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A B S T R A C T

Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges 
that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often 
accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and 
the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new 
antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an 
overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs 
under clinical study, and explores ahead to future candidates that aim to help address this important global 
health issue.

1. Introduction

The annual number of global deaths toll from fungal diseases has 
been estimated to approximately 3.75 million, doubling earlier figures 
that ranged from 1.5 to 2 million deaths per year. Among these fatalities, 
approximately 68 % (or 2.5 million) are directly attributed to fungal 
infections (Denning, 2024). These alarming numbers, stem from 
vulnerable populations, underreported cases and low global awareness 
of fungal infections, which receive less attention than other infectious 
diseases, such as malaria and tuberculosis, despite exhibiting higher 
mortality rates (de Oliveira et al., 2023; Denning, 2024; Rodrigues and 
Nosanchuk, 2020).

Currently, antifungal options are limited and associated with high 
toxicity, increasing resistance, and substantial costs, representing a 
significant burden on public health systems (Fisher et al., 2022; Kneale 
et al., 2016; Rodrigues and Nosanchuk, 2020; Stewart and Paterson, 
2021). Additionally, there is growing concern with the emergence of 
resistant species, a critical situation that could further complicate this 
scenario (Forsberg et al., 2019; Hoenigl et al., 2022; Lockhart et al., 
2023, 2017; Sarma and Upadhyay, 2017). In this context, advancing the 
development of more effective and safer antifungals is an urgent 
priority.

Prioritizing research and investments in this field is essential for 
global public health. Expanding antifungal options and increasing 
awareness are critical for mitigating the devastating impact of fungal 
diseases and saving millions of lives. Our review provides a compre-
hensive overview of antifungal drugs, discusses current treatments for 
mycosis and potential strategies such as drug repurposing, 
nanotechnology-based approaches, antifungal peptides, combination 
therapy, and immunotherapy.

2. Traditional use and current resistance to antifungal drugs

2.1. Polyenes

As discovered in 1949 by Elizabeth Lee Hazen and Rachel Fuller 
Brown, polyenes were the first class of antifungal drugs used clinically 
(Carmo et al., 2023; Carolus et al., 2020; Vanreppelen et al., 2023). 
Owing to their broad-spectrum antifungal activity and low resistance 
rates, they remain the gold standard for treating systemic fungal in-
fections and dermatomycoses, with amphotericin B (AmB), nystatin and 
natamycin, the three most widely used (Carmo et al., 2023; Carolus 
et al., 2020).

Nystatin, the first patented polyene used to treat fungal infections, is 
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now limited to topical use owing to its poor solubility, low bioavail-
ability and severe side effects. It is primarily used for treating cutaneous 
and mucosal Candida infections (Lyu et al., 2016; Samaranayake et al., 
2009). Similarly, natamycin, another topical polyene, is commonly 
recommended for ocular fungal infections, including keratitis 
(Cabrera-Aguas et al., 2022).

AmB has been a key treatment for systemic fungal infections for 
nearly six decades (Cavassin et al., 2021). It is effective against Histo-
plasma spp., Aspergillus spp., Fusarium spp., Cryptococcus spp., Candida 
spp., Blastomyces spp., Coccidioides spp., Mucor spp. and Sporothrix spp., 
which are used in both first- and second-line therapies (Barros et al., 
2023; Boutin and Luong, 2024; Cavassin et al., 2021; de Oliveira Santos 
et al., 2018; Goralska et al., 2018; Iyer et al., 2021). Owing to its poor 
gastrointestinal absorption, AmB is administered intravenously, often in 
combination with other antifungal drugs such as flucytosine or flucon-
azole for the treatment of Cryptococcus and Candida infections, partic-
ularly in cases of azole resistance and severe cases such as central 
nervous system (CNS) dissemination, as well as HIV and recent trans-
plant patients. For aspergillosis and mucormycosis, AmB is combined 
with echinocandins or azoles, respectively (Boutin and Luong, 2024; 
Cavassin et al., 2021).

The efficacy of AmB lies in its unique mechanism of action: binding 
to ergosterol, a vital fungal cell membrane component (Carolus et al., 
2020). Ergosterol maintains membrane integrity and supports processes 
such as endocytosis, cell division, and fungal pathogenicity (Carolus 
et al., 2020; Choy et al., 2023; Heese-Peck et al., 2002), making it a 
critical drug target. By binding to sterols in the membrane, AmB forms 

pores, causing ion leakage and intracellular damage. It also generates 
free radicals, inducing oxidative stress and cellular damage (Fig. 1). This 
combination of mechanisms of action ensures its fungicidal effect 
(Carolus et al., 2020; Cavassin et al., 2021).

AmB is available in various formulations. The original AmB- 
deoxycholate is effective but highly toxic, with side effects such as 
nephrotoxicity, fever, nausea, vomiting and headaches (Carmo et al., 
2023; Laniado-Laborín and Cabrales-Vargas, 2009). Newer formula-
tions, such as the AmB lipid complex (ABLC), and liposomal AmB 
(L-AmB), reduce toxicity, allow the administration of higher doses, and 
improve treatment outcomes, representing major advances in AmB 
therapy (Adler-Moore and Proffitt, 2008; Botero Aguirre and Restrepo 
Hamid, 2015). Ongoing research into optimizing these formulations is 
the key to ensuring that polyenes remain an essential tool in managing 
life-threatening fungal diseases.

AmB resistance is rare and linked to mutations in the ergosterol 
biosynthesis pathway, which, by depleting of ergosterol from the 
membrane leads to the accumulation of different sterols (Fig. 2). How-
ever, resistance often results in fitness trade-offs, such as increased stress 
sensitivity and vulnerability to febrile temperatures and enhanced sus-
ceptibility to neutrophil-mediated killing (Lee et al., 2023, 2021). For 
instance, In Candida spp. resistance involves mutations in genes like 
ERG2, ERG3, ERG6, and ERG11. In C. neoformans only one resistant 
clinical isolate has been reported, linked to a mutation in ERG3 (Lee 
et al., 2023).

Fig. 1. Representation of classical antifungal drugs, their mechanisms of action and respective dates of discovery. Polyenes (1949): bind to ergosterol in the fungal 
cell membrane, forming pores that compromise cell integrity. Flucytosine (1957): once metabolized into 5-fluorouridine triphosphate, incorporates into fungal RNA, 
replacing uridylic acid and inhibiting RNA/DNA synthesis. Azoles (1969): inhibit the activity of the enzyme lanosterol 14-α-demethylase, disrupting ergosterol 
synthesis and compromising membrane integrity. Echinocandins (1987): bind to the β-(1,3)-d-glucan synthase subunit Fks1p, blocking its activity and inhibiting the 
synthesis of β-(1,3)-d-glucan, a critical structural component of the fungal cell wall. The cellular targets of each class are highlighted in a schematic representation of 
the fungal cell.
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2.2. Flucytosine

Flucytosine (5-fluorocytosine [5-FC]), a synthetic pyrimidine analog 
initially developed for antitumor therapies, was first studied as an 
antifungal agent in 1968 (Sigera and Denning, 2023; Wall and 
Lopez-Ribot, 2020). Despite its potential, 5-FC is unavailable in Canada, 
Mexico and most of South America and Africa (Ngan et al., 2022; Sigera 
and Denning, 2023).

5-FC is included in fungal therapeutic guidelines but has a limited 
spectrum compared with that of polyenes. It is effective against Candida 
albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, 
Candida lusitaniae and Cryptococcus neoformans. However, it does not 
target relevant fungal pathogens such as Aspergillus spp., Mucorales, 
Coccidioides and Histoplasma, limiting its clinical application (de Oliveira 
Santos et al., 2018; Sigera and Denning, 2023; Spadari et al., 2020).

Available in oral or intravenous forms, 5-FC enters fungal cells via 
cytosine permease and is converted into 5-fluorouracil (5-FU) (Carmo 
et al., 2023). From this point, 5-FU is metabolized into 5-fluorouridine 
triphosphate, which can incorporate the fungal ribonucleic acid 
(RNA), replace uridylic acid and thereby inhibit protein synthesis 
(Fig. 1). Additionally, 5-FU can be converted to fluoro-deoxyuridine 
monophosphate, which interferes with DNA synthesis by blocking thy-
midylate synthetase, a key enzyme in this process (Fig. 1). Since human 
cells lack cytosine permease, 5-FC presents reduced toxicity, although, 
some side effects such as leukopenia, nausea, vomiting, bone marrow 
suppression, thrombocytopenia, anemia and hepatitis, can still occur 

during treatment (Carmo et al., 2023; Houšť et al., 2020; Sigera and 
Denning, 2023).

Despite its efficacy, 5-FC faces significant challenges in clinical 
practice because of the rapid development of resistance (Bhattacharya 
et al., 2020; Sigera and Denning, 2023; Yang et al., 2023), often due to 
mutations or loss of enzymes involved in its transport and metabolism (e. 
g., FCY1, FCY2 or FUR1) or increased pyrimidine production, as 
observed in Saccharomyces cerevisiae and Candida spp. (Czajka et al., 
2023) (Fig. 2). As a result, 5-FC is rarely used as a monotherapy and is 
primarily recommended in combination with other antifungals. For 
invasive Candida infections, it is paired with AmB or voriconazole, while 
its combination with AmB is standard for the treatment of cryptococcal 
meningitis (de Oliveira Santos et al., 2018; Spadari et al., 2020).

