fas-ligand [52–60]

Administration of transplant-recipient-derived DC prior to transplantation

(i) DC pulsed with class I MHC allopeptide or other alloantigens [61, 62]

(ii) Rapamycin and donor tissue lysate [63]

Table 1 lists the many methods to generate tolerogenic
DCs. Some methods converge upon identical cellular and
molecular pathways (augmentation of Treg numbers, NF-
kappaB inhibition, costimulation blockade). Others are not
so obvious. A cautionary detail needs insertion herein: it is
important to understand that transplantation immunobiol-
ogy may not be identical to autoimmunity and vice versa.
Indeed, there are numerous instances where a therapeutic
regimen achieving long-term allograft survival has failed
to abrogate autoimmunity [212–219]. Therefore, DCs that
are able to suppress donor-specific antigen alloreactivity
may not evoke the appropriate regulatory mechanisms
capable of controlling and reversing autoimmunity. Also,
although different DC products may exhibit similar cell

surface phenotypes and nuclear proteome signatures, by no
means can this be a predictor of mechanism of action. Cell
viability has rarely been examined in these DC products,
and not all potential mechanisms of action were considered.
It is possible that all listed DC embodiments may intersect
at immune regulatory cell levels, but this remains to be
determined. The site of action of many DC products,
exogenously administered, is currently unknown. While it is
generally believed that the DC activity will occur inside the
pancreatic lymph nodes, there are equally likely possibilities
that the activity of immune tolerance may in fact occur
extralymphatically and around the islets, or inside many
lymph nodes, anatomically distant from the pancreas. The
study by Ludewig and colleagues demonstrating a nascent
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peri-islet lymphoid ultrastructure during diabetes onset is
very interesting and instructive and awaits the discovery of
a mechanism [220].

Table 1 highlights the studies where animals were treated
with tolerogenic DCs pulsed with putative autoantigens.
Although the ongoing insulitis drives migration of exoge-
nously administered DCs into the islets, where they acquire
the antigen specificity to provide beta cell antigens (from
apoptotic/necrotic beta cells) to pancreatic lymph-node-
resident regulatory immune cells like Foxp3+ CD25+ CD4+
T cells, it is currently unknown if ex vivo pulsing with
putative autoantigen(s) could stabilize class I MHC to yield
more specific Treg in vivo. Our data, however, indicate that
the supply of putative autoantigens may not be necessary
given the endogenous supply acquired by migratory exoge-
nous DC inside the insulitic lesion. Fathman and colleagues
have shown that exogenous DC administration results in
preferential accumulation of the DC inside the pancreatic
lymph nodes and the omentum [3, 221, 222]. The critical
factor in any tissue-targeted approach will be to maintain the
DCs in a functionally immature state during and after their
accumulation inside that tissue [6, 8, 178, 180, 206].

That our CD40-, CD80-, and CD86-impaired DCs
exhibited exemplary safety motivates us to proceed with
phase II efficacy trials in new-onset T1DM patients with the
objective of decelerating the rate of decline of residual beta
cell mass, improving glucose profiles, and perhaps reducting
insulin requirements. We anticipate beginning such a trial in
the next 12–18 months.

T regulatory cells (Tregs) are another potential cell pop-
ulation that can be used for suppressing the autoimmunity
of T1DM. A variety of methods have been employed to
expand natural Tregs and to differentiate induced Tregs from
peripheral blood progenitors. These cells have been shown
to control ongoing autoimmunity and promote diabetes
reversal in NOD mice [5, 223–225]. It is unclear whether
antigen specificity is relevant in this approach because both
antigen-specific and nonspecific expanded Tregs are equally
efficacious in suppressing T1DM. Furthermore, Tregs recog-
nising one antigen can have a broad effect on suppression
effectors reactive to other antigens [5, 205]. Clinical protocols
for T-cell administration into humans exist and patient-
specific polyclonal Tregs can, under current conditions, be
employed in at least phase I studies.

A particularly interesting discovery very recently indi-
cating that aryl-hydrocarbon receptor-activated CD4+ T
cells preferentially differentiate into stably suppressive Foxp3
Tregs, offers therapeutic opportunities that can be exploited
by oral route of drug administration [226, 227]. If safe, orally
stable aryl hydrocarbon receptor agonists are developed, one
could envisage a situation where mucosal CD4+ T-cells could
be induced to differentiate into stably suppressive Foxp3+
Tregs. This could be achieved with chemicals or small
molecules alone or formulated into nanodelivery particles.

