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ABSTRACT 

Phage virion proteins (PVPs) are effective at recognizing and binding to host cell receptors while having no dele-

terious effects on human or animal cells. Understanding their functional mechanisms is regarded as a critical goal 

that will aid in rational antibacterial drug discovery and development. Although high-throughput experimental 

methods for identifying PVPs are considered the gold standard for exploring crucial PVP features, these procedures 

are frequently time-consuming and labor-intensive. Thusfar, more than ten sequence-based predictors have been 

established for the in silico identification of PVPs in conjunction with traditional experimental approaches. As a 

result, a revised and more thorough assessment is extremely desirable. With this purpose in mind, we first conduct 

a thorough survey and evaluation of a vast array of 13 state-of-the-art PVP predictors. Among these PVP predic-

tors, they can be classified into three groups according to the types of machine learning (ML) algorithms employed 

(i.e. traditional ML-based methods, ensemble-based methods and deep learning-based methods). Subsequently, 

we explored which factors are important for building more accurate and stable predictors and this included trai-

ning/independent datasets, feature encoding algorithms, feature selection methods, core algorithms, performance 

evaluation metrics/strategies and web servers. Finally, we provide insights and future perspectives for the design 

and development of new and more effective computational approaches for the detection and characterization of 

PVPs. 
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INTRODUCTION 

Bacteriophages are viruses that may infect 

bacteria and replicates within them. They are 

obligate intracellular parasites that are widely 

distributed in areas populated by bacterial 

hosts, such as soil, water, and animal or hu-

man intestines, with a viral population esti-

mated to be higher than 1031 particles (Clark 

and March, 2006; Lekunberri et al., 2017; 

Lyon, 2017). Phage virions are made up of ge-

netic material (DNA or RNA) and a coat of 

structural proteins (or virion proteins) that can 

interact with host cell receptors and insert 

their genome into the cell via one of two basic 

strategies: the lytic or lysogenic cycle (Roach 

and Donovan, 2015). Lytic phages harness the 

host cell's biological machinery to synthesis 

their DNA and the remaining proteins needed 

to produce new phage particles. The new ge-

nomes are then packed into the head and 

phage progeny construct. Finally, phages lyse 

host cells and release additional phage partic-

les (about 100-200 offspring) into the en-

vironment (Doss et al., 2017; Roach and 

Donovan, 2015). Prophages are lysogenic 

phages (temperate) that integrate their ge-

nome into the bacterial chromosome and 

become part of the host without killing the 

cell. The prophage genome is reproduced 

with the host chromosome and passed on to 

new daughter cells in a dependent manner. 

Under severe conditions, the viral genome 

can be extracted from the chromosome of the 

host bacterium, and lysogenic phages can go 

through a lytic cycle to produce new particles 

(Samson et al., 2013). 

Protein arrays and mass spectrometry are 

two prominent examples of well-known expe-

rimental approaches used to discover and cha-

racterize PVPs (Lavigne et al., 2009; Yuan 

and Gao, 2016). As these techniques are time-

consuming, labor-intensive and costly nature. 

As a result, the development of computational 

models capable of swiftly and accurately 

identifying PVPs is critical. Currently, there 

are 13 state-of-the-art predictors that are ba-

sed on a wide range of machine learning (ML) 

techniques (Arif et al., 2020; Charoenkwan et 

al., 2020b; Charoenkwan et al., 2020d; Ding 

et al., 2014; Fang and Zhou, 2021; Feng et al., 

2013; Han et al., 2021; Manavalan et al., 

2018; Pan et al., 2018; Ru et al., 2019; 

Seguritan et al., 2012; Tang et al., 2016) for 

PVPs identification while two review papers 

(Meng et al., 2020; Nami et al., 2021) have 

emerged in this aspect. These review articles 

provided a good summary on the current 

state-of-the-art of PVPs identification. In 

spite of their merit, the overall scope of these 

articles is quite outdated. These review artic-

les provided limited coverage on important 

aspects that are beneficial for the develop-

ment of more accurate PVP predictors inclu-

ding training/independent datasets, core algo-

rithms and webserver. 

Herein, we propose the following im-

portant issues that needs to be addressed. 

Firstly, a more updated and comprehensive 

review is highly needed. These review papers 

did not provide a comprehensive survey on all 

of the currently available PVP predictors. A 

comprehensive review of all existing methods 

will be very useful for experimental scientists 

in selecting suitable PVP predictors for iden-

tifying investigated unknown sequences. Se-

condly, exploration on the underpinnings con-

tributing to the development of more accurate 

PVP predictors would also be immensely 

useful. 

Motivated by these aforementioned con-

siderations, we herein conduct the first com-

prehensive overview and assessment of a 

large collection of 13 state-of-the-art PVP 

predictors. Table 1 summarizes these se-

quence-based PVP predictors along with their 

employed feature encoding algorithms, fea-

ture selection methods, ML algorithms and 

performance evaluation metrics/strategies. In 

particular, we reviewed all datasets used in 

the development of current PVP predictors. 

