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Plant natural products (PNPs) possess important pharmacological activities and are
widely used in cosmetics, health care products, and as food additives. Currently,
most PNPs are mainly extracted from cultivated plants, and the yield is limited by
the long growth cycle, climate change and complex processing steps, which makes
the process unsustainable. However, the complex structure of PNPs significantly
reduces the efficiency of chemical synthesis. With the development of metabolic
engineering and synthetic biology, heterologous biosynthesis of PNPs in microbial cell
factories offers an attractive alternative. Based on the in-depth mining and analysis of
genome and transcriptome data, the biosynthetic pathways of a number of natural
products have been successfully elucidated, which lays the crucial foundation for
heterologous production. However, there are several problems in the microbial synthesis
of PNPs, including toxicity of intermediates, low enzyme activity, multiple auxotrophic
dependence, and uncontrollable metabolic network. Although various metabolic
engineering strategies have been developed to solve these problems, optimizing the
location and adaptation of pathways on the whole-genome scale is an important
strategy in microorganisms. From this perspective, this review introduces the application
of CRISPR/Cas9 in editing PNPs biosynthesis pathways in model microorganisms,
the influences of pathway location, and the approaches for optimizing the adaptation
between metabolic pathways and chassis hosts for facilitating PNPs biosynthesis.

Keywords: plant natural products, microbial cell factory, pathway location, adaptation, heterologous pathway

INTRODUCTION

Plant natural products (PNPs) are secondary metabolites that are mainly used for defense and
signal transduction in plants (Marienhagen and Bott, 2012). They have complex structures
and various physiological as well as pharmacological activities. For instance, glycyrrhizin,
betulinic acid, paclitaxel and resveratrol have antitumor activities, while lycopene, β-carotene,
and astaxanthin possess antioxidant properties (Lü et al., 2016; Zhao et al., 2017; Zhang
L. et al., 2019; Chen et al., 2020; Sun et al., 2020). Obtaining natural products through
extraction from cultivated plants faces the problem of low natural content, uncertain climate
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factors and destruction of the ecological environment (Zhao
and Li, 2018; Sun et al., 2019). With the rapid advances of
synthetic biology, the production of PNPs in microbial cell
factories has paved the way for large-scale industrial production
by shortening the synthesis cycle and reducing the difficulty of
product separation (Liu et al., 2017).

There three main genome editing tools for pathway
modification and regulation in vivo, including zinc-finger
nucleases (ZFNs), transcription activation-like effector nucleases
(TALENs), and the clustered regularly interspaced short
palindromic repeats (CRISPR) system. In microorganisms,
CRISPR can accurately edit and regulate the metabolic pathways
of PNPs in an efficient manner without selection markers
(Hou et al., 2018). However, the introduction of heterologous
pathways usually disrupts the intracellular metabolic balance
(Liu et al., 2019), while the integration loci of heterologous
expression cassettes affect enzyme expression and product
accumulation (Englaender et al., 2017). Thus, appropriately
chosen loci can enhance the stable expression of heterologous
genes. Additionally, organelles with a high local concentration
of the substrates are a suitable location for PNPs synthesis.
Numerous studies showed that the balance between endogenous
and exogenous pathways contributed to the efficient synthesis of
products (Zhang et al., 2015; Park et al., 2018), and the highest
expression level of enzymes did not necessarily maximize the
yield (Kang et al., 2018). At the same time, the adaptation of the
chassis cells to the heterologous pathway is equally important.
Traditional metabolic engineering is employed to regulate
potential pathways and restore intracellular metabolic balance,
which relies on targets obtained by analyzing metabolic flux
distribution, reaction mechanisms or metabolic network models.
However, a finite number of target modifications cannot produce
the full possible variety of genotypes and phenotypes to select the
optimal phenotypes. Reprogramming the expression of multiple
genes is a complementary strategy, relying on approaches
such as multiplex automated genome engineering (MAGE;
Wang et al., 2009), or synthetic chromosome rearrangement
and modification by loxP-mediated evolution (SCRaMbLE;
Standage-Beier and Wang, 2017), which are tools for rewriting
genomes. Moreover, heterologous synthesis of PNPs often
involves multi-step enzymatic reactions, and synthetic scaffolds
can improve the catalytic activity of the system to some extent
(Zhang, 2011). To address the demand for multiple auxotrophic
markers, the controllable decentralized assembly strategy was
established and recyclable markers were employed for iterative
integration (Xie et al., 2014). This review covers recent studies
on pathway location and strategies for optimizing the fitness
and intracellular metabolism of the chassis cells to promote the
production of PNPs.