Biopolymers offer a unique platform that can carry anti-
bodies, small molecules, chemical drugs, short sequences of
DNA/RNA, and even plasmid vectors [228–231]. Nanopar-
ticles and microspheres in particular can be exploited to
deliver immunomodulators on their surface, or inside the

polymer matrix. Two recent approaches demonstrate that
T1DM can be reversed by administration of microparticles
carrying immunomodulatory molecules. We have shown
that a microsphere formulation comprised of PEG, polyvinyl
pyrrolidone (PVP), and poly-L-lysine-hydrobromide and
short antisense oligonucleotides (AS-ODNs) targeting the
primary transcripts of the CD40, CD80, and CD86 costimu-
latory genes effectively prevents and reverses type 1 diabetes
in the NOD mouse model [232]. Although the mechanism is
not yet fully clear, we propose that the microspheres are taken
up following subcutaneous injection (close to an abdominal
anatomic site drained in part by the pancreatic lymph nodes)
by migratory dendritic cells which then accumulate inside
the pancreatic lymph nodes. These dendritic cells exhibit
downregulated CD40, CD86, and CD80 costimulation (as a
consequence of the effects of the antisense), effectively being
turned into tolerogenic dendritic cells. In the pancreatic
lymph nodes, these dendritic cells could promote increased
regulatory T-cell prevalence which, in an antigen-specific
manner, could suppress the activation and overall function
of autoreactive T cells. Santamaria and colleagues pre-
vented and reversed new-onset disease using nanoparticle-
bound autoantigen-derived peptides complexed to MHC
proteins. Mechanistically, these investigators showed that the
peptide-MHC conjugate was recognised by low peptide-avid
autoreactive CD8+ T cells that differentiated into regula-
tory CD8+ T cells specific for those autoantigen-derived
peptides. Furthermore, the use of nanoparticle-conjugated
human-relevant peptide-HLA conjugates achieved identical
outcomes in human HLA-transgenic diabetic mice [233].
Microparticles offer a unique delivery platform that ranges
from injectable to inhalable to topical.

9. Conclusion and Perspectives

Table 2 lists past and current immunomodulatory clinical
trials and their status. Most have failed to meet their primary
end-point. The reasons suggested for the disappointments
using autoantigens or derivative peptides can be summarised
as follows: (i) the administration route and dosage were not
optimal; (ii) peptides may not behave identically to intact
proteins and may not promote tolerogenic antigen presen-
tation; (iii) regulatory immune cell responses to peptides are
different from protein-derived peptide antigens; (iv) masking
critical epitopes in vivo; (v) timing of administration and the
stage of disease when the intact autoantigens or autoantigen-
derived peptides were administered. It is well accepted
that advanced-stage disease including clinically T1DM is
associated with epitope spreading, so that even if tolerance
was achievable to one autoantigen, a number of others that
have since appeared would still aggravate autoimmunity.

Reports from recently completed phase III trials using
one embodiment of the humanised CD3 antibody were not
encouraging. The underlying reasons for why the primary
end-points were not achieved, even previous studies were
demonstrated to be successful, yet limited in time, are
not at all clear at present but could involve one or more
of the following: (i) variation among the T1DM patients
in actual residual beta cell mass, in that the outcome
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Table 2: Clinical trial history for the immunomodulatory treatment of type I diabetes and current state/outcomes.

Treatment Clinical phase Last update Notes

Anti-CD3
Phase III,
canceled

2010
Failed to change patient outcomes, and the
phase III study was canceled early [64]

Anti-CD20 (rituximab)
Phase II,

completed
2009

Beta cell mass preservation, but no change
in C-peptide levels or insulin independence
[65]

AS-ODN dendritic cells
Phase I,

completed
2011 Treatment safety demonstrated

GAD65 protein (Diamyd)
Phase III,
Ongoing

2010

Phase II displayed elevated
anti-inflammatory cytokines and Treg cells.
Insulin independence was not addressed
[66, 67]

HSP60 (DiaPep277)
Phase III,
ongoing

2008

Phase II trials display a trend of increased
C-peptide levels, anti-inflammatory
cytokines, and anti-inflammatory T-helper
2 cells [68]

Insulin APL (NBI-6042) Phase II, failure 2009 Beta cell mass was unaffected [69, 70]

Insulin (intranasal) Pilot 2004

Decreased T-cell responsiveness to insulin in
patients expressing two to three
diabetes-related autoantibodies [71, 72].
Additional clinical trials (phase I–III) are
underway

Insulin (oral) Phase I, failure 2005
Initial trials showed no prevention or delay
of type 1 diabetes, but additional trials are
underway [73, 74]

reflects the enrollment of individuals with a more aggressive
autoimmunity and hence poorer residual beta cell mass and
(ii) the possibility that the time of administration varied
between this phase III and previous trials; it is well known
that administration of immunomodulatory agents during
different times of the day as well as during different points
of biologic cycles can profoundly affect the immune response
[234–237].