Details on these datasets are summarized in 

Table 2. Furthermore, we had also examined 

training/independent datasets, feature encod-

ing algorithms, feature selection methods and 

ML algorithms. From amongst the current 

predictors, they can be categorized into three 
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groups including conventional machine learn-

ing-based methods (i.e. iVIREONS 

(Seguritan et al., 2012), Feng et al.’s method 

(Feng et al., 2013), PVPred (Ding et al., 

2014), PVP-SVM (Manavalan et al., 2018), 

PhagePred (Pan et al., 2018), Tan et al.’s me-

thod (Tan et al., 2018), Ru et al.’s method (Ru 

et al., 2019), Pred-BVP-Unb (Arif et al., 

2020) and PVPred-SCM (Charoenkwan et al., 

2020b)), ensemble-based methods (i.e. Zhang 

et al.’s method (Zhang et al., 2015), Meta-

iPVP (Charoenkwan et al., 2020b) and iPVP-

MCV (Han et al., 2021)) and deep learning-

based methods (i.e. VirionFinder (Fang and 

Zhou, 2021)). Subsequently, we performed a 

comparative result analysis on three well- 

known benchmark datasets. 

Finally, we summarize some key insights 

and future perspectives for the design and de-

velopment of new next-generation computa-

tional methods for PVPs identification and 

characterization. 

 

MATERIALS AND METHODS 

Benchmark datasets 

In the viewpoint of ML, the construction 

of a high-quality dataset is one of the 

quintessential step in the development of reli-

able computational predictors. The following 

steps were conducted in the establishment of 

a high-quality PVP dataset. In the first step, 

all sequences were experimentally verified as 

PVPs and non-PVPs. In the second step, PVPs 

and non-PVPs containing non-stan- 

 
 

Table 1: A comprehensive list of current PVP predictors reviewed in this study 

Type Predictors/Tools Algorithm a Feature  
selection b 

Evaluation  
strategy c 

Conventional 
ML-based me-
thod 

iVIREONS (Seguritan et al., 
2012) 

ANN No 10CV 

Feng et al.’s method (Feng 
et al., 2013) 

NB CFS 10CV 

PVPred (Ding et al., 2014) SVM Two-step LOOCV, IND 

PVP-SVM (Manavalan et al., 
2018) 

SVM Two-step 10CV, IND 

PhagePred (Pan et al., 2018) NB Two-step 10CV, LOOCV 

Tan et al.’s method (Pan et 
al., 2018) 

SVM Two-step 10CV, IND 

Ru et al.’s method (Ru et al., 
2019) 

RF MRMD 10CV 

Pred-BVP-Unb (Arif et al., 
2020) 

SVM SVM-RFE LOOCV, IND 

PVPred-SCM (Charoenkwan 
et al., 2020b) 

SCM No 10CV, IND 

Ensemble-based 
method 

Zhang et al.’s method 
(Zhang et al., 2015) 

SVM Two-step 10CV, IND 

Meta-iPVP (Charoenkwan et 
al., 2020b) 

SVM GA-SAR 10CV, IND 

iPVP-MCV (Han et al., 2021) SVM No LOOCV, 10CV, 
IND 

Deep learning-
based method 

VirionFinder (Fang and 
Zhou, 2021) 

CNN No 10CV, IND 

a ANN: artificial neural network; CNN: convolutional neural network, LR: logistic regression, NB: naive bayes, RF: 
random forest, SCM: scoring card matrix, SVM: support vector machine 
b CFS:  Correlation-based feature selection, MRMD: maximum-relevance-maximum-distance, GA-SAR: Genetic-
algorithm based self-assessment-report, SVM-RFE: support vector machine methods based on recursive feature 
elimination, Two-step: a two-step feature selection algorithm 
c 10CV: 10-fold cross-validation, IND: independent test, LOO-CV: leave-one-out cross-validation 
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dard letters (e.g. “B”, “X” or “Z”) were 

excluded. In the final step, the sequence iden-

tity threshold was set to be in the range of 0.3-

0.4 in order to avoid sequence redundancy. 

Details on different datasets used for 

constructing currently available PVP predic-

tors are summarized in Table 2. From 

amongst these datasets, there are three popu-

lar benchmark datasets consisting of 

Feng2013 dataset (Feng et al., 2013), Mana-

valan2018 (Manavalan et al., 2018) and 

Charoenkwan2020_2.0 (Charoenkwan et al., 

2020d), which are frequently used for the de-

velopment of existing PVP predictors 

consisting of PVPred (Ding et al., 2014), 
Zhang et al.’s method (Zhang et al., 2015), 