APPLICATION OF CRISPR/CAS9 IN
PATHWAY INTEGRATION AND
REGULATION

In 2013, the gene editing function of the CRISPR/Cas9 system
was first verified in mammals (Cong et al., 2013). Soon afterward,

CRISPR/Cas9 was universally applied in microorganisms. The
CRISPR-mediated multi-locus gene integration strategy was
developed to efficiently edit the β-carotene synthesis pathway
in Saccharomyces cerevisiae (Ronda et al., 2015). Another
significant research was that GTR-CPISPR could edit eight
genes simultaneously with an efficiency up to 84% (Zhang Y.
et al., 2019). The Cas9-based toolkit with high efficiency for
integrating cassettes increased taxadiene production by 25-fold
(Apel et al., 2017). In addition to genome editing functions,
some derivatives have been exploited for precise and rapid
regulation of gene expression. CRISPR interference (CRISPRi)
can be used to regulate the transcription of multiple sites in
the genome by fusing activators or repressors with catalytically-
inactive Cas9 (dCas9) protein (Gilbert et al., 2013). Harnessing
CRISPRi to synchronously down-regulate seven genes in the
competing pathway boosted β-amyrin biosynthesis (Ni et al.,
2019). The production of other PNPs such as pinosylvin (Wu
et al., 2017a), resveratrol (Wu et al., 2017b), O-methylated
anthocyanin (Cress et al., 2017), and α-amyrin (Yu et al., 2018)
in microbes was also successfully enhanced using CRISPRi.
Zalatan et al. (2015) extended sgRNA with modular RNA
domains to form the scaffold RNA (scRNA), which can not
only recognize target sequences specifically but also recruit RNA-
binding proteins fused with effectors. The expression of multiple
scRNAs made up for the defect of CRISPRi and achieved diverse
types of regulation at respective loci in parallel. Employing the
scRNA system, the best gRNA screened from 101 candidates
was chosen to regulate multiple genes in the carotenoid
biosynthesis pathway (Jensen et al., 2017). It is worth noting
that disparate gRNAs competing for the same Cas9 is a likely
limiting factor in scRNA systems. CRISPR-AID, an orthogonal
tri-functional system, enabled the concurrent upregulation,
downregulation and deletion of genes in S. cerevisiae, achieving
the modular regulation of metabolic networks (Lian et al.,
2017). Successful examples of the application of CRISPR/Cas9
and its derivatives in PNPs biosynthesis are summarized
in Table 1.

OPTIMIZATION OF THE PATHWAY
LOCATION

Microbial cell factories usually have to efficiently express
multiple heterologous genes, and the introduction of episomal
plasmids can impose a heavy metabolic burden. At the same
time, it was found that the genetic stability of the host
decreases when multiple plasmids are used in the same
cell (Yan et al., 2005). By contrast, chromosomal integration
of target genes is more stable and does not require a
selective pressure (Zhu et al., 2018). For example, integrating
target genes into the native GAL1 locus of engineered
S. cerevisiae increased the oleanolic acid titer by 3.6 times
compared with the strain utilizing multiple plasmids (Zhao
et al., 2018). Optimizing the chromosomal integration sites of
metabolic pathways and compartmentalizing metabolic pathways
in organelles are both viable strategies for improving the
synthesis of PNPs.
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TABLE 1 | The application of CRISPR/Cas9 and derived technologies in the biosynthesis of PNPs.