2.3. Azoles

Azoles are a widely used class of antifungals, with many drugs being 
developed over the years and new drugs still being developed (Shafiei 
et al., 2020). The mechanism of action involves inhibiting lanosterol 
14-α-demethylase (LDM), which is essential for ergosterol synthesis 
(Fig. 1), disrupting the integrity of fungal cell membranes, leading to the 
accumulation of sterol intermediates that are toxic to the cell, impacting 
its growth and subsequent death (Maertens, 2004).

The first generation of azoles, clotrimazole, miconazole and econa-
zole, is characterized by an imidazole backbone and is used mainly as a 
topical therapeutic option. Clotrimazole and miconazole were originally 

Fig. 2. Representation of the main antifungal resistance mechanisms. Each pathway highlights specific genetic mutations and cellular processes that contribute to 
resistance. Azole resistance occurs when Erg11 is overexpressed counteracting the effect of the azole and permitting ergosterol synthesis, additionally Erg11 mu-
tations impede the binding of the azole; mutations in Erg3 prevent the accumulation of other toxic sterols; aneuploidies in chromosome 5, forming an isochromosome 
i5(L) lead to an increased number of copies of Erg11; the increased presence of ABC and MSF transporters reduces the intracellular drug concentration. Echinocandins 
resistance arises when Fks is mutated blocking the echinocandin binding and chitin synthesis upregulation, which helps to maintain the cell wall structure. Polyenes 
resistance emerges when different ERG genes are mutated, allowing the synthesis of alternative sterols shifting the cell membrane composition. RNA/DNA synthesis 
inhibitor resistance originates when transport and metabolism genes are mutated, impeding the importation of the drug to the nucleus; the increased pyrimidine 
production, diminishes the effect of the drug.
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available in oral and intravenous forms, respectively, but owing to se-
vere side effects and pharmacokinetic challenges, they were reformu-
lated for topical use, being commonly used for skin infections such as 
dermatomycoses and superficial Candida infections, such as oropha-
ryngeal and vulvovaginal candidiasis (Carmo et al., 2023). Ketoconazole 
was introduced for systemic fungal infections but has limitations such as 
poor blood-brain barrier penetration, poor efficacy in immunocompro-
mised patients, hepatotoxicity, drug interactions and dose-related side 
effects (Carmo et al., 2023; Gupta and Lyons, 2015; Maertens, 2004).

This led to the development of triazoles, which have a triazole ring 
instead of an imidazole, improving water solubility and central nervous 
system (CNS) penetration and reducing side effects. Triazoles, such as 
fluconazole and itraconazole are now available for both oral and intra-
venous applications and have a broad activity spectrum (Carmo et al., 
2023; Shafiei et al., 2020).

Fluconazole has emerged as a key treatment because of its enhanced 
activity, selectivity, improved pharmacokinetic profile with enhanced 
CNS penetration, lower serum protein binding, and safety when it is 
administered at high doses (Shafiei et al., 2020). Fluconazole is 
approved for treating patients with cryptococcal meningitis, various 
forms of candidiasis and coccidioidomycosis, although it is not effective 
against filamentous fungi (Carmo et al., 2023; Maertens, 2004; Nett and 
Andes, 2016). Over time, however, resistance to fluconazole has 
emerged, particularly in Candida and Cryptococcus species, raising con-
cerns about its long-term efficacy (Berkow and Lockhart, 2017; Bongo-
min et al., 2018; Cheong and McCormack, 2013; Lockhart et al., 2023). 
Itraconazole, another triazole with a broader spectrum of activity 
against fungi such as Aspergillus spp., Trichosporon spp., Fusarium spp., 
was later introduced (Nett and Andes, 2016; Shafiei et al., 2020). 
However, its ability to penetrate the CNS and associated side effects may 
limit its use compared with fluconazole (Carmo et al., 2023).

Voriconazole, a triazole with a fluoropyrimidine ring in its structure, 
has high bioavailability and pharmacokinetics similar to those of flu-
conazole and its being used for invasive aspergillosis and Candida and 
Cryptococcus infections (Carmo et al., 2023; Chatelon et al., 2019). 
However, its clinical use is complicated by side effects, warnings 
regarding drug interactions and recently registered Aspergillus fumigatus 
resistance development (Chatelon et al., 2019; Lockhart et al., 2023). 
Posaconazole is another significant improvement in the triazole class, 
with a broader spectrum of activity, covering Zygomycetes, Mucorales 
and Scedosporium, and is recommended for the prophylaxis of invasive 
fungal species in specific clinical cases (Leung et al., 2015; Maertens, 
2004). Isavuconazole (ISA), one of the most recent triazoles, provides 
antifungal coverage similar to that of voriconazole and posaconazole, 
with a safer profile and fewer drug interactions, making it a valuable 
addition to antifungal treatment options (Ellsworth and 
Ostrosky-Zeichner, 2020; Lewis et al., 2022).

Azole resistance often arises from mutations in the ERG11 gene, 
which encodes the target enzyme 14-α-demethylase in yeasts such as 
Candida spp. and cyp51 in molds (Czajka et al., 2023; Lee et al., 2023), 
leading to a reduced binding of the azole to its active site in the enzyme. 
More than 140 distinct Erg11 amino acid substitutions have been re-
ported to cluster in hotspot regions in C. albicans, in contrast, 
C. neoformans has fewer ERG11 mutations described in azole resistant 
clinical isolates (Fig. 2) (Lee et al., 2023). In A. fumigatus, there are two 
genes encoding Cyp51 isoenzymes (cyp51A and cyp51B), and mutations 
in cyp51A cause triazole resistance, whereas mutations in cyp51A confer 
resistance to voriconazole. Duplications in the cyp51A gene promoter in 
combination with certain amino acid substitutions appear in environ-
ments where azoles are used in agribusiness and are isolated from pa-
tients in the clinic who have never been exposed to antifungal drugs (Lee 
et al., 2023).

Mutations in other genes, such as ERG3 and ERG6 can also contribute 
to resistance, particularly in Candida species (Gregor et al., 2023). 
Cross-resistance between echinocandins and azoles has been observed, 
often due to mutations in ERG3, altered sterol composition, and reduced 

efficacy of both drug classes (Bhattacharya et al., 2020; Lee et al., 2021). 
The overexpression of transcriptional regulators such as UPC2 due to 
azole exposure can confer resistance to azoles (Czajka et al., 2023; 
Dunkel et al., 2008).

Increased efflux is another resistance mechanism, mediated by the 
ABC (ATP-binding cassette transporters) and MSF transporters (major 
facilitator superfamily transporters) (Fig. 2). The export of the drug out 
of the cell reduces the intracellular drug concentration, lowering its 
effectiveness and enhancing cell survival (Czajka et al., 2023). The 
overexpression of the ABC transporters Cdr1 and Cdr2 in C. albicans is 
caused by the development of chromosome 3 trisomies, which reduce 
drug efficacy. This overexpression can be further induced by 
gain-of-function (GOF) mutations resulting from the overexpression of 
transcriptional activator genes such as TAC1 and TAC1B and activating 
mutations in MMR1 and MMR1A in C. albicans and C. auris, respectively 
(Czajka et al., 2023; Lee et al., 2023). In C. neoformans, the over-
expression of multidrug efflux transporters is mediated by the ABC 
transporter Afr1. In A. fumigatus, the overexpression of multidrug efflux 
transporters is mediated by the ABC transporter AtrF, and the tran-
scription factor AtrR regulates cyp51A (Fig. 2) (Lee et al., 2023).

Genomic alterations such as chromosomal duplications and copy 
number variations, also contribute to azole resistance. In C. albicans, 
duplication of the left arm of chromosome 5 enhances resistance by 
increasing the number of copies of ERG11 and its regulatory transcrip-
tion factor (Lee et al., 2023). In C. auris, supernumerary chromosomes 
promote resistance (Narayanan et al., 2022), whereas chromosomal 
translocations and duplications are common resistance mechanisms in 
C. glabrata. Temporary disomies of chromosome 1 are the most common 
mechanism of heteroresistance in C. neoformans. In A. fumigatus hori-
zontal gene transfer of chromosomes can lead to voriconazole resistance 
(Lee et al., 2023).

2.4. Echinocandins

Echinocandins, discovered in the 1970s, constitute an important 
class of antifungal agents, with three drugs currently approved for 
clinical use: caspofungin, micafungin and anidulafungin (Mroczyńska 
and Brillowska-Dąbrowska, 2020). Originally derived from filamentous 
fungi and then semisynthetically produced, these compounds have a 
complex structure and are used to treat certain invasive fungal in-
fections. Echinocandins are nonribosomal lipopeptides, with cyclic 
hexapeptides and a lipophilic side chain (Hüttel, 2021; Ivanov et al., 
2022). They are water soluble, formulated as lyophilized powders, and 
administered intravenously due to poor gastrointestinal absorption 
(Szymański et al., 2022). Resistance remains low but is an emerging 
concern (Pristov and Ghannoum, 2019; Satish and Perlin, 2019).

Unlike other antifungals, echinocandins target the fungal cell wall, 
specifically β-(1,3)-d-glucan synthase, a key structural of fungal cells. 
They inhibit β-(1,3)-D-glucan synthase through binding to the enzyme 
subunit Fks1p, blocking its activity and consequently inhibiting the 
biosynthesis of β-(1,3)-D-glucan, leading to the destabilization of the 
fungal cell wall and causing cell death (Fig. 1). This mechanism of action 
has a limited sensitivity to some species, restricting their spectrum of 
action (Mroczyńska and Brillowska-Dąbrowska, 2020; Szymański et al., 
2022). Due to the high composition of glucans in the fungal cell wall and 
their absence in mammalian cells, their mechanism of action results in 
high efficacy and fewer toxic effects. Clinically, echinocandins are 
first-line treatments for candidiasis or coadministered with another 
antifungal agent to treat aspergillosis, with no efficacy detected against 
Cryptococcus, Fusarium or Mucorales. Susceptible fungi include 
C. albicans, C. auris, C. parapsilosis, C. krusei, A. fumigatus, A. flavus and 
A. niger (Cândido et al., 2020; Mroczyńska and Brillowska-Dąbrowska, 
2020; Szymański et al., 2022). Despite their lower toxicity, side effects 
such as edema, bronchospasm, dyspnea and low blood pressure may 
occur (Szymański et al., 2022).