PVP-SVM (Manavalan et al., 2018), Phage-

Pred (Pan et al., 2018), Tan et al.’s method 

(Pan et al., 2018), Pred-BVP-Unb (Arif et al., 

2020), PVPred-SCM (Charoenkwan et al., 

2020b), Meta-iPVP (Charoenkwan et al., 

2020d) and iPVP-MCV (Han et al., 2021). In 

2012, the Seguritan2012 dataset (Seguritan et 

al., 2012) was released as the first dataset that 

has been used for the development of a se-

quence-based predictor for in silico PVP iden-

tification that consisted of 6303 PVPs and 

6303 non-PVPs. Afterwards, the Feng2013 

dataset was introduced by Feng et al. (2013) 

and it represents the first high-quality dataset 

to apply a CD-HIT threshold of 0.4 that 

eventually led to a dataset of 99 PVPs and 208 

non-PVPs. Particularly, the Feng2013 dataset 

can be downloaded from http://lin-

group.cn/server/PVPred. In 2018, Manavalan 

et al. constructed the Manavalan2018 dataset 

(Manavalan et al., 2018) by combining the 

Feng2013 dataset with a new independent da-

taset containing 30 PVPs and 64 non-PVPs, 

which were manually collected from several 

PVP studies (Feng et al., 2013b; Pan et al.,  

 
 

Table 2: A summary of training and independent test datasets used in PVP predictors 

Namea Training dataset Independent 
dataset 

CD-HIT 
threshold 

Reference 

PVPs non-
PVPs 

PVPs non-
PVPs 

Seguritan2012  5042 5042 1260 1260 0.9 Seguritan et al., 
2012 

Feng2013  99 208 No No 0.4 Feng et al., 2013 

Ding2014b  99 208 11 19 0.4 Ding et al., 2014  

Zhang2015 100 100 68 92 0.8 Zhang et al., 2015 

Manavalan2018b  99 208 30 64 0.4 Manavalan et al., 
2018 

Pan2018b  99 208 No No 0.4 Pan et al., 2018 

Tan2018b,c 99 208 30 64 0.4 Tan et al., 2018 

Ru2019  6251 6914 No No 0.8/0.4c Ru et al., 2019 

Arif2020b,c  99 208 30 64 0.4 Arif et al., 2020 
Charoenk-
wan2020_1.0b,c 

99 208 30 64 0.4 Charoenkwan et 
al., 2020b 

Charoenkwan2020_2.0 250 250 63 63 0.4 Charoenkwan et 
al., 2020d 

VirionFinder2021  16868 61778 310 766 1.0 Fang and Zhou, 
2021 

Han2021b,c 99/250 208/250 30/63 64/63 0.4/0.4 Han et al., 2021 

aDatasets’ names are represented using the family name of the first author along with the publication year from 
the corresponding literature. 
bTraining dataset was directly obtained from the Feng2013 dataset 
cIndependent dataset was directly obtained from the Manavalan2018 dataset 
dSequence identity cutoffs were set to 0.8 and 0.4 for PVPs and non-PVPs 

http://lin-group.cn/server/PVPred
http://lin-group.cn/server/PVPred
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2018; Zhang et al., 2015). The Ma-

navalan2018 dataset can be downloaded from 

http://www.thegleelab.org/PVP-SVM/PVP-

SVM.html. Recently, our group constructed 

an up-to-date dataset consisting of 313 PVPs 

and 957 non-PVPs, which were downloaded 

from the UniProt database (release 2019_11) 

(Charoenkwan et al., 2020d). To solve the 

overestimation issue that typically occurs dur-

ing model optimization, the set of 313 PVPs 

and 957 non-PVPs were randomly divided 

into training and independent datasets using 

the 80/20 split ratio. This led to a training da-

taset consisting of 250 PVPs and 250 non-

PVPs while the independent datasets con-

sisted of 63 PVPs and 63 non-PVPs. These 

training and independent datasets are referred 

as the Charoenkwan2020_2.0 dataset in this 

review. The Charoenkwan2020_2.0 dataset 

can be downloaded from 

https://github.com/Shoombuatong/Dataset-

Code/tree/master/PVP. 

Several observations can be made from 

Table 1. Firstly, the Feng2013 dataset (Feng 

et al., 2013) was most frequently used for de-

veloping PVP predictors and for assessing 

their cross-validation performance (i.e. Feng 

et al.’s method (Feng et al., 2013), PVPred 

(Ding et al., 2014), PVP-SVM (Manavalan et 

al., 2018), PhagePred (Pan et al., 2018), Tan 

et al.’s method (Tan et al., 2018), Pred-BVP-

Unb (Arif et al., 2020), PVPred-SCM 

(Charoenkwan et al., 2020b) and iPVP-MCV 

(Han et al., 2021)). Secondly, the independent 

dataset derived from the Manavalan2018 da-

taset (Manavalan et al., 2018) was the most 

frequently used one for assessing the indepen-

dent test results of variant PVP predictors 

consisting of PVP-SVM (Manavalan et al., 

2018), Tan et al.’s method (Tan et al., 2018), 

Pred-BVP-Unb (Arif et al., 2020), PVPred-

SCM (Charoenkwan et al., 2020b) and iPVP-

MCV (Han et al., 2021). Thirdly, the Charo-

enkwan2020_2.0  dataset (Charoenkwan et 

al., 2020d) provided the largest number of 

PVPs and non-PVPs. 