Species Products Method Regulation strategy Culture method Titer References

E. coli β-carotene CRISPR/Cas9 Genomic modification Fed-batch (5 L) 2.0 g/L Li et al., 2015

S. cerevisiae Mevalonate CRISPR/Cas9 Multi-gene disruption – 1.5 mg/L (41-fold) Jakounas et al., 2015

Yarrowia lipolytica Lycopene CRISPR/Cas9 Multi-gene integration Shake flask
(250 mL)

8.6-fold Schwartz et al., 2017

S. cerevisiae Valencene CRISPR/Cas9 Knock-out or
down-regulation

Fed-batch (3 L) 539.3 mg/L
(160-fold)

Chen et al., 2019

S. cerevisiae guaia-6,10
(14)-diene

CRISPR/Cas9 Gene integration Fed-batch (5 L) 0.8 g/L Siemon et al., 2020

Candida tropicalis β-carotene CRISPR/Cas9 Multi-gene deletion or
mutation

– 0.23 mg/g DCW Zhang L. et al., 2020

Yarrowia lipolytica β-carotene CRISPR/Cas9 Gene integration Fed-batch (5 L) 4.5 g/L Zhang X.K. et al., 2020

S. cerevisiae β-carotene CrEdit Multi-loci gene integration – 12.7 mg/L Ronda et al., 2015

S. cerevisiae Patchoulol Cas-3P Multiplexed and sequential
editing

Shake flask
(250 mL)

20 mg/L Li et al., 2020

S. cerevisiae Taxadiene Cas9-based toolkit Including Cas9-sgRNA
plasmids, promoters,
protein tags

Test tube (5 mL) 20 mg/L (25-fold) Apel et al., 2017

E. coli Naringenin CRISPRi Multi-gene repression Shake flask 421.6 mg/L
(7.4-fold)

Wu et al., 2015

E. coli Lycopene
(-)-α-bisabolol

CRISPRi Regulatable repression Shake flask 50.6 mg/L 8.8-fold Kim et al., 2016

E. coli Peonidin
3-O-glucoside

CRISPRi Silence expression Shake flask
(125 mL)

56 mg/L (2-fold) Cress et al., 2017

E. coli Pinosylvin CRISPRi Multi-gene repression Shake flask
(500 mL)

281 mg/L Wu et al., 2017a

E. coli Resveratrol CRISPRi Multi-gene down-regulation Shake flask 304.5 mg/L Wu et al., 2017b

S. cerevisiae α-amyrin CRISPRi Down-regulation – 11.97 mg/L Yu et al., 2018

S. cerevisiae β-amyrin CRISPRi Multi-gene one-step
down-regulation

Fed-batch (2.5 L) 156.7 mg/L(1.44-
fold)

Ni et al., 2019

S. cerevisiae β-carotene CRISPR-AID Synchronous
up/down-regulation,
deletion

– 3-fold Lian et al., 2017

Ogataea
polymorpha

Resveratrol CMGE Multi-gene knock-out,
integration

Shake flask
(500 mL)

97.23 mg/L
(20.73-fold)

Wang L. et al., 2018

Chromosomal Integration Loci of
Metabolic Pathways

The integration loci of heterologous genes in the genome
influence enzyme expression levels in various hosts, such as
Escherichia coli (Englaender et al., 2017), yeast (Guo et al.,
2018), actinomycetes (Bilyk et al., 2017), and Lactococcus lactis
(Thompson and Gasson, 2001), and may even affect the titer
of products (Bilyk et al., 2017). Enzymes with easily detectable
activities or fluorescent proteins are normally chosen to
characterize the expression intensity of sites, providing important
guidance for the construction of efficient microbial cell factories.