The Food and Drug Administration (FDA) first approved caspofungin 
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in 2001 for invasive aspergillosis, candidaemia and esophageal candi-
diasis, including prophylaxis in high-risk patients such as those with HIV 
or cancer. Micafungin, which was approved in 2005, has reduced he-
molytic activity and is recommended for Candida infections, esophageal 
and deep tissue candidiasis, and prophylaxis in pediatric and elderly 
patients (Mroczyńska and Brillowska-Dąbrowska, 2020). However, 
further studies are needed to assess the efficacy of each echinocandin 
against different Candida and Aspergillus species.

Resistance primarily arises from mutations in the β-1–3 glucan syn-
thase enzymes FKS1 (Candida, Cryptococcus and Aspergillus spp.) and 
FKS2 in C. glabrata (Fig. 2) (Czajka et al., 2023; Lee et al., 2023). In 
Candida spp., point mutations in FKS1, especially in hotspot regions, 
confer resistance, with C. albicans, C. tropicalis, P. kudriavzevii, and 
C. glabrata being affected. These mutations, particularly gain-of-function 
(GOF) mutations in hotspot regions, can confer resistance. In C. albicans, 
a single hotspot mutation can confer resistance to all three echino-
candins, although the low prevalence of FKS1 mutations is due to their 
detrimental effects on cell fitness, limiting their spread in the absence of 
echinocandin pressure (Ben-Ami et al., 2011; Lee et al., 2023). Addi-
tionally, point mutations in the PDR1 transcription factor in C. glabrata 
can also contribute to echinocandin resistance (Vu et al., 2021).

Figs. 1 and 2 illustrate, respectively, the mechanisms of action of the 

antifungals mentioned above and the resistance mechanisms developed 
by fungi against these antifungals.

3. Opportunities: new antifungal drugs in clinical trials

New antifungal agents are currently under development at different 
phases of clinical trials, potentially offering a new arsenal to fight fungal 
infections. These promising drugs target (1) nucleic acid metabolism, (2) 
the fungal cell membrane and (3) the fungal cell wall.

3.1. Nucleic acid metabolism

3.1.1. Olorofim
Olorofim represents a novel class of antifungal agents known as 

orotomides (Oliver et al., 2016), which act by inhibiting fungal dihy-
droorotate dehydrogenase (DHODH), an enzyme crucial for pyrimidine 
synthesis in fungi (Oliver et al., 2016; Rauseo et al., 2020; Sousa et al., 
2021) (Fig. 3). Importantly, this drug exhibits fungal-specific action, as 
analogous human enzymes are unaffected, significantly reducing 
toxicity and rendering olorofim a potentially safe and effective option 
for the treatment of invasive fungal infections (Oliver et al., 2016).

Olorofim lacks broad-spectrum activity; however, recent studies 

Fig. 3. Representation of recently developed antifungal drugs and their mechanisms of action. Fosmanogepix (2016): inhibits the enzyme Gwt1, which is involved in 
the trafficking and anchoring of mannoproteins, essential components of the fungal cell wall. Encochleated AmB (2019): shares the mechanism of action of classic 
AmB (ergosterol binding and pore formation), but the drug molecules are encapsulated with calcium ions within a lipid bilayer sheet, rolled into a spiral structure. 
Ibrexafungerp (2021): inhibits β-(1,3)-d-glucan synthase, disrupting the synthesis of β-(1,3)-d-glucan, a vital structural component of the fungal cell wall. Olorofim 
(2021): inhibits dihydroorotate dehydrogenase (DHODH), a critical enzyme for pyrimidine biosynthesis. Oteseconazole (2022), VT-1598 (2022), and Opelconazole 
(2021): inhibit lanosterol 14-α-demethylase, impairing ergosterol synthesis and compromising membrane integrity. These drugs have a mechanism of action similar 
to azoles but with structural and functional improvements. Rezafungin (2023): a novel echinocandin, also inhibits β-(1,3)-d-glucan synthase, targeting fungal cell 
wall synthesis. The figure includes a timeline highlighting the drugs’ latest FDA status, either as orphan or approved drugs, alongside a schematic representation of 
their specific cellular targets in the fungal cell.
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have demonstrated its in vitro activity against several clinically relevant 
fungal species, including dimorphic fungi such as Sporothrix spp. 
(Bombassaro et al., 2023) and Coccidioides spp., as demonstrated in vivo 
efficacy in a CNS coccidioidomycosis model (Nathan P Wiederhold et al., 
2018b). It also shows efficacy against hyaline molds such as Aspergillus 
spp., including azole-resistant isolates (Buil et al., 2017; Oliver et al., 
2016; Rivero-Menendez et al., 2019), and species within the Fusarium 
solani and Fusarium oxysporum complexes (Badali et al., 2021; Kirchhoff 
et al., 2020a). Additionally, olorofim has activity against dematiaceous 
fungi such as Scedosporium spp. and Lomentospora prolificans (Biswas 
et al., 2018; Kirchhoff et al., 2020a, 2020b; Wiederhold et al., 2017), as 
well as dermatophytes, including Trichophyton spp., Epidermophyton 
spp., and Microsporum spp., eradicating these fungi in an in vivo der-
matophytosis model (Mirbzadeh Ardakani et al., 2021). However, 
olorofim does not exhibit activity against yeasts (Hoenigl et al., 2021), 
Mucorales (Georgacopoulos et al., 2021), and certain dematiaceous 
fungi, including Exophiala dermatitidis ((Kirchhoff et al., 2020a), and 
Alternaria spp. (Singh et al., 2021).

Nine phase I clinical trials of olorofim have been completed, 
assessing its tolerability, safety, and pharmacodynamics in single- and 
multiple-dosing regimens in both oral and intravenous formulations 
(NCT02142153, NCT0239448, NCT02342574, NCT02737371, and 
NCT02808741). Additionally, a study investigating the interaction of 
olorofim with itraconazole and rifampin was conducted 
(NCT04171739). Recently, a phase IIb trial was completed in patients 
with invasive fungal infections refractory or resistant to standard anti-
fungal therapies (NCT03583164) (Hoenigl et al., 2021; Jacobs et al., 
2022). In 2019, the FDA granted olorofim Breakthrough Therapy 
designation for the treatment of invasive mold infections in patients 
with limited or no treatment options, a designation later extended in 
2020 to include CNS coccidioidomycosis refractory to standard care. 
Furthermore, in 2020, olorofim received orphan drug designation for 
the treatment of invasive aspergillosis, Lomentospora prolificans, and 
Scedosporium spp. infections, which was subsequently expanded to cover 
coccidioidomycosis. Additionally, in 2020, olorofim received the Qual-
ified Infectious Disease Product designation for the treatment of several 
invasive fungal infections, including invasive aspergillosis, scedospor-
iosis, lomentosporiosis, coccidioidomycosis, scopulariopsis, and fusar-
iosis (Hoenigl et al., 2021; Jacobs et al., 2022).

3.2. Fungal cell membrane

3.2.1. Oteseconazole (VT-1161) and VT-1598
Oteseconazole (VT-1161) and VT-1598 represent a new generation 

of azoles with reduced potential for safety issues, as they exhibit better 
selectivity for fungal cells (Jacobs et al., 2022; Seiler and 
Ostrosky-Zeichner, 2021). Unlike previous generations of azoles, which 
contain an imidazole or triazole moiety that binds to the human cyto-
chrome, these new generation azoles feature a tetrazole moiety, 
improving target selectivity due to attenuated interactions between the 
metal-binding groups and the heme cofactor (Sobel and Nyirjesy, 2021) 
(Fig. 3).

These new-generation azole agents have shown potent activity 
against a broad range of Candida species when tested against a panel of 
clinical isolates of common yeast species that cause invasive infections, 
including C. krusei, fluconazole- and echinocandin-resistant C. glabrata 
and the emergent multiresistant C. auris (Nishimoto et al., 2019; Schell 
et al., 2017; Warrilow et al., 2014; Wiederhold et al., 2019a). Significant 
activity has also been observed against Cryptococcus species, which 
exhibit higher activity than fluconazole against C. neoformans and 
C. gattii isolates (Nathan P Wiederhold et al., 2018c). The activity of 
these new-generation azoles extends to dimorphic fungi such as Histo-
plasma capsulatum, Blastomyces dermatitidis, Coccidioides posadasii, and 
C. immitis (Shubitz et al., 2015; Nathan P Wiederhold et al., 2018c; 
Nathan P. Wiederhold et al., 2018a), as well as filamentous fungi such as 
Aspergillus spp. (Garvey et al., 2020; Nathan P. Wiederhold et al., 2018b) 

and Rhizopus spp. (Gebremariam et al., 2017; Nathan P Wiederhold 
et al., 2018c), with VT-1598 being the agent that has the broadest 
spectrum.