Feature encoding schemes 

Machine-learning based PVP predictors 

require the extraction of feature information 

from the sequence. PVPs have been encoded 

into fix-length feature vectors using a variety 

of features encoding approaches (Arif et al., 

2020; Charoenkwan et al., 2020b; Ding et al., 

2014; Feng et al., 2013; Han et al., 2021; 

Manavalan et al., 2018; Pan et al., 2018; Ru et 

al., 2019; Zhang et al., 2015). In the present 

PVP predictors, there are five major types of 

feature descriptors, as shown in Table 3. 

Composition features (AAC, AKSNG, DPC, 

GGAP, and SAAC), position features (bi-

PSSM, bi-Profile Bayes, DP-PSSM, PSSM, 

PSSM-AAC, PSSM-Composition, and PSSM 

Profiles), physicochemical properties 

(AACPCP, CTD, PAAC, and PCP), meta-ba-

sed features (i.e. PFs), and structure features 

(i.e. PFs) were (i.e. Seq-Str). The most widely 

used descriptors are AAC, CTD, DPC, 

GGAP, and PSSM, as shown in Table 2 and 

their definitions are given below.  

AAC descriptors represent the occurrence 

frequency of standard amino acids in a protein 

sequence (Charoenkwan et al., 2021d, 2020c, 

2020d). The percentage composition (𝑎𝑎(𝑖)) 

of the ith amino acid is represented by: 

 
𝑎𝑎(𝑖) =

𝐴𝐴𝑖

𝐿
 

(1) 

where 𝐴𝐴𝑖 is the count or occurrence for 

the ith amino acid and L is the length of the 

protein. DPC descriptors represent the occur-

rence frequency of all possible dipeptides in a 

protein sequence (Charoenkwan et al., 2021c, 

2020b, 2013, 2020e, 2020f). The percentage 

composition (𝑑𝑝(𝑖)) of the ith dipeptide is re-

presented by: 

 
𝑑𝑝(𝑖) =

𝐷𝑃𝑖

𝐿 − 1
 

(2) 

 

 
 

  

http://www.thegleelab.org/PVP-SVM/PVP-SVM.html
http://www.thegleelab.org/PVP-SVM/PVP-SVM.html
https://github.com/Shoombuatong/Dataset-Code/tree/master/PVP
https://github.com/Shoombuatong/Dataset-Code/tree/master/PVP
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Table 3: Different types of features employed for developing the PVP predictors 

Feature type Featurea Dimension Reference 

Composition features  AAC 20 Feng et al., 2013; Manavalan et al., 
2018; Seguritan et al., 2012 

 AKSNG 400 Ru et al., 2019 

 APAAC 23 Charoenkwan et al., 2020b  
DPC 400 Charoenkwan et al., 2020b; Feng et 

al., 2013; Manavalan et al., 2018  
GGAP 400 Ding et al., 2014; Pan et al., 2018 

 GGAPTree 49220 Pan et al., 2018 

 SAAC 60 Arif et al., 2020 

Position features bi-PSSM 400 Arif et al., 2020 

 bi-Profile Bayes 20 Zhang et al., 2015  
DP-PSSM 200 Han et al., 2021 

 PSSM 20 Zhang et al., 2015  
PSSM-AAC 20 Han et al., 2021  
PSSM-Composi-
tion 

400 Han et al., 2021 

 
PSSM Profiles 20 Han et al., 2021 

Physicochemical pro-
perties 

AACPCP 180 Ru et al., 2019 

APAAC 23 Charoenkwan et al., 2020b 

CTD 273 Arif et al., 2020; Zhang et al., 2015 

PAAC 25 Zhang et al., 2015 

PCP  11 Manavalan et al., 2018  
PIP 16 Seguritan et al., 2012 

Meta-based features PF 16 Charoenkwan et al., 2020b 

Structure features  Seq-Str 27 Ru et al., 2019 

aAAC: amino acid composition, AACPCP: amino acid composition and physicochemical properties, AKSNG: Adap-
tive k-skip-n-Gram Algorithm, APAAC: pseudo amino acid composition, ATC: atomic composition, Bi-PSSM: Bigram 
position-specific scoring matrix, CTD: composition translation and distribution, DPC: dipeptide composition, DP-
PSSM: position-specific scoring matric based on dipeptides, GGAP: g-gap dipeptide composition, GGAPTree: g-
gap feature tree, PAAC: pseudo amino acid composition, PCP: physicochemical properties, PF: probabilistic fea-
tures, PIP: protein isoelectric points, PSSM: position-specific scoring matrix, PSSM-AAC: position-specific scoring 
matrix based on amino acid composition, PSSM-Composition: position-specific scoring matrix based on composi-
tion, PSSM Profiles: position-specific scoring matrix based on profiles, SAAC: split amino acid composition, Seq-
Str: sequence-structure 
 
 
 

where 𝐷𝑃𝑖 is the count of occurrences of the 

ith dipeptide. Final vectors for AAC and DPC 

descriptors are represented as 20- and 400-di-

mension (20-D and 400-D, respectively) fea-

ture vectors, respectively. The GGAP 

descriptor is another variation of the DPC 

descriptor (𝑔 = 0) by representing the occur-

rence frequency of any two interval amino a-

cids (aai, aaj; 𝑗 − 𝑖 > 1) in a given protein P 

(Ding et al., 2014; Pan et al., 2018). This 

descriptor can be formulated as follows: 

GGAP (g) = [𝑓1
𝑔

, 𝑓2
𝑔

, … 𝑓400
𝑔

] (3) 

where 𝑓𝑖
𝑔 is the percentage composition of the 

ith (𝑖 = 1,2, … ,400) g-gap dipeptide. 