In one study, a total of 1044 loci within the whole genome
of S. cerevisiae were analyzed and the largest difference in
expression levels among them was 13 times (Wu X.-L. et al.,
2017). Sites with low expression intensity were mainly located
near telomeres and centromeres (Ottaviani et al., 2008), and the
loci with high expression levels were adjacent to autonomously
replicating sequences. The robustness of position effect was even
stronger with different promoters (Bai Flagfeldt et al., 2009),
reporter genes, and carbon sources (Wu X.-L. et al., 2017). After

taking into account the impact of chromosomal location on
gene expression and growth rate, 11 out of 14 genomic loci in
S. cerevisiae were found to be suitable for pathway integration
(Mikkelsen et al., 2012). The introduction of eight genes at four
sites enabled high indolylglucosinolate production. In Yarrowia
lipolytica, some loci that could enhance the stable expression of
the β-carotene (Zhang X.K. et al., 2020) or lycopene (Schwartz
et al., 2017) biosynthesis pathways were screened out. Similar to
plasmid expression, the copy number of the integration site also
has a considerable effect on product synthesis (Wang L. et al.,
2018). A fused expression cassette containing three genes for
resveratrol biosynthesis was inserted into the multi-copy rDNA
cluster in Ogataea polymorpha and strains with copy numbers
ranging from 1 to 10 were obtained. Within this range, the
increase of copy numbers of the expression cassette increased the
resveratrol titer 20 times in comparison to integrating the three
genes into scattered single-copy loci, respectively.

However, the protein expression level of the biosynthetic
enzymes was not always positively correlated with the yield of
PNPs (Englaender et al., 2017). Integration loci in the genome
affect the efficiency of pathways, and inappropriate selection of
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sites may even hinder product synthesis. The effects of integration
sites on strain growth, genetic stability, and product synthesis
should be taken into account comprehensively.

Subcellular Compartmentalization of
Metabolic Pathways
Subcellular organelles, such as mitochondria, peroxisomes, and
endoplasmic reticulum, have complex structures and act as
independent membrane-bound compartments, which leads to
higher local concentrations of substrates and generates physical
separation between products and competing pathways (Huttanus
and Feng, 2017). Compartmentalizing metabolic pathways in
organelles achieved by fusing proteins with targeting signal tags
can enhance the reaction rate and product synthesis efficiency.

Farnesyl diphosphate, which is an important intermediate
in carotenoid production, is abundant in peroxisomes (Kovacs
et al., 2002). When heterologous enzymes of the lycopene
synthesis pathway were targeted into peroxisomes, it remarkably
boosted the titer of lycopene to 73.9 mg/L in Komagataella
phaffii (Bhataya et al., 2009). Another organelle commonly used
in compartmentalization studies is mitochondria. Employing
mitochondrion-targeted enzymes resulted in 8 and 20-fold
increase in valencene and amorphadiene production, respectively
(Farhi et al., 2011). The concentration of acetyl-CoA in
mitochondria is 20–30 times higher than that in the cytoplasm
(Galdieri et al., 2014). Many studies focused on the mitochondrial
acetyl-CoA pool to promote the production of PNPs such
as amorpha-4,11-diene (Yuan and Ching, 2016), geraniol,
8-hydroxygeraniol, and nepetalactol (Yee et al., 2019). Recently,
dual engineering of metabolic pathways in the cytoplasm and
organelles was performed for high-level PNPs production.
Assembling the complete MVA pathway in peroxisomes or
mitochondria, together with the cytoplasmic pathway, boosted
the output of α-humulene (Zhang C et al., 2020), and linalool
(Zhang Y et al., 2020), respectively.

ADAPTATION OF CHASSIS CELLS TO
HETEROLOGOUS PATHWAYS

The introduction of a heterologous pathway almost always
negatively affects metabolic homeostasis. It is therefore necessary
to improve the fitness on a genome-wide level for efficient
PNPs production. Here, we discuss the four strategies MAGE,
SCRaMbLE, synthetic scaffolds, and decentralized assembly
(Figure 1), which can be used to adapt the chassis to the
introduced pathway.