These new azole drugs are at various stages of clinical trials and 
development status. Phase 1 studies regarding the safety and pharma-
cokinetics of VT-1598 have been completed (NCT04208321), and for 
the treatment of coccidioidomycosis, the FDA has granted QIDP, fast 
track, and orphan drug designation to VT-1598, for the treatment of 
coccidioidomycosis. A phase 2 study demonstrated the safety and effi-
cacy of oteseconazole in treating recurrent vaginal candidiasis, leading 
to its designation as a QIDP and fast-Track status by the FDA (Brand 
et al., 2018). Subsequently, multiple Phase 3 clinical trials 
(NCT02267382, NCT03562156, NCT03561701, and NCT03840616) 
were conducted and completed, revealing the effectiveness of oteseco-
nazole in preventing recurrent vaginal candidiasis episodes (Jacobs 
et al., 2022; Martens et al., 2022; Sobel, 2022).

3.2.2. PC945 (Opelconazole)
PC945 is a new generation of triazole antifungals that are first-in- 

class inhaled antifungal drugs (Cass et al., 2021; Murray et al., 2020). 
Aerosolized delivery to the lung results in higher concentrations in the 
epithelial lining fluid and bronchoalveolar lavage fluid (Rodvold et al., 
2011) and is an important tool to fight and prevent invasive fungal in-
fections of the sinopulmonary tract (Seiler and Ostrosky-Zeichner, 
2021). Its mechanism of action is the same as that described for the 
azoles drugs, the inhibition of lanosterol 14α-demethylase (Hoenigl 
et al., 2021; Murray et al., 2020) (Fig. 3), however some structural 
modifications lead to chemical and physical attributes of PC945, which 
results in high local concentrations and prolonged lung retention (Cass 
et al., 2021; Hoenigl et al., 2021).

PC945 has broad-spectrum activity against yeasts and molds. Among 
the yeasts, PC945 showed activity against C. albicans, C. glabrata and 
C. krusei (Colley et al., 2017; Hoenigl et al., 2021), being more potent in 
vitro against C. auris than posaconazole, voriconazole, and fluconazole 
(Rudramurthy et al., 2019). Activity against C. neoformans and C. gattii 
was also described (Colley et al., 2017). Studies have shown that, 
compared with posaconazole, itraconazole, and voriconazole, PC945 
has superior activity against Aspergillus spp. in both azole-susceptible 
and azole-resistant strains (Colley et al., 2017). PC945 lacks activity 
against most Mucorales; however, remarkable potency was observed 
against Rhizopus oryzae (Colley et al., 2017).

A phase 1 trial of PC945 to investigate the safety, tolerability and 
pharmacokinetics of single and repeated doses of PC945 has been 
completed; (NCT02715570) and A phase 3 trial for PC945, is expected to 
launch in the future, targeting adults with limited or no other treatment 
options for invasive pulmonary aspergillosis as part of combination 
antifungal therapy.

3.2.3. Encochleated AmB (MAT2203)
Encochleated AmB is a novel formulation designed for oral admin-

istration. It consists of a solid lipid bilayer sheet rolled into a spiral 
(Shende et al., 2019; Zarif, 2005), which consists of entrapped AmB 
molecules along with calcium ions. Upon uptake by phagocytic cells, a 
calcium gradient forms between the high concentration within the 
cochleate and the lower levels in the cell cytoplasm, causing the coch-
leate to open and release AmB into the cells (Aigner and Lass-Flörl, 
2020; Shende et al., 2019; Skipper et al., 2020) (Fig. 3). This structure 
protects the drug from degradation and enables targeted cell delivery, 
leading to high concentrations inside cells that enhance the elimination 
of intracellular pathogens while minimizing systemic toxicity by 
reducing plasma levels (Aigner and Lass-Flörl, 2020; Skipper et al., 
2020).

Encochleated AmB showed in vitro activity similar to that of deoxy-
cholate AmB against Candida spp. (Santangelo et al., 2000; Zarif et al., 
2000) and Aspergillus spp. (Delmas et al., 2002) and showed successful 
outcomes in immunocompromised mouse models of widespread 
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C. albicans infection and disseminated aspergillosis, similar to treatment 
with the intraperitoneal deoxycholate AmB (Delmas et al., 2002; San-
tangelo et al., 2000; Zarif et al., 2000). In addition, Encochleated AmB in 
combination with 5-FC was used in a mouse model of cryptococcal 
meningoencephalitis, which demonstrated strong antifungal activity 
with similar efficacy to the combination of 5-FC with deoxycholate AmB 
(Lu et al., 2019).

In 2018, a clinical trial was conducted to assess the safety and effi-
cacy of Encochleated AmB. This initial study (NCT04031833) was a 
multicenter, randomized trial designed to evaluate the safety, tolera-
bility, and efficacy of 200 mg and 400 mg doses of Encochleated AmB 
compared with a single 150 mg dose of fluconazole, for the treatment of 
moderate to severe vulvovaginal candidiasis. Although Encochleated 
AmB was well tolerated and no renal or hepatic toxicity was observed, it 
was associated with lower clinical cure rates and a greater incidence of 
adverse events than fluconazole. Additionally, another study on candi-
diasis (NCT02629419) was an open-label, dose-titration trial investi-
gating the efficacy, safety, and pharmacokinetics of Encochleated AmB 
in treating mucocutaneous candidiasis infections. This trial shows 
improvement in clinical signs and symptoms without any evidence of 
renal or hepatic toxicity.

3.3. Fungal cell wall

3.3.1. Fosmanogepix
Fosmanogepix is a new and promising antifungal agent for the 

treatment of invasive fungal infections that targets the fungal cell wall 
by inhibiting the enzyme Gwt1, an inositol acyltransferase that com-
promises cell wall integrity, leading to growth inhibition and cell death. 
This enzyme plays an essential role in the trafficking and anchoring of 
mannoproteins (Almajid et al., 2024; Miyazaki et al., 2011; Tsukahara 
et al., 2003; Watanabe et al., 2012) (Fig. 3), which are essential for 
fungal adhesion to host cells prior to colonization and infection, the 
fungal cell wall, and the plasma membrane, compromising cell wall 
integrity and leading to fungal cell growth inhibition and death (Almajid 
et al., 2024; Tsukahara et al., 2003).

Fosmanogepix has broad-spectrum antifungal activity, showing 
strong efficacy against various common and resistant fungal species, 
suggesting promising therapeutic options. It effectively inhibits Asper-
gillus species, outperforming other antifungal agents, such as vor-
iconazole, and is effective against resistant molds, such as resistant 
Aspergillus species and certain Scedosporium/Lomentospora strains 
(Alkhazraji et al., 2020; Eschenauer, 2024; Miyazaki et al., 2011; Sha-
heen et al., 2021). Fosmanogepix, also exhibits activity against Candida, 
including fluconazole-resistant strains such as C. auris and C. albicans 
with FKS mutations (Espinel-Ingroff and Wiederhold, 2024). Its efficacy 
extends to C. neoformans and Coccidioides species (Giamberardino et al., 
2022; Trzoss et al., 2019). In animal models, Fosmanogepix has been 
shown to improved survival and reduced fungal burden in conditions 
such as Candida endophthalmitis, hematogenous meningoencephalitis, 
and invasive infections (Petraitiene et al., 2021). Notably, it has syner-
gistic effects with fluconazole against cryptococcal meningitis 
(Giamberardino et al., 2022). Its activity against Mucorales is moderate, 
but it has demonstrates significant potential in treating pulmonary 
mucormycosis, revealing its potential in treating neglected tropical 
diseases (Gebremariam et al., 2020).

Phase 1 studies on safety and pharmacokinetics evaluated oral and 
intravenous doses of Fosmanogepix in healthy participants, which 
showed linearity and proportionality in plasma exposure, with good 
tolerability and a half-life of approximately 2.5 days, without exhibiting 
toxicity. The adverse events were generally mild (Hodges et al., 2017). 
In phase 1b, a study in patients with neutropenic acute myeloid leuke-
mia undergoing chemotherapy showed good tolerability for Fosmano-
gepix, with mild adverse events such as nausea and increased alanine 
aminotransferase. No serious adverse events led to discontinuation of 
the treatment (Cornely et al., 2023). Two studies evaluated the efficacy 

and safety of Fosmanogepix in patients with candidaemia. The first, in 
patients with common candidaemia, demonstrated a success rate of 80 
% and a survival rate of 85 % were reported (Pappas et al., 2023), and in 
candidaemia caused by C. auris, showed a success rate of 89 % and good 
tolerability of the treatment were reported (Vazquez et al., 2023).

3.3.2. Ibrexafungerp
Ibrexafungerp, a next-generation triazole class antifungal that works 

by inhibiting the synthesis of an essential component of the fungal cell 
wall, (1–3)-β-D-glucan synthase, disrups the fungal cell wall, leading to 
fungal death (Apgar et al., 2021; Azie et al., 2020; Ghannoum et al., 
2020) (Fig. 3). Ibrexafungerp has good tolerability and a favorable 
pharmacokinetic profile, including high oral bioavailability and a pro-
longed half-life, making it suitable for both intravenous and oral 
administration (Wring et al., 2017).

Ibrexafungerp exhibits a broad antifungal spectrum of activity, 
demonstrating efficacy against various pathogenic fungi, including 
those resistant to conventional treatments (Aldejohann et al., 2024). 
Ibrexafungerp has shown potent activity against several Candida species, 
including C. glabrata and different clades of C. auris (Azie et al., 2020; 
Ghannoum et al., 2020). Furthermore, ibrexafungerp retains in vitro 
activity against echinocandin-resistant strains of C. glabrata (Aldejohann 
et al., 2024). In addition, ibrexafungerp has shown antibiofilm proper-
ties against Candida species, including C. auris and C. glabrata 
(Marcos-Zambrano et al., 2017; Nunnally et al., 2019).