𝒇𝒊
𝒈

=
𝒏𝒊

𝒈

∑ 𝒏𝒊
𝒈𝟒𝟎𝟎

𝒊=𝟏

 (4) 

where 𝑛𝑖
𝑔

 represents the percentage composi-

tion of ith g-gap dipeptide in a given protein P. 

The final vector for GGAP is a 400-D feature 

vector. 

The CTD descriptor describes the amino 

acid characteristics of protein sequences in 

general (Li et al., 2006). Combination (C), 

transformation (T), and distribution (D) are 

three separate feature descriptors provided by 
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this method (Dubchak et al., 1995). Hydro-

phobicity, normalized van der Waals volume, 

polarity, polarization, charge, secondary 

structure, and solvent accessibility are among 

the 13 physicochemical properties used to 

create these three separate feature descriptors 

(Chen et al., 2018). Particularly, CTDC, 

CTDD and CTDT represent 39-D, 195-D and 

39-D feature vectors, respectively (Arif et al., 

2020; Zhang et al., 2015). Further details on 

CTDC, CTDD and CTDT descriptors are 

described in the work by Li et al. (2006). 

The PSSM descriptor can be extracted by 

the evolutionary profile feature representation 

method. This descriptor is a position-based 

feature encoding that is represented by the 

characteristics of 20 amino acids at different 

positions in the protein sequence. Given a 

protein P, the Position-Specific Iterated 

BLAST (PSI-BLAST) program (Altschul et 

al., 1997) is often used to extract the PSSM 

descriptor. The occurrence frequency of 

amino acid residues at a certain site is genera-

ted after running the PSI-BLAST algorithm. 

Several previous studies have indicated that 

using the PSSM descriptor improves perfor-

mance in a variety of biological classification 

studies (Arif et al., 2020; Charoenkwan et al., 

2020d; Zhang et al., 2015). 
 

Machine learning algorithms 

As indicated in Table 1, there are three 

commonly utilized machine learning algo-

rithms (NB, RF, and SVM) in this work. SVM 

was chosen as the algorithm of choice for cre-

ating the current PVP predictors among vari-

ous ML methods. Meanwhile, in computatio-

nal biology challenges, SCM-based and en-

semble-based approaches are common soluti-

ons. The core notions of these five approaches 

are briefly discussed below. 

To determine an unknown sample, the NB 

method uses the Bayes theorem and a set of 

conditional independence assumptions 

(Kumar et al., 2015). NB is known as a pro-

babilistic-based classifier as it computes the 

predicted class with the maximum probability 

of investigated features. Given an unknown 

protein sequence P, it is represented with fea-

ture vector 𝐹 = (𝑓1, 𝑓2, … , 𝑓𝑛 ). Subsequently, 

its class is predicted by finding out the class C 

that can maximize the likelihood 𝑃(𝐹|𝐶) =
𝑃(𝑓1, 𝑓2, … , 𝑓𝑛 ) where 𝐶 = {0,1} that is 1 and 

0 represent PVP and non-PVP classes, respec-

tively (Altschul et al., 1997; Kawashima and 

Kanehisa, 2000; Truong et al., 2015; Wei et 

al., 2020). As can be seen in Table 3, NB al-

gorithm was employed in Feng et al.’s method 

(Feng et al., 2013) and PhagePred (Pan et al., 

2018). 

SVM is well-known as one of the most 

effective machine learning algorithms for 

dealing with binary classification problems, 

and it has been effectively applied in a variety 

of domains (Dao et al., 2019; Feng et al., 

2019; Lai et al., 2019; Su et al., 2018; Xu et 

al., 2019; Zhang et al., 2020; Zhu et al., 2019). 

The Vapnik-Chervonenkis theory of statisti-

cal learning was first developed in 1995 

(Cortes and Vapnik, 1995; Vapnik, 2013; 

Vapnik, 1999). It was then expanded to 

handle the multiclass classification task. Un-

like other machine learning algorithms, SVM 

can reliably generalize the underlying data. In 

the instance of binary classification, SVM 

creates a classifier by determining the hyper-

plane with the greatest distance between two 

classes (i.e. PVP and non-PVP). In the mean-

while, the kernel function is used to transform 

the sample space with p-dimensional feature 

vector into the feature space with n-dimensi-

onal feature vector, where p < n. As can be 

seen in Table 1, the SVM algorithm is used to 

construct several of the existing predictors 

consisting of PVPred (Ding et al., 2014), 

PVP-SVM (Manavalan et al., 2018), Tan et 

al.’s method (Tan et al., 2018), Pred-BVP-

Unb (Arif et al., 2020), Zhang et al.’s method 

(Zhang et al., 2015), Meta-iPVP (Charo-

enkwan et al., 2020d) and iPVP-MCV (Han et 

al., 2021). 