MAGE
In the phage λ-Red recombination system, single-stranded
DNA (ssDNA) binding protein β promotes homologous
complementarity between ssDNA and the lagging strand of
the replication fork during DNA replication. Consequently,
sequences are integrated into the genome of offspring cells,
leading to allelic replacement (Ellis et al., 2001). Based on
ssDNA recombination, MAGE was developed to precisely
and simultaneously program multiple specific sites (insertions,

mismatches, or deletions) on a genome-wide scale (Wang
et al., 2009). A total of 24 endogenous genes in the
metabolic pathway were modified using a synthetic oligos
library, which optimized the production of lycopene in
E. coli (Wang et al., 2009). Among them, degenerate RBS
sequences that differentially regulate gene expression and
nonsense mutations were inserted for inactivation. After
3 days of evolution, mutants with a 5-fold increase in
yield were obtained.

However, the inefficiency of inserting large fragments
by MAGE limited the modification of genetic elements.
Applying switchable co-selection markers, multiple T7 promoters
were introduced into 12 genomic loci simultaneously, and a
combination that maximized indigo synthesis was obtained
(Wang et al., 2012). Large combinatorial populations were
generated in each round of MAGE, including unproductive
cheaters. To ease the screening burden, toggled selection was
devised to remove cheaters (Raman et al., 2014). Oligos were
targeted to SD sequences of candidate genes and toggled selection
after each round of evolution resulted in naringenin production
of up to 61 mg/L. In some cases, the biosynthesis of PNPs
depended on NADPH, and insufficient NADPH restricted PNPs
production. An RBS mutant library of four genes in the
Entner-Doudoroff pathway was constructed and 40 cycles of
MAGE generated mutants with a high NADPH pool, which
led to a 97% increase in the titer of neurosporene (Ng et al.,
2015). A common feature of these studies was the use of
mutS-deficient E. coli, which could improve recombination
efficiency. Strain-independent MAGE was developed to reduce
the accumulation of undesired mutations and to broaden the
range of applicable hosts (Ryu et al., 2014). Ryu et al. integrated
a suicide plasmid carrying the λ Red recombination system
into the mutS locus to switch MutS activity in E. coli. By
constructing a mutant library of 5′-untranslational region of
genes, MAGE fine-tuned the expression level of enzymes and
resulted in a 38.2-fold improvement of the curcumin titer
(Kang et al., 2018).

Due to the complicated genetic regulatory system in
eukaryotes, the effect of employing MAGE directly is not
ideal (Si et al., 2017). Researchers developed an oligo-
mediated recombination method in S. cerevisiae, referred
to as yeast oligo-mediated genome engineering (YOGE;
DiCarlo et al., 2013). After inactivating the mismatch-repair
system, overexpressing DNA recombinase and optimizing the
reaction conditions, the editing efficiency was increased to
1%, but it was still low. With the in-depth investigation of
the mechanism, eukaryotic MAGE (eMAGE) was established
for multiplex genome engineering (Barbieri et al., 2017). The
efficiency of precisely editing a single nucleotide exceeded
40%, and no additional mutations were introduced at
the target sites. Apart from slowing DNA replication, the
complementarity of ssDNA oligodeoxynucleotides (ssODNs)
with the lagging strand rather than leading strand was
equally conducive to allelic replacement. Incorporation of
ssODNs at the replication fork formed combinatorial genomic
diversity and facilitated β-carotene production in S. cerevisiae
(Barbieri et al., 2017).
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FIGURE 1 | Schematic illustration of four strategies for adapting the chassis cells to the heterologous pathway. (A) MAGE. Insertions, mismatches or deletions can
be introduced at multiple specific sites in the genome by MAGE. Multiple iterations result in phenotypic and genotypic diversity. (B) SCRaMbLE. Genomic
rearrangements (inversions, duplications, deletions, and insertions) occur at any two loxPsym sites stochastically. Phenotypic and genotypic diversity was obtained
through iterative cycling. (C) Synthetic scaffold. In DNA scaffold, the target enzymes are fused with ZF/TALE domains through flexible linkers. In protein scaffold, the
target enzymes are fused with peptide ligands via flexible linkers. (D) Decentralized assembly. GAL80 was deleted to obtain the GAL regulatory system. pUMRI, a
marker-recyclable integrative toolbox with double selection was used to integrated genes into scattered loci. The controllable system and pUMRI constitute the
decentralized assembly strategy.