Ibrexafungerp has also demonstrated strong activity against several 
Aspergillus species, including azole-resistant strains (Ghannoum et al., 
2018; Jiménez-Ortigosa et al., 2014; Pfaller et al., 2013). Its activity 
against Mucorales and Fusarium is limited, although it remains effective 
against other fungi, such as Alternaria and Cladosporium (Angulo et al., 
2022; Lamoth and Alexander, 2015). In vivo, ibrexafungerp significantly 
reduced fungal burden in the kidneys in infections caused by Candida 
and Aspergillus, including resistant strains (Ghannoum et al., 2018; 
Petraitis et al., 2020; Wring et al., 2017). When combined with other 
antifungals, such as isavuconazole, it has synergistic effects, improving 
survival and reducing pulmonary damage in models of invasive asper-
gillosis (Petraitis et al., 2020). Ibrexafungerp also exhibits activity 
against ascus forms of Pneumocystis, controlling colonization and 
infection without complete eradication, which may be valuable in 
treating severe pulmonary infections (Borroto-Esoda et al., 2020).

Phase 2 and 3 studies have demonstrated the safety and efficacy of 
Ibrexafungerp for the treatment of invasive candidiasis. The use of oral 
Ibrexafungerp (1000 mg loading dose, followed by daily doses of 500 mg 
and loading doses of 1250 mg, followed by daily doses of 750 mg) after 
initial therapy with echinocandin was compared with treatment using 
an 800 mg loading dose of fluconazole, followed by daily doses of 400 
mg; or daily intravenous doses of 100 mg of micafungin for fluconazole- 
resistant isolates. The results were similar across treatments, showing 
efficacy comparable to that of currently used antifungals (Spec et al., 
2019). In a recent clinical study (NCT03059992), patients diagnosed 
with invasive candidiasis with documented evidence of failure, intol-
erance, or reported toxicity to standard antifungal treatment were 
treated with Ibrexafungerp, and the results revealed a favorable thera-
peutic response in the majority of patients with difficult-to-treat Candida 
spp. infections, including those caused by non-albicans Candida species 
(Alexander et al., 2020). A phase 3 study (NCT03363841) evaluated the 
efficacy of oral Ibrexafungerp in treating patients with invasive candi-
diasis or candidaemia caused by C. auris, and the results demonstrated 
significant efficacy, with 80 % of patients responding to the treatment, 
highlighting the importance of this new drug for treating infections 
caused by C. auris (Siebert et al., 2022). A phase 2 study of the use of 
Ibrexafungerp in the treatment of vulvovaginal candidiasis reported an 
efficacy rate of 78 %, whereas patients treated with fluconazole reported 
an efficacy of 66 % (Helou and Angulo, 2017).
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3.3.3. Rezafungin
Rezafungin is a new antifungal agent belonging to the echinocandin 

class that acts by inhibiting (1→3)-β-D-glucan synthesis (Jacobs et al., 
2022; Sofjan et al., 2018) (Fig. 3). Unlike conventional echinocandins, 
which require daily administration, rezafungin has a longer half-life, 
allowing weekly doses (Krishnan et al., 2017). This characteristic of-
fers a significant advantage in terms of convenience and treatment 
adherence, especially in hospital settings and for patients undergoing 
prolonged therapy (Jacobs et al., 2022; Wiederhold et al., 2019b). 
Additionally, compared with other therapeutic options, rezafungin has 
shown a favorable safety profile, with minimal adverse events.

Like to other echinocandins, rezafungin has potent activity against 
Candida species, both azole-sensitive and azole-resistant (Pfaller et al., 
2020; Tóth et al., 2019), and in vivo studies have shown that rezafungin 
has activity against C. auris, significantly reducing fungal burden and 
increasing survival rates in infected animals (Hager et al., 2018). 
Rezafungin also has activity against both azole-sensitive and 
azole-resistant species of Aspergillus (Nathan P Wiederhold et al., 
2018a), exhibiting in vivo activity in a mouse model of azole-resistant 
disseminated invasive aspergillosis (Wiederhold et al., 2019b). Reza-
fungin is also active against some dermatophyte species, such as Trich-
phyton mentagrophytes, T. rubrum, Microsporum gypseum and 
Epidermophyton floccosum (Hoenigl et al., 2021).

Rezafungin has shown favorable safety and efficacy profiles in 
several clinical studies. Phase I studies demonstrated that weekly doses 
of up to 400 mg were safe, with most adverse effects being mild and 
transient (NCT02516904 and NCT02551549) (Sandison et al., 2017). 
Phase II studies (NCT02734862) further validated its safety in treating 
candidaemia and invasive candidiasis, with common mild side effects 
including diarrhea and hypokalemia (Thompson et al., 2021).

Efficacy studies in phase II trials have indicated that rezafungin, 
particularly with a 400 mg/200 mg weekly dosing regimen, is effective 
for candidaemia and invasive candidiasis and has high cure rates and 
rapid clearance of infection compared with standard care with caspo-
fungin (Thompson et al., 2021). However, a phase II trial in vulvova-
ginal candidiasis (VVC) revealed that topical formulations of rezafungin 
were less effective than fluconazole was, leading to the discontinuation 
of its topical development (Nyirjesy et al., 2019).

Ongoing phase III trials (ReSTORE, NCT03667690 and ReSPECT, 
NCT04368559) aimed to evaluate its use in invasive candidiasis treat-
ment and as prophylaxis against invasive fungal diseases caused by 
Candida spp., Aspergillus spp., and P. jirovecii, in patients undergoing 
allogeneic blood and marrow transplantation (Hoenigl et al., 2021).

Fig. 3 illustrates the mechanisms of action of the new antifungal 
options mentioned above.

4. Innovative approaches to mycosis therapy: exploring new 
treatment strategies

Given the increasing prevalence of resistant fungal infections, the 
toxicity of current antifungal agents, and the limited number of thera-
peutic options available, there is an urgent need to develop new anti-
fungal treatments (WHO, 2022). This review explores promising 
antifungal strategies, including drug repurposing, 
nanotechnology-based innovations, antifungal peptides, combination 
therapies, and immunotherapy.

4.1. Drug repurposing strategies

Drug repurposing finds new applications for existing drugs 
improving the discovery and development of antifungal treatments with 
a novel fungal-specific mode of action, good selectivity and low toxicity 
(Kulkarni et al., 2023; Xue et al., 2018). Various drug classes, such as 
antibacterial, immunosuppressant, statin, antipsychotic, antidepressant, 
antiarrhythmic and antiviral drugs, exhibit antifungal activity with po-
tential for clinical application (Zhang et al., 2021).

Screening compound libraries has identified potential antifungal 
candidates for drug repositioning (Barbarossa et al., 2022; dos Reis 
et al., 2021a).

In an effort to identify potential antifungal candidates against 
A. fumigatus, dos Reis et al. (2021a) screened 1127 compounds from two 
distinct drug collections. Ten effective drugs from various classes that 
exhibit either fungicidal or fungistatic properties with the potential to 
target specific cellular components were identified, as detailed in 
Table 1. Among them, miltefosine, an antiprotozoal, bactericidal, and 
antifungal agent, that seems to affect the sphingolipid biosynthesis 
pathway in A. fumigatus, has emerged as a promising candidate (dos Reis 
et al., 2021a).

In a subsequent screening with 1402 compounds against 
A. fumigatus, brilacidin emerged as the most prominent compound (dos 
Reis et al., 2023). Brilacidin, a drug that mimics host defense peptides, 
has been repurposed for use against several major human fungal path-
ogens, including A. fumigatus, C. neoformans, C. albicans, C. auris, 
Rhizopus oryzae, Rhizopus delemar, Lichtheimia corymbifera, Mucor circi-
neloides, Scedosporium apiospermum, Fusarium species, Mucor species, 
Sporothrix brasiliensis, Sporothrix schenckii and Rhizopus species (Table 1) 
(Diehl et al., 2024; dos Reis et al., 2023; Larwood and Stevens, 2024). In 
yeast cells, brilacidin disrupts the membrane, alters cell wall integrity, 
and affects calcium metabolism (Diehl et al., 2024). In murine models of 
corneal infections caused by A. fumigatus, brilacidin reduced the fungal 
burden. In addition, brilacidin acts synergistically when combined with 
caspofungin and voriconazole against A. fumigatus (dos Reis et al., 
2023); in the same way, the synergistic interaction of brilacidin with the 
new antifungal drug ibrexafungerp was described by Dos Reis et al. 
(2024) (Table 1).

Following the repositioning strategy, the compound collection called 
the “Pandemic Response Box”, with 400 different compounds coming 
from the Medicines for Malaria Venture (MMV) and the Drugs for 
Neglected Diseasesm, was screened against C. neoformans, C. deuter-
ogattii and C. auris. The antifungal activity was detected for five com-
pounds, MMV1633966, MMV019724, MMV1593541, MMV565773, 
and MMV1593537 (Table 1), with the latter exhibiting the greatest 
potential. MMV1593537 presented fungicidal activity, promoted cell 
wall defects, reduced capsule size and increased the chitinase activity, 
likely through chitin enzymatic hydrolysis (de Oliveira et al., 2022).