In addition to the anti-CD3 antibody, there are other
monoclonal antibodies targeting cytokines as well as fusion
proteins interfering with costimulation and serving the role
of cytokine decoys. There again, the question is, do these
agents represent a promise of a huge leap, an incremental
advance, or more of the same? The question is indeed
speculative as trials involving some of these agents are
ongoing or have not yet started. However, the antibody-
based trials are instructive. First, these biologic agents confer
variable adverse events. Despite the arguments that these
agents can represent antigen-specific approaches, they do
not. At best, they promote the homeostatic expansion of
new immune cell repertoires that, at various stages of
autoimmunity, can act beneficially or can aggravate disease.
Recent data indicate that antithymocyte globulin depletion
of T cells promotes the homeostatic expansion of T cells
with a temporally favorable expansion of naturally occurring
(thymic) Foxp3+ Tregs [238]. This observation can guide
a better approach to promoting homeostatic expansion
of Tregs without considerable T-cell depletion and may
be instructive for therapies like the anti-CD3 antibody.
This phenomenon also appears possible following B-cell

depletion with rituximab (i.e., homeostatic expansion of
naive B-cells with favorable expansion of B cells with possible
regulatory activity [239]). Thus, if consideration is given to
understand the timing of repopulation of the periphery with
regulatory cells following T-cell or B-cell depletion, more
of the same could yield huge leaps in terms of therapeutic
success in new onset T1DM.

Another consideration that has been discussed but sel-
dom implemented experimentally is the route of administra-
tion of autoantigens and derivative peptides with or without
adjuvants or immunomodulators/anti-inflammatory agents.
Accumulating evidence suggests that the pancreatic lymph
nodes are the major, if not the most important, site
of autoimmunity triggering and progression [240–243].
Indeed, regulatory immune cells have been identified to
expand and to differentiate from precursors inside draining
lymph nodes of tissues that are targets of autoimmunity [207,
244–247]. These observations should be instructive in how
to approach ongoing autoimmunity with the aim of inducing
antigen-specific suppression. As most, if not all, of pancreatic
beta cell antigens are concentrated inside the pancreatic
lymph nodes by fluid dynamic flow or are brought inside
the pancreatic lymph nodes by antigen-presenting cells,
they would drive the acquisition of antigen specificity by
immune cells modulated inside the same lymph nodes even
by an antigen-nonspecific approach. For example, one could
administer costimulation-blocking agents in a manner where
they accumulate preferentially inside the pancreatic lymph
nodes and allow the bulk flow, or the cross-presentation
of beta-cell-derived antigens by antigen-presenting cells that
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have traveled along islet-draining lymphatics, to direct the
antigen specificity in conferring antigen-specific immune
hyporesponsiveness that is known to occur in response to
costimulation blockade.

With the disappointing outcomes of the DPT-1 and
related insulin-based trials as well as the failure of industry-
sponsored phase III trials with one embodiment of the anti-
CD3 antibody, one could reasonably question the value in
pursuing further immunodepletion interventions as well as
autoantigen-alone trials. There is merit in the argument that
the lack of biomarkers to more precisely measure residual
beta cell mass that is functional imperils these studies. There
is also merit in the arguments that the time of administration
of the agents in the phase of the disease, even in new-onset-
cases, is critical and needs a comprehensive evaluation. We
argue that more of the same cannot go on without such
biomarkers and a better understanding of the balance of
immunoregulatory cells between the time of clinical onset
and 6–12 months from this time in T1DM patients. The vari-
ability in immunoregulatory cell numbers and their function
has to be securely identified in large populations. In the
meantime, many of the resources of research support have
been skewed heavily in these approaches with trepidation
of supporting cell therapies that are otherwise safe. We
propose that cell therapies be seriously considered for at
least phase I studies. Furthermore, a new avenue of studies
has emerged which attempts to promote accumulation of
immunoregulatory cells inside the pancreatic lymph nodes.
A better understanding of the pancreatic lymphatics, we
believe, will be important to develop these approaches.

It is now evident that the explosion of obesity in the
past ten years confounds the diagnosis of T1DM. Metabolic
impairments in glucose homeostasis can mask underlying
autoimmunity. Furthermore, obesity-related inflammation
in individuals genetically at risk for T1DM could accel-
erate the onset of autoimmunity. A careful examination
of the relationship between obesity-related inflammation
and autoimmunity progression, we believe, challenges both
the “huge leaps” and the “more of the same” approaches
in immunomodulation of T1DM. This is relevant not
only for obesity, but for LADA as well. In this regard,
it is possible that conditioning the obese patient with
anti-inflammatory agents will decelerate and permit the
detection of underlying autoimmunity. The suppression of
inflammation may be beneficial as a front-line conditioning
prior to full immunomodulation.
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