To address the tediousness of oligonucleotide design, two
web-based tools, MODEST (Bonde et al., 2014), and Merlin
(Quintin et al., 2016), were developed. Iterative incorporation
of ssDNA or ssODNs promoted sequence diversity. MAGE
and derived technologies enable the introduction of genomic
diversity, making it easier to evolve the desired phenotype
compared with conventional methods and forming a large
mutant library. This technology has been successfully applied
to prokaryotes and eukaryotes to balance biosynthesis and cell
growth, and improve the adaptation of hosts to heterologous
pathways. However, the prerequisite for utilizing MAGE is to
identify target genes that affect product synthesis and to possess

suitable high-throughput screening methods, which has limited
its wider application.

SCRaMbLE
In the international Synthetic Yeast Genome Project (Sc2.0),
bidirectional loxPsym sites were inserted downstream of each
non-essential gene (Kannan and Gibson, 2017). With Cre
recombinase induction, rearrangements (deletion, insertion,
duplication, and inversion events) occurred at any two loxPsym
sites stochastically, resulting in the SCRaMbLE technique
(Jin et al., 2018). The artificial rearrangement of synthetic
chromosomes on the genome-wide scale accelerates strain
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evolution to acquire the expected phenotypes (Wang J. et al.,
2018). The genotypes were further analyzed by PCRTag and
whole genome sequencing to identify the structural variations,
providing an important reference for deciphering mechanism
(Ma et al., 2019).

When the synthetic yeast strains containing a Cre recombinase
plasmid were cultured, even without adding estradiol, a fraction
of strains would switch on SCRaMbLE and their growth
was slightly affected (Annaluru et al., 2014), indicating leaky
expression of the plasmid. To resolve this, a genetic AND gate
switch was devised to precisely control SCRaMbLE (Jia et al.,
2018). A galactose-inducible promoter was used to regulate
the expression of a fusion protein composed of Cre and an
estrogen-binding domain. Therefore, only when galactose and
estradiol were present simultaneously, genomic rearrangement
can be triggered. Adopting an AND gate switch in synV
haploid yeast raised the production of carotenoids by 50%.
Heterozygous diploid yeasts with synthetic chromosomes and
wild type counterparts were more likely to generate larger
structural variations than haploid (Li et al., 2019). The synIII&V
diploids formed by mating increased the likelihood of genome
diversification and exhibited a 6.29- to 7.81-fold enhancement
of the carotenoid yield (Jia et al., 2018). A large number of
beneficial rearrangements was accumulated through multiplex
SCRaMbLE iterative cycling, promoting the carotenoid synthesis
up to 38.8 times.

In addition to the issue of leaky expression from plasmids,
it is necessary to establish high-throughput screening methods
to broaden the application of SCRaMbLE. In order for rapidly
screening mutants after SCRaMbLE rearrangement, an ultra-
fast LC-MS method using a guard column to substitute a
standard analytical column was employed to boost betulinic
acid production in S. cerevisiae, reducing the detection time per
sample from 5 min to 84 s (Gowers et al., 2020). Ultimately,
multiplex nanopore sequencing was utilized to identify the
rearrangements in the high-yield strains and establish genotype-
phenotype correlation.

To settle the problem that the exogenous synthesis pathway
and the chassis cannot be optimized synchronously (Keasling,
2012), SCRaMbLE-in composed of an in vitro recombinase kit
and in vivo chromosome rearrangement system was constructed
to promote β-carotene biosynthesis (Liu et al., 2018). The
recombinase toolkit inserted regulatory elements upstream of
candidate genes to achieve different expression intensities. Apart
from Cre, the recombinases Dre and VCre were used in vitro
to construct the library. The in vivo rearrangement system
induced by Cre randomly integrated the metabolic pathway
into the engineered genome, leading to massive rearrangements
of chromosomes. The β-carotene yield was increased by
2-fold through genomic rearrangement in comparison to
integrating the pathway into the HO locus. The bottleneck
of product biosynthesis can be solved through SCRaMbLE. In
the process of astaxanthin production, the combination of crtZ
and crtW from different sources was optimized stochastically.
Among the darker-red colonies generated by SCRaMbLE,
the highest yield of astaxanthin was boosted to 8.51 times
(Qi et al., 2020).