Conventional RF-based models were of-

ten constructed based on the original RF algo-

rithm as introduced by Breiman ( 2001). 

These models are constructed by integrating a 

collection of weak classification and regres-

sion tree (CART) classifiers to enhance the 
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predictive performance of CART (Breiman, 

2001; Breiman et al., 2017). In RF, the out-of-

bag (OOB) approach is used for measuring 

the invested feature importance. The proce-

dure for the out-of-bag (OOB) approach con-

sists of two main stages as follows: (1) two-

thirds of the training sample is employed in 

the construction of a classifier while the 

remaining is used for assessing the predictive 

performance of such classifier and (2) the im-

portance score of each feature is obtained by 

calculating the decrease in their predictive 

performance. 

The original SCM and ensemble-based 

SCM methods was firstly introduced by 

Huang et al. (2012) and Charoenkwan et al. 

(2013) for predicting and analyzing the pro-

tein solubility and protein crystallization, 

respectively. Recently, Charoenkwan et al. 

developed an improved version of SCM me-

thod known as the flexible scoring card me-

thod (FSCM) (Charoenkwan et al., 2021c) 

that provides improved prediction and chara-

cterization of anticancer peptides. The proce-

dure for the SCM-based predictor develop-

ment consists of five main stages 

(Charoenkwan et al., 2021a, 2020a, 2020b, 

2013, 2020f):(i) preparing training and inde-

pendent datasets, (ii) calculating initial pro-

pensity scores of 20 amino acids and 400 

dipeptides, (iii) using the genetic algorithm 

for obtaining optimal propensity scores of 20 

amino acids and 400 dipeptides, (iv) construc-

ting a scoring function based on the optimal 

propensity scores of 400 dipeptides and (v) 

predicting the biological functions of unk-

nown protein sequences. 

 
Feature selection algorithms 

Feature selection is an important step in 

building an effective and robust machine lear-

ning model. As indicated in Table 1, the most 

popular methodology for selecting the ideal 

feature sets to create 5 out of 13 existing PVP 

predictors is a two-step feature selection stra-

tegy, which includes PVPred (Ding et al., 

2014), PVP-SVM (Manavalan et al., 2018), 

PhagePred (Pan et al., 2018), Tan et al.’s me-

thod (Tan et al., 2018) and Zhang et al.’s me-

thod (Zhang et al., 2015). This strategy's pro-

cedure is outlined below. The first step is to 

rate all attributes in order of importance. Ana-

lysis of variance (ANOVA) (used in PVPred 

(Ding et al., 2014), PhagePred (Pan et al., 

2018) and Tan et al.’s method (Pan et al., 

2018)), relief algorithm (used in Zhang et al.’s 

method (Zhang et al., 2015)) and RF algo-

rithm (used in PVP-SVM (Manavalan et al., 

2018)). The most significant characteristic is 

the one with the greatest importance scores. 

The next step is to choose the best feature set. 

It is also worth noting that all five PVP pre-

dictors make use of the incremental feature 

selection (IFS) for determining the best fea-

ture set. Particularly, the IFS strategy's proce-

dure for determining the optimal number of 

features has two stages: (i) the first feature 

subset is built using the feature with the hig-

hest importance scores and (ii) the second fea-

ture subset is built by integrating the first fea-

ture subset with features with the second hig-

hest importance scores. This method was 

repeated until all of the researched traits were 

incorporated, starting with the higher score 

and ending with the lower score. The feature 

set with the highest performance is deemed to 

be the best. 

 
Performance evaluation and evaluation 

strategy 

To date, the performance of the 13 state-

of-the-art PVP predictors has been assessed u-

sing three well-known performance evalua-

tion strategies: K-fold cross-validation, jack-

knife validation test/LOOCV, and indepen-

dent test (Arif et al., 2020; Charoenkwan et 

al., 2020b, 2020d; Ding et al., 2014; Fang and 

Zhou, 2021; Feng et al., 2013; Han et al., 

2021; Manavalan et al., 2018; Pan et al., 2018; 

Ru et al., 2019; Seguritan et al., 2012; Tang et 

al., 2016). The performance of these PVP pre-

dictors is assessed using the accuracy (ACC), 

sensitivity (Sn), specificity (Sp), Matthew's 

correlation coefficient (MCC), and area under 

receiver operating characteristic (AUC) cur-

ves (Arif et al., 2020; Charoenkwan et al., 

2020b, 2020d; Ding et al., 2014; Fang and 
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Zhou, 2021; Feng et al., 2013; Han et al., 

2021; Manavalan et al., 2018; Pan et al., 2018; 

Ru et al., 2019; Seguritan et al., 2012; Tang et 

al., 2016). These performance metrics are de-

fined as follows: 

ACC =
TP + TN

(TP + TN + FP + FN)
 (5)  

Sn =
TP

(TP + FN)
 (6)  

Sp =
TN

(TN + FP)
 (7)  

where TP and TN are true positive and 

true negative, which represent the number of 

correctly predicted PVPs and non-PVPs. FP is 

the false positive, which represents the num-

ber of non-PVPs predicted as PVPs. FN is the 

false negative, which represents the number 

of PVPs predicted as non-PVPs. As for the Sn 

and Sp metrics, they are used to measure the 

model’s predictive ability in PVPs and non-

PVPs, respectively. Moreover, ACC and 

MCC are used to measure the model’s predic-

tive ability for two class problems.  