Protease inhibitors (PIs) used for HIV treatment also demonstrated 
antifungal activity and potential for repurposing. HIV PIs reduce the 
levels of secreted aspartic proteases (Saps), a key virulence factors 
(Gruber et al., 1999). In addition, PIs also affect the lipid synthesis, 
biofilm formation, and the adhesion to epithelial cells and endocytosis, 
followed by promising responses for the control of in vivo infections in 
both immunocompetent and immunosuppressed mice (Palmeira et al., 
2018b, 2008; Fenley et al., 2022). Indinavir has potential for inhibiting 
fungal pathogens such as C. albicans, C. neoformans, A. fumigatus, His-
toplasma capsulatum var. capsulatum and Fonsecaea pedrosoi (Blasi et al., 
2004a; Brilhante et al., 2016; dos Reis et al., 2021a; Gruber et al., 1999; 
Palmeira et al., 2018b). The other five HIV PIs, ritonavir, atazanavir, 
saquinavir, lopinavir, and nelfinavir, exhibited synergistic activity with 
AmB against C. neoforamans and C. gattii, suggesting a potential strategy 
to reduce de AmB doses and the treatment costs (Alkashef and Seleem, 
2024).

Furthermore, atazanavir and saquinavir showed synergistic activity 
with azoles in the control of the multidrug-resistant pathogen C. auris, as 
shown in Table 1 (Elgammal et al., 2023a, 2023b). The combinations 
with posaconazole and ritonavir, almost completely reduced the C. auris 
burden in the kidneys of infected mice. The combination of atazanavir 
and saquinavir with posaconazole also demonstrated anti-C. auris bio-
film activity, reducing biofilm formation by 66 % compared with that of 
the untreated control (Elgammal et al., 2024). These combinations were 
also effective against C. albicans, C. tropicalis, C. parapsilosis, C. krusei and 
C. glabrata, which are among the most clinically important pathogens of 
Candida species (Cordeiro et al., 2017; Lohse et al., 2020; Santos et al., 
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Table 1 
Advances in drug repositioning against pathogenic fungi.

Drug Fungi MIC In vivo Mode of action Drug in 
combination

Reference

3-bromopyruvate 
(3BP)

C. albicans 
C. glabrata 
C. tropicalis

256 μg/mL Yes, mouse model Unknow Unknow (Jothi et al., 2023)

5-Fluorouracil C. albicans 0.25–1 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Albendazole F. pedrosoi 

C. neoformans 
A. fumigatus 
A. flavus 
A. terreus 
A.nidulans 
A. niger

1.25 μM 
5 μM 
0.03–1 mg/L

No Unknow Unknow (Berthet, 2003; Coelho et al., 2023; 
Sutar et al., 2021)

Atazanavir C. neoformans 
C. gattii 
C. auris 
C. albicans 
C. tropicalis 
C. parapsilosis 
C. krusei 
C. glabrata

16 μg/mL 
>128 μg/mL

Yes, C. elegans and murine 
model

Sap hydrolytic activity AmB (0.0625 μg/ 
mL). 
Posaconazole (3 
mg/Kg) 
Itraconazole (5 
mg/Kg)

(Alkashef and Seleem, 2024; Elgammal 
et al., 2024)

Bleomycin C. albicans 1–4 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Bleomycin S. cerevisiae 

C. neoformans 
Candida spp. 
A. fumigatus

3.2 μg/mL 
6.4 μg/mL 
0.39–12.5 μg/mL 
3.2 μg/mL

No Unknow Unknow (Graybill et al., 1996; Moore et al., 
2003;Pokharel et al., 2022)

Brilacidin A. fumigatus
C. neoformansC. albicansC. aurisL. 
corymbiferaMucor circineloidesS. 
apiospermumFusarium speciesMucor 
speciesSporothrix brasiliensisSporothrix 
schenckiiRhizopus species

>80 µM 
2.5 µM 
80 µM 
8 µM 
16 µM 
8 µg/mL 
16–64 µg/mL 
32–64 µg/mL 
64 µg/mL 
16–32 µg/mL 
32–64 µg/mL

Yes, murine model Unknow Caspofungin 0.2 or 
0.5 µg/mL) 
Voriconazole 
(0.125 -0.25 µg/ 
mL)

(Dos Reis et al., 2024; dos Reis et al., 
2023; Larwood and Stevens, 2024)

Carboplatin C. albicans 0.5–1 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Cisapride A. fumigatus 1.56 µM No Parasympathomimetic acting as a 

serotonin 5-HT4 agonist.
Unknow (dos Reis et al., 2021b; Orihata and 

Sarna, 1994)
Cisplatin C. albicans 0.5–1 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Darunavir C. albicans 512 μg/mL Yes, G. mellonella Sap hydrolytic activity Unknow (Fenley et al., 2022)
Decarbazine C. albicans 0.25–1 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Docetaxel C. albicans 2–4 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Doxorubicin C. albicans 1 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Econazole nitrate A. fumigatus 12.5 µM No Inhibits ergosterol synthesis Unknow (dos Reis et al., 2021b; Heel et al., 

1979)
Enalaprilat A. fumigatus 25 µM No Angiotensin-converting enzyme 

inhibitor
Unknow (Davies et al., 1984; dos Reis et al., 

2021b)
Etoposide C. albicans 1–4 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Fenbendazole C. neoformansC. Gattii 0.012 g/ml Yes, murine model Affects-tubulin distribution and 

protein kinases
AmB 
0.0625–0.2500 µg/ 
ml

(de Oliveira et al., 2024, 2020)

Fluoxetine Candida spp 40–160 µg/mL No Unknow Unknow (Costa Silva et al., 2017)

(continued on next page)
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Table 1 (continued )

Drug Fungi MIC In vivo Mode of action Drug in 
combination 

Reference

Fluvastatin A. fumigatus 25 µM No Blocks ergosterol biosynthesis by 
inhibition of farnesyl 
pyrophosphate production

Unknow (dos Reis et al., 2021b; Tavakkoli et al., 
2020)

Gemcitabine C. albicans 2–4 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Indinavir F. pedrosoi  No Unknow Unknow (Palmeira et al., 2018a)
Indinavir 

sulphate
A. fumigatus 
C. albicans 
C. neoformans 
F. pedrosoi

6.25–10 µM No Protease inhibitor Unknow (Blasi et al., 2004b; dos Reis et al., 
2021b; Gruber et al., 1999; Palmeira 
et al., 2018a)

Iodoquinol A. fumigatus 2 µM No Unknow Unknow (dos Reis et al., 2021b; Gupta et al., 
2004)

Irinotecan C. albicans 1 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Leucovorin or 

folinic acid
C. albicans 1 mg/mL No Unknow Unknow (Wakharde et al., 2018)

Lopinavir C. albicans 
C. neoformans 
C. gattii

IC50 = 39.8 μM 
16 μg/mL

Yes, murine and C. elegans 
model.

Inhibited the Sap hydrolytic 
activity.

Fluconazole (10 
mg/mL) 
AmB (0.0625 μg/ 
mL)

(Alkashef and Seleem, 2024; Santos 
et al., 2021)

Mesoridazine A. fumigatus 3.12 µM No Unknow Unknow (dos Reis et al., 2021b; Su, 2004)
Miltefosine A. fumigatus 10 µM No Possibly interferes with 

sphingolipid biosynthesis.
Unknow (dos Reis et al., 2021b; Roatt et al., 

2020)
MMV565773 C. neoformans 

C. gattii 
C. auris

2,5–10 µM No Unknow Unknow (de Oliveira et al., 2022)

MMV019724 C. neoformans 
C. gattii 
C. auris

2,5–5 µM No Unknow Unknow (de Oliveira et al., 2022)

MMV1593537 C. neoformans 
C. gattii 
C. auris

5 µM 
5 µM 5M

No Seems associated with chitinase 
activity

Unknow (de Oliveira et al., 2022)

MMV1593541 C. neoformans 
C. gattii 
C. auris

10 µM No Unknow Unknow (de Oliveira et al., 2022)

MMV1633966 C. neoformans 
C. gattii 
C. auris

2,5–5 µM No Unknow Unknow (de Oliveira et al., 2022)

Nelfinavir C. neoformans 
C. gattii 
F. pedrosoi

16 μg/mL C. elegans - AmB (0.125 
μg/mL) combined with 
nelfinavir (8 μg/mL)- 
reduce fungal load.

Sap hydrolytic activity AmB (0.0625 μg/ 
mL)

(Alkashef and Seleem, 2024; Palmeira 
et al., 2018a)

Oxaliplatin C. albicans 1–2 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Oxiconazole 

nitrate
A. fumigatus 25 µM No Inhibits ergosterol biosynthesis. Unknow (Del Rosso and Kircik, 2013; dos Reis 

et al., 2021b)
Paclitaxe C. albicans 2 mg/mL No Unknow Unknow (Wakharde et al., 2018)
Paroxetine Candida spp 10–15.9 µg/mL No Unknow Unknow (Costa Silva et al., 2017)
Ritonavir C. neoformans 

C. gattii 
H. capsulatum 
F. pedrosoi

16 μg/mL 
0.0312 to 4 μg mL/mL and 
from 0.0625 to 1 μg mg/mL 
for ritonavir in filamentous 
and yeast phase 
100 μM

Yes, C. elegans model Sap hydrolytic activity AmB (0.0625 μg/ 
mL) 
Itraconazole

(Alkashef and Seleem, 2024; Brilhante 
et al., 2016; Palmeira et al., 2018a)

Saquinavir C. neoformans 
C. gattii 
C. auris 

16 μg/mL 
>128 μg/mL 
512 μg/mL 

Yes, murine and G. 
mellonella models

Sap hydrolytic activity AmB (0.0625 μg/ 
mL) 
Posaconazole (3 

(Alkashef and Seleem, 2024; Brilhante 
et al., 2016; Elgammal et al., 2024, 

(continued on next page)

C.M
. Souza et al.                                                                                                                                                                                                                               

Current Research in Microbial Sciences 8 (2025) 100341 

10 



2021; Fenley et al., 2022; Elgammal et al., 2024). The efficient reduction 
in biofilm formation by HIV protease inhibitors has also been reported in 
previous studies involving C albicans and Trichosporon (Cordeiro et al., 
2017; Lohse et al., 2020; Santos et al., 2021).