Instead of using the inducer estradiol, which was toxic
to humans, light-controlled SCRaMbLE (L-SCRaMbLE)
was developed (Hochrein et al., 2018). The N-terminal and
C-terminal of split Cre fused with chromophore-binding
photoreceptor phytochrome B (PhyB) and phytochrome
interacting factor PIF3, respectively, to constitute L-SCRaMbLE.
Upon red light illumination, split Cre recombined and induced
random rearrangements of genes among loxPsym sites.
Compared with estradiol-inducible system, L-SCRaMbLE had
lower recombination efficiency and mediated the recombination
in a phycocyanobilin- and light-dependent manner.

Due to insufficient understanding of stress response
mechanisms in microorganisms, some genes related to
product synthesis were omitted during modification, which
may sometimes be remedied via SCRaMbLE. This black-box
approach provides a platform for rapid generation of phenotypic
and genotypic diversity. Multiple rounds of SCRaMbLE were
found to improve the production further (Liu et al., 2018).
Meanwhile, an enormous mutant library was formed, and
high-throughput screening method was a prerequisite for its
wide application. Analyzing the differences in the expression
of genes adjacent to rearrangement loci and the perturbation
of the global metabolic network by the rearrangements is
conductive to identifying possible regulatory mechanisms, which
provides important reference for further rational modification to
maximize PNPs synthesis in microbes.

Synthetic Scaffold
Some enzymes of heterologous pathways are located in different
positions intracellularly. For multienzyme reaction systems, the
large distance among different enzymes or between enzymes
and substrates would restrict product synthesis (Morgado et al.,
2018). The substrate channel formed by enzymes assembled
on a scaffold shortens the distance between the active sites
of different enzymes and alleviates the inhibitory effects of
toxic intermediates (Horn and Sticht, 2015). DNA and protein
scaffold have been adopted to facilitate PNPs synthesis in cell
factories. The expression levels and unit numbers of scaffolds, the
stoichiometric ratio and spatial orientation of enzymes, and the
interval among enzymes are important parameters for scaffold
optimization. To prevent the close proximity of multiple enzyme
complexes from blocking access to the substrate binding site,
flexible linkers are used in the scaffold. RNA scaffold has also
been investigated, and was devised as discrete, one-dimensional,
two-dimensional or triangular structure to promote the output
of hydrogen (Delebecque et al., 2011), pentadecane and succinate
(Sachdeva et al., 2014). Nonetheless, RNA scaffold is rarely used
in the biosynthesis of PNPs. A brief comparison of three synthetic
scaffolds was made in Supplementary Table S1.

DNA Scaffold
Zinc fingers (ZFs) can bind to specific DNA sequences and
form a multienzyme complex with DNA scaffold (Greisman and
Pabo, 1997). Fusing two key enzymes with Zif268 and PBSII ZF
domains led to a nearly 5-fold increase in resveratrol production
(Conrado et al., 2012). Similarly, the assembly of three enzymes
in the lycopene synthesis pathway increased the production
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up to 4.7 times in E. coli (Xu et al., 2020). Apart from ZFs,
transcription activator-like effectors (TALEs) are also commonly
used to construct DNA scaffold (Moscou and Bogdanove, 2009).
The system composed of TALEs and corresponding DNA scaffold
considerably increased the titer of indole-3-acetic acid by closely
linking the two enzymes in the pathway (Zhu et al., 2016). The
plasmid copy number of DNA scaffold was also found to affect
the co-localization of heterologous enzymes (Xie et al., 2019).