 

MACHINE LEARNING-BASED PVP 

PREDICTORS 

Table 1 summarizes 13 state-of-the-art 

ML-based PVP predictors in terms of ML al-

gorithms, feature selection techniques and 

performance evaluation strategies. These 

PVP predictors can be divided into three 

groups based on the types of machine learning 

algorithms used. The first group is made up of 

methods that are based on traditional machine 

learning algorithms consisting of ANN, NB, 

SCM, SVM, and RF. An approach based on 

ensemble learning constitutes the second 

group. Particularly, the ensemble approach u-

ses two strategies: majority voting and meta-

predictor approaches. A deep learning (DL)-

based approach makes up the third group. 

 
Conventional machine learning-based  

method 

Seguritan et al. developed the first PVP 

predictor based on ANN algorithm (called 

iVIREONS (Seguritan et al., 2012)) for deter-

mining viral structure proteins using the pri-

mary sequence information namely making 

use of AAC and PIP descriptors. A year later, 

Feng et al. developed an NB-based PVP pre-

dictor (referred herein as the Feng et al.’s me-

thod (Feng et al., 2013)) that makes use of 

AAC and DPC feature descriptors as applied 

to the Feng2013 dataset that contained 99 

PVPs and 208 non-PVPs. To improve the pre-

cision of PVP identification, Feng et al. used 

the CFS algorithm for determining m infor-

mative features from 420 features. The opti-

mal feature set having m informative features 

consists of V, T, A, H, K, E, R, S, LE, VT, 

VG, MK, TA, TS, AT, HI, KL, KI, KH, KN, 

KK, KD, KE, KW, KR, DK, EF, EL, EV, EK, 

EE, EW, CE, WK, RE, SG, GV and GG. The 

LOOCV performance (ACC, AUC) was 

(0.756, 0.758) and (0.792, 0.855), respec-

tively, which made use of a total of 420 fea-

tures as well as optimal features. 

In 2014, Ding et al. introduced an SVM-

based PVP predictor named PVPred (Ding et 

al., 2014). Particularly, PVPred makes use of 

the GGAP descriptor for distinguishing PVPs 

from non-PVPs on the Ding2017 dataset. 

Specifically, the GGAP’s parameter (g) was 

set to be in the range of 0 to 9. Finally, the 

protein sequence P is represented by a 400-D 

feature vector for each g. Subsequently, Ding 

et al. used the ANOVA approach together 

with the IFS process for determining im-

portant features that leads to improvement in 

the prediction ability of the model. Finally, 

the optimal feature set was inputted in to 

SVM algorithm to construct the final model. 

PVPred achieved a maximum ACC of 0.850 

by using the 160 top-ranked GGAP (g=1) fea-

tures. Ding et al. established the first indepen-

dent dataset containing 11 PVPs and 19 non-

PVPs. Particularly, PVPred correctly identi-

fied the 9 PVPs and 17 non-PVPs. 

In 2018, Manavalan et al. (2018) propo-

sed a novel predictor called PVP-SVM for ac-

curately recognizing PVPs in 2018. PVP-

SVM was a PVP predictor based on SVM that 

worked with AAC, DPC, CTD, ATC, and 

PCP. To find the best feature set, PVP-SVM 
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used the SVMQA method, which was a sys-

tematic feature selection strategy. There were 

136 informative features in the best feature 

set. They were obtained from 8 AAC features, 

1 ATC feature, 25 CTD features, 98 DPC fea-

tures, and 4 PCP features among the 136 rele-

vant features. Cross-validation and indepen-

dent test (ACC, MCC) results from PVP-

SVM were (0.870, 0.695) and (0.798, 0.531), 

respectively. 

PhagePred (Pan et al., 2018) and Tan et 

al.’s method (Tan et al., 2018) were develo-

ped using the GGAP descriptor. Unlike that 

of PVPred (Ding et al., 2014), PhagePred 

(Pan et al., 2018) is an NB-based PVP predic-

tor built with the GGAPTree descriptor. The 

final vector for GGAPTree is represented as a 

49220-D feature vector. Particularly, the A-

NOVA approach together with the IFS pro-

cess was employed for determining important 

features as well as for improving the predic-

tion ability of the model. As for Tan et al.’s 

method, it is an SVM-based PVP predictor 

that combines the use of ten best feature sub-

sets, which were obtained from the ANOVA 

and mRMR feature selection methods. The 

cross-validation and independent test ACC of 

PhagePred (Pan et al., 2018) and Tan et al.’s 

method (Tan et al., 2018) provided correspon-

ding values of (0.981, N/A) and (0.880, 

0.755), respectively. 