Antipsychotic drugs such as haloperidol and aripiprazole have 
shown potential in controlling fungal infections. Haloperidol, a butyl-
benzoic antipsychotic, along with its improved pharmacological deriv-
ative B10, can control candidiasis and cryptococcosis in both in vitro and 
in vivo models. B10 exhibited a synergistic response with fluconazole, 
controlling C. albicans infections in mice. Moreover, B10 dose- 
dependently inhibits biofilm formation in C. neoformans and 
C. albicans (Ji et al., 2020). Similarly, aripiprazole inhibits biofilm 
development in C. albicans (Rajasekharan et al., 2019). However, while 
it shows promising effects in vitro, it has not been confirmed as a viable 
option for in vivo treatment (Reitler et al., 2024).

Anthelmintic compounds, specifically benzimidazoles, have also 
been repurposed for use against fungal pathogens (Bansal et al., 2019). 
Among them, albendazole has been associated with the control of 
F. pedrosoi (Coelho et al., 2023), C. neoformans (Sutar et al., 2021), 
A. fumigatus, Aspergillus flavus, Aspergillus terreus, A. nidulans and A. niger 
(Berthet, 2003) (Table 1).

Fenbendazole, a benzimidazole, has demonstrated potent anti-
cryptococcal activity and is a promising candidate for combating cryp-
tococcosis, showing low toxicity to mammalian cells when tested alone 
or in combination with AmB (de Oliveira et al., 2020). Its mode of action 
against Cryptococcus involves the disruption of β-tubulin (de Oliveira 
et al., 2020), similar to its effect on helminth parasites (Lacey, 1988). 
Furthermore, fenbendazole treatment altered the abundance of protein 
kinases in Cryptococcus. Mutants lacking Chk1, Tco2, Tco3, Bub1, and 
Sch9 presented increased resistance to fenbendazole, highlighting the 
role of these pathways in the antifungal response (de Oliveira et al., 
2024). The combination of fenbendazole and AmB showed synergistic 
activity against Cryptococcus, with a broader concentration range 
(Table 1). Additionally, intranasal administration of fenbendazole 
effectively controlled cryptococcosis in mouse models (de Oliveira et al., 
2020), reducing the fungal burden in the lungs to a similar extent as 
combination therapy with AmB (de Oliveira et al., 2024).

The repurposing of anticancer drugs is another promising antifungal 
alternative (Wakharde et al., 2018; Pokharel et al., 2022). Bleomycin, an 
antineoplastic agent that targets the phospholipid synthesis pathway 
downstream of phosphatidyl serine production, controls S. cerevisiae, C. 
neoformans, Candida spp., and A. fumigatus at low MIC concentrations 
(Graybill et al., 1996; Moore et al., 2003; Pokharel et al., 2022) 
(Table 1). Furthermore, the anticancer molecule 3-bromopyruvate (3BP) 
induced damage to yeast via loss of membrane integrity, nuclear 
condensation, and increased reactive oxygen species (ROS). In a vul-
vovaginal model (VVC), a vaginal cream with 3BP reduced the 
C. albicans burden and protected the vaginal membrane, highlighting its 
potential for candidiasis treatment (Jothi et al., 2023) (Table 1).

The antifungal activity of antidepressants, specifically serotonin re-
uptake inhibitors (SSRIs), has been investigated. Fluoxetine, sertraline, 
and paroxetine can control Candida species, effectively inhibiting both 
biofilm and planktonic cells (Costa Silva et al., 2017; Gowri et al., 2020). 
Among these, sertraline has emerged as the most promising candidate 
for repurposing, displaying antifungal activity not only against Candida 
species e.g. C. auris (Gowri et al., 2020) but also against Aspergillus 
species (Lass-Florl, 2001), Coccidioides immitis (Paul et al., 2016), 
S. schenckii (Villanueva-Lozano et al., 2019), Cryptococcus spp. (Breuer 
et al., 2022; Treviño-Rangel et al., 2016), and Trichosporon asahii (Cong 
et al., 2016) (Table 1). In murine models of cryptococcal infections, 
sertraline effectively controls fungal burdens in the brain and spleen, 
highlighting it as a putative alternative for the treatment of cryptococ-
cosis (Treviño-Rangel et al., 2016). Sertraline’s mode of action is linked 
to the induction of supersized lipid droplet formation, which likely af-
fects lipid metabolism and causes extensive membrane damage (Breuer 
et al., 2022; da Silva et al., 2023).Ta
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Despite promising advances, most of the compounds listed here 
require further elucidation of their modes of action and in vivo efficacy 
before they can be effectively repositioned as antifungal treatments.

4.2. Nanotechnology-based strategies

Nanotechnology has emerged as a promising platform to enhance 
antifungal treatments by reducing toxicity, improving bioavailability, 
and enabling targeted delivery (Soliman, 2017; Zadeh Mehrizi et al., 
2024). Organic or polymeric nanoparticles (NPs) are defined as struc-
tures with a diameter range of 1–1000 nm, whereas nanomaterials have 
a size range of 1–100 nm (Pinto Reis et al., 2006; Soliman, 2017). The 
best nanotechnology strategies include nanoemulsions, nano-
suspensions, microneedles, metal-based NPs, polymeric NPs, lipid-based 
carriers and conjugates (Soliman, 2017; Zadeh Mehrizi et al., 2024).

Antifungal drugs often exhibit hydrophobic properties, which can 
limit their solubility and bioavailability (Soliman, 2017; Zadeh Mehrizi 
et al., 2024). Liposomal formulations of AmB (e.g., AmBisome) represent 
a successful nanotechnology application that significantly reduce 
nephrotoxicity (Brüggemann et al., 2022; Maertens et al., 2022; Stone 
et al., 2016;Hiemenz and Walsh, 1996). Despite this progress, further 
complementary strategies are needed to enhance AmB formulations. To 
address these challenges, nanotechnology-based approaches have been 
explored, as recently reviewed by Mehrizi et al. (2024).

Synthetic polymers, such as poly(butyl cyanoacrylate) (PBCA), poly 
(lactic acid) (PLA), poly(lactide-co-glycolide) (PLGA), poly(ε-capro-
lactone) (PCL), and poly(alkylcyanoacrylates) (PACA), or natural poly-
mers, such as chitosan, sodium alginate, and collagen, are commonly 
used in the formulation of nanospheres and nanocapsules. These nano-
medicine approaches offer improved stability; can be administered via 
parenteral, oral, or topical routes; and can improve the stability and 
delivery of antifungal agents (Adel et al., 2023; Wang et al., 2014). 
Notably, compared with itraconazole alone, the PLGA nanospheres 
enhanced the efficacy of itraconazole treatment 100-fold (Patel et al., 
2010). Similar enhancements were observed with voriconazole, clotri-
mazole and AmB (Ćurić et al., 2015; Martínez-Pérez et al., 2018; Peng 
et al., 2008; Tang et al., 2015; Xie et al., 2013). Interestingly, the 
combination of PLGA-NPs with clotrimazole was enhanced by chitosan 
NPs, increasing antifungal efficiency for vaginal applications 
(Martínez-Pérez et al., 2018). Other promising nanosystems, such as 
PBCA nanospheres and zein-NPs, are available for itraconazole delivery 
(Adel et al., 2023; Ćurić et al., 2017, 2015).

The antifungal potential of metal NPs, particularly with gold (AuNP) 
and silver nanoparticles (AgNPs), has been described. These NPs can be 
synthesized via both nonbiological (chemical, electrochemical, and 
photochemical reduction) and biological methods (Manjumeena et al., 
2014; Sakthi Devi et al., 2022). AuNPs have demonstrated fungicidal 
activity in vitro against Candida species, C. neoformans, and A. fumigatus. 
In vivo studies have shown that AuNPs are effective against cutaneous 
candidiasis in mice (Abdallah and Ali, 2022; Ayad Kareem et al., 2021; 
da Silva et al., 2022; Rónavári et al., 2018).

However, AgNPs stand out for their increased antifungal activity 
(Lotfali et al., 2021). AgNPs disrupt fungal cell membranes by creating 
pores, effectively inhibiting the growth of pathogens such as C. albicans, 
C. glabrata, C. krusei, C. tropicalis, Fusarium species, Aspergillus species, 
mucormycosis, and dermatophytes such as Microsporum and Trichophy-
ton (Chatterjee et al., 2022; Hashem et al., 2022; Mallmann et al., 2015; 
Manjumeena et al., 2014; Matras et al., 2022; Rónavári et al., 2018). 
Furthermore, AgNPs have emerged as a viable alternative for over-
coming fluconazole resistance in Candida species, as they also inhibit 
virulence factors (Artunduaga Bonilla et al., 2015; Bharti et al., 2024; 
Mǐskovská et al., 2022; Paulo et al., 2024).

Therefore, NP formulations can be used to enhance antifungal 
treatment or serve as novel antifungal therapies. However, addressing 
regulatory issues and standardizing in vitro and in vivo characterization 
methods will be crucial to make the transfer of NP formulations from 

research laboratories to the pharmaceutical industry possible.