Protein Scaffold
Adaptor domains SH3, SH2, PDZ, and GTPase binding domain
(GBD) have strong affinity with peptide ligands and are widely
used in protein scaffold (Horn and Sticht, 2015). In E. coli, the
production of mevalonate was enhanced 77-fold by anchoring
key enzymes fused with peptide ligands to the corresponding
aptamer domain (Dueber et al., 2009). Based on this study,
Zhao et al. (2015) adopted nine synthetic protein scaffolds from
Dueber’s research to capture and assemble enzymes for catechin
biosynthesis in E. coli. They found that genes from diverse sources
could also cause significant differences in scaffold function. With
similar protein domains, the optimal scaffold (GBD1SH32PDZ4)
increased the yield of resveratrol 2.7 times, compared with using
the fusion protein in S. cerevisiae (Wang and Yu, 2012). Recently,
SpyCatcher/SpyTag, and SnoopCatcher/SnoopTag were selected
as protein tags to covalently conjugate enzymes in the mevalonate
pathway, enhancing the titers of lycopene and astaxanthin to
varying degrees (Qu et al., 2019).

Decentralized Assembly
Constructing controllable and genetically stable heterologous
multi-gene metabolic pathways is an effective strategy to
promote product biosynthesis. In order to avoid homologous
recombination among multiple repeated sequences at the same
location (Blount et al., 2012), genes were integrated into different
loci on the chromosome for stable expression. To achieve this, a
decentralized assembly strategy comprising integrative plasmids
(pMRI) with recyclable markers and GAL regulatory system was
developed (Xie et al., 2014). The pMRI plasmids contain ready to
use loxP-KanMX-pBR322ori-loxP as the selection marker, which
could be recombined and removed under Cre induction to realize
the recyclable utilization of the marker. All candidate genes
involved in β-carotene biosynthesis were controlled by GAL1-
GAL10 bidirectional promoters. The knockout of GAL80 enabled
high-glucose inhibition and low-glucose induction, so that the
glucose concentration could regulate the switching time of the
integrated pathway. The dynamic regulation of the assembled
pathway balanced the metabolic flux between regular cellular
activities and product accumulation, shifting more intracellular
resources to β-carotene synthesis.

To simplify marker excision and shorten the integration
period, pUMRI with the marker loxp-kanMX-URA-loxp was
designed to substitute pMRI (Lv et al., 2016). The marker
was removed through low-frequency mitotic recombination and
colony counterselection. The improved decentralized assembly
strategy was applied to the synthesis of isoprenoids (Ye et al.,
2017) and lycopene (Zhou et al., 2018).

CONCLUSION AND PERSPECTIVE

The location of metabolic pathways and the adaptation
of the chassis cells to the heterologous pathways have a
significant influence on PNPs biosynthesis. However, there are
relatively few studies on the effects of different integration
loci on PNPs production, which should be explored in the
future. When targeting metabolic pathways to organelles, the
possible negative effects of targeting signal tags on enzyme
activity need to be considered. Although the genomic diversity
generated by whole-genome engineering methods such as
MAGE or SCRaMbLE can greatly accelerate strain evolution,
high-throughput screening methods are required to identify
beneficial mutants in the enormous mutant library, which is a
pivotal step during laboratory evolution. There are few high-
throughput screening methods. In most cases, these methods
are only applicable to the specific reactions. The lack of efficient
screening methods is a universal bottleneck in current research.
For genome editing, an automated high-throughput screening
platform is an important direction for future research. In
addition to cytoplasmic protein scaffold, emerging membrane-
bound scaffold is expected to improve PNPs biosynthesis.
Examples include cohesion-based protein scaffold located on
the membranes of lipid droplets (Lin et al., 2017), Tat-
assisted scaffold in the thylakoid membrane (Henriques de
Jesus et al., 2017), and membrane steroid-binding protein-
mediated scaffold anchored to the ER membrane (Gou et al.,
2018). To avert chromosomal rearrangement between repeated
loxP segments, seamless recombination can be performed to
optimize the decentralized assembly strategy. As synthetic
biology tools and strategies move forward, these challenges
will be addressed gradually. Microbial cell factories have the
potential to achieve efficient synthesis and large-scale industrial
production of PNPs.
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