Ru et al.’s method (Ru et al., 2019) is an 

RF-based PVP predictor that is built with 

AACPCP, AKSNG and Seq-Str. Particularly, 

this method employs the MRMD approach for 

determining m informative features from a set 

of 661 features. This led to identification of 

the best m number that was found to be 256. 

The method was found to achieve values of 

0.879, 0.963, 0.935 and 0.853 for Sn, Sp, Ac 

and MCC, respectively, using the 10-fold 

cross-validation test. In addition, this study 

also reported that the charge property was the 

most important physicochemical property for 

PVP identification. 

In 2019, Arif et al. developed an unbiased 

predictor called the Pred-BVP-Unb (Arif et 

al., 2020). Particularly, the model was built u-

sing the SVM algorithm with the synthetic 

minority oversampling technique (SMOTE) 

for solving the imbalance problem on the trai-

ning dataset (i.e. 99 PVPs and 208 non-

PVPs). Moreover, multi-view features contai-

ning AAC, SAAC and bi-PSSM were 

employed to capture the wide array of infor-

mation of PVPs. An optimal feature set of 86 

top-ranked features was selected from 

amongst an initial set of 502 features for the 

construction of the final model. Pred-BVP-

Unb yielded cross-validation and independent 

test ACC of 0.925 and 0.831, respectively. 

Unlike previous existing PVP predictors, 

PVPred-SCM (Charoenkwan et al., 2020b) is 

a simple and highly interpretable PVP predic-

tor. Particularly, PVPred-SCM was develo-

ped using the SCM method together with 

DPC descriptors. Furthermore, propensity 

scores of 400 dipeptides for PVPs were gene-

rated and optimized for predicting and chara-

cterizing PVPs. Experimental results de-

monstrated that the performance of PVPred-

SCM as evaluated by cross-validation and in-

dependent test was found to achieve an ACC 

of 0.925 and 0.777, respectively, when com-

pared to those of existing SVM-based method 

(i.e. PVP-SVM (Manavalan et al., 2018)) and 

could outperform a few other PVP predicators 

such as PVPred (Ding et al., 2014) and Tan et 

al.’s method (Tan et al., 2018). 

 

Ensemble-based PVP method 

In 2015, Zhang et al. proposed the first 

stacking-based PVP predictor (called Zhang 

et al.’s method (Zhang et al., 2015)). In their 

stacking-based PVP predictor, they employed 

hybrid features consisting of CTD, bi-profile 

Bayes, PAAC and PSSM. From amongst 

these four feature descriptors, the bi-profile 

Bayes descriptor could achieve the best cross-

validation performance with ACC of 0.795, 

MCC of 0.595 and AUC of 0.835. Particul-

arly, bi-profile Bayes afforded the best perfor-

mance from amongst the four feature spaces 

with an accuracy of 0.795, an MCC of 0.595 

and an AUC of 0.835. In addition, the Relief 

method was used to construct and rank the 4 

feature types. As a result, the optimal feature 

subsets for CTD, bi-profile Bayes, PseAAC 
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and PSSM consisted of top 79, 55, 32 and 50 

features, respectively. The four RF models 

trained on four optimal feature subsets were 

integrated and used in the development of the 

final model using the LR algorithm. On the 

independent dataset, Zhang et al.’s method 

provided Sn of 0.853, Sp of 0.815, ACC of 

0.831 and MCC of 0.662. 

In 2020, our group had developed a novel 

meta-predictor called the Meta-iPVP 

(Charoenkwan et al., 2020b). Unlike that of 

Zhang et al.’s method (Zhang et al., 2015), 

Meta-iPVP combined four different ML algo-

rithms (ANN, NB, RF and SVM) and seven 

different feature descriptors (AAC, APAAC, 

DPC, CTDC, CTDD, CTDT and PAAC) for 

generating 28 baseline models. These base-

line models were used to generate 28 PFs. To 

improve the representation ability of PFs, the 

GA-SAR algorithm was used to determine the 

best m number out of 28 PFs. Finally, the 16 

selected PFs were used as inputs for training 

the final meta-predictor using the SVM algo-

rithm. Cross-validation and independent test 

results (ACC, MCC) of Meta-iPVP were 

(0.846, 0.698) and (0.817, 0.642), respec-

tively. 

Most recently, another ensemble-based 

PVP predictor (named iPVP-MCV) was 

proposed by Han et al. (2021). Particularly, 

three PSSM-based descriptors were found to 

perform well as compared to that of the Seq-

AAC descriptor in terms of four out of five 

metrics (i.e. ACC, SN, SP, and MCC). In the 

base layer, three SVM-based models were ge-

nerated using three different feature en-

codings (i.e. PSSM-AAC, DP-PSSM and 

PSSM-composition). In the meta layer, iPVP-

MCV integrated predicted classes as derived 

from these baseline models via the use of the 

majority voting strategy. The iPVP-MCV ap-

proach was applied on the Manavalan2018 

dataset and gave the following results ACC, 

Sn, Sp and MCC of 0.840, 0.667, 0.922 and 

0.621, respectively, as evaluated by indepen-

dent test. In the meanwhile, when applied on 

the Charoenkwan2020_2.0 dataset, iPVP-