4.3. Antifungal peptides

Antifungal peptides (AFPs) represent a promising therapeutic strat-
egy because of their ability to target multiple fungal structures and 
pathways, including cell walls, RNA, DNA, and cell cycle proteins 
(Fernández de Ullivarri et al., 2020). These bioactive molecules are 
categorized based on the basis of their origin: synthetic, semisynthetic, 
or natural. Natural AFPs are produced by various biological systems, 
including bacteria, yeast, plants, and animals, as part of their evolu-
tionary defense responses (De Lucca and Walsh, 1999; Fernández de 
Ullivarri et al., 2020). Regardless of their source, AFPs are small amino 
acid chains, with fewer amino acids correlated with increased stability, 
reduced toxicity, and lower production costs (Duncan and O’Neil, 
2013).

Many AFPs are cataloged in large databases, similar to previous re-
ports on drug repositioning. Two major collections are the Antimicrobial 
Peptide Database (APD) (Wang et al., 2016, 2009; Wang, 2004), which 
includes 3940 peptides, 1495 with antifungal activity (available in https 
://aps.unmc.edu/database/anti; accessed on October 2, 2024), and the 
Collection of Anti-Microbial Peptides (CAMP) (Waghu et al., 2016; 
Waghu and Idicula-Thomas, 2020), which contains 24,243 sequences, 
including 4783 with antifungal properties (available in http://www.ca 
mp3.bicnirrh.res.in/index.php; accessed on October 2, 2024). These 
databases include details on peptide origin, research status, antifungal 
spectrum, and potential targets or modes of action.

These resources support AFPs research against different pathogenic 
fungi, as shown in a recent screening of AFPs from the APD (Lai et al., 
2024). This study was based on structural and functional parameters and 
revealed a strong correlation between antifungal activity and the posi-
tive net charge and hydrophobicity of these peptides. Among the pep-
tides tested, IR3 stood out for its stability against proteases, salts, and 
serum, along with low cytotoxicity. IR3 exhibited the most potent 
antifungal activity against C. albicans both in vitro and in vivo, acting 
through multiple mechanisms, including biofilm eradication, the in-
duction of reactive oxygen species (ROS), and membrane disruption. 
Given its multifaceted antifungal action and strong efficacy, IR3 presents 
a promising alternative for the treatment of fungal infections (Lai et al., 
2024).

In this context, we highlight several specific promising AFPs reported 
in recent years. Novel natural antifungal peptides have shown potential 
in controlling the growth of Aspergillus species (Muhialdin et al., 2015; 
Pimienta et al., 2022), Candida species (Freitas and Felipe, 2023; Guil-
helmelli et al., 2016), and C. neoformans (Guilhelmelli et al., 2016) 
—some of the most prevalent fungal pathogens. For example, natural 
bioactive peptides such as the salivary proteins histatin 5 and statherin 
have demonstrated antifungal activity, particularly against C. albicans, 
by inhibiting its colonization of epithelial surfaces and reducing biofilm 
biomass. These peptides are an alternative for synergistic therapies for 
Candida-related infections (Moffa et al., 2015; Pellissari et al., 2021; van 
‘t Hof et al., 2014; Vukosavljevic et al., 2012; Williams et al., 2013).

Synthetic peptides such as PepGAT and PepKAA also demonstrated 
antibiofilm activity against Candida species. When combined with 
nystatin or itraconazole, these peptides synergistically reduce biofilms 
while resulting in lower drug toxicity in red blood cells (Bezerra et al., 
2022). Additionally, synthetic lipo-γ-AA peptides, a class of peptido-
mimetics, exhibit potent antifungal activity against C. albicans, non--
albicans Candida species, and other pathogens such as C. neoformans, C. 
gattii, Mucor racemosus, and A. fumigatus. Their machinery functions 
primarily by disrupting fungal cell membranes (Zhang et al., 2022).

Despite significant advances in AFP research, particularly with the 
establishment of comprehensive databases, several open questions 
remain open. There is a need to evaluate these molecules against major 
fungal pathogens and to elucidate their modes of action to fully under-
stand their therapeutic potential.
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4.4. Antifungal combination therapy

Antifungal combination therapy has emerged as a promising alter-
native to traditional monotherapy, as it targets more than one fungal 
structure, reducing resistance rates (Lignieres et al., 2022; Martin-Pena 
et al., 2014; Neoh and Slavin, 2024). Some studies have demonstrated 
the efficacy of antifungal combinations, which have has been conducted 
using both in vitro and in vivo models. For instance, combinations of 
azoles with echinocandins—such as caspofungin or anidulafungin with 
voriconazole (Calvo et al., 2012; MacCallum et al., 2005; Petraitis et al., 
2009)—and itraconazole or isavuconazole with micafungin have shown 
increased survival rates compared to monotherapy (Clemons, 2006; 
Clemons et al., 2005; Luque et al., 2003; Petraitis et al., 2017).

Caspofungin, one of the first options for treating candidaemia, ex-
hibits synergistic activity against Candida species when combined with 
major antifungal drugs such as azoles, polyenes (e.g., AmB), 5-fluorocy-
tosine, and allylamines (Su et al., 2022). In humans, the combination of 
caspofungin and voriconazole was effective in 90 % of patients, 
achieving a 100-day survival rate of 86.3 % (Lee et al., 2017).

The combination of terbinafine and itraconazole has been shown to 
be effective against Fonsecaea, C. albicans, Aspergillus and Scedosporium 
(Cuenca-Estrella, 2004; Gupta et al., 2002; Zhang et al., 2009). This 
combination has also been identified as an efficient strategy for treating 
dermatophytosis (Ramzi et al., 2023; Sharma et al., 2020; D. Zhang 
et al., 2021).

In murine models of pulmonary mucormycosis, the combination of L- 
AmB and isavuconazonium sulfate was more effective than mono-
therapy, reducing the tissue fungal burden and prolonging survival, 
indicating its potential as an alternative therapy for human mucormy-
cosis (Gebremariam et al., 2021). Interestingly, guidelines from the In-
fectious Diseases Society of America (IDSA) and the World Health 
Organization (WHO) recommended the combination of AmB and flu-
cytosine as the first-line therapy for cryptococcosis and cryptococcal 
meningitis. This combination has demonstrated a strong fungicidal ef-
fect on Cryptococcus infections, achieving therapeutic responses with 
lower doses in a shorter time (Maziarz and Perfect, 2016; Perfect and 
Bicanic, 2015; Spitzer et al., 2017).

4.5. Immunotherapy

Despite significant efforts to develop antifungal vaccines, no 
approved formulations are currently available (Boniche et al., 2020; 
Rudkin et al., 2018). Promising antifungal immunotherapies, including 
both therapeutic and prophylactic protocols, are being explored to 
control the progression of fungal infections and prevent their dissemi-
nation (Boniche et al., 2020; Chechi et al., 2023; Levitz, 2017; Posch 
et al., 2017). Studies analyzing fungal secretomes and proteomes are 
important in selecting antigens for vaccine development. Additionally, 
vaccination strategies using avirulent strains, polymicrobial formula-
tions, nanoparticles, and extracellular vesicles (EVs) are under investi-
gation. These approaches have identified potential immunogenic 
candidates against major fungal pathogens, including Aspergillus spp., 
Candida spp., Coccidioides spp., Cryptococcus spp., Paracoccidioides spp., 
Sporothrix spp., Histoplasma spp., Pneumocystis jirovecii, and molds of the 
order Mucorales. Several immunomodulatory strategies have shown 
promising effects by inducing rapid antibody production, reducing 
fungal burden, and altering cytokine responses. However, even the most 
advanced studies remain in the preclinical stages (Akhtar et al., 2023; 
Araújo et al., 2020; B R Da Silva et al., 2020; de Almeida et al., 2018; 
Eddens et al., 2019; Edwards et al., 2018; Hayden et al., 2019; Kamli 
et al., 2022; Khan et al., 2022; Rabacal et al., 2022; Singh et al., 2022; 
Tabassum et al., 2022; Ueno et al., 2020).

5. Conclusion

The current arsenal we rely on to combat fungal infections is no 

longer sufficient. Polyenes, pyrimidine analogs, azoles, and echino-
candins, which are currently used in clinical practice, face serious 
challenges due to increasing resistance, high toxicity potential, and their 
association with costly treatments. This situation severely impacts 
public health systems that cannot ensure treatment, especially in regions 
heavily affected by fungal infections, leading to an alarming number of 
deaths associated with these diseases.

Efforts are being made to address the problem and mitigate the issues 
associated with fungal infections. Clinical studies are currently under-
way to test the efficacy and safety of new antifungal drugs that may 
substantially contribute to reversing the current reality. These new 
drugs target nucleic acid metabolism (olorofim), the fungal cell mem-
brane (oteseconazole, VT-1598, opelconazole, and encapsulated AmB), 
and the fungal cell wall (fosmanogepix, ibrexafungerp, and rezafungin). 
Among them, olorofim is already recommended by the FDA for the 
treatment of invasive infections caused by filamentous fungi and central 
nervous system infections caused by the fungus Coccidioides spp. in pa-
tients who do not respond to conventional treatments, demonstrating 
the potential impact these new drugs may have on fungal infection 
control.

Despite these advances, the problem is far from being resolved. 
Therefore, researchers worldwide are seeking new antifungal alterna-
tives that combine efficacy and safety using various strategies such as 
drug repurposing, nanotechnology-based innovations, antifungal pep-
tides, combination therapies, and immunotherapy. All these efforts 
contribute to addressing this major public health issue we face, with the 
potential to save millions of lives annually across the globe.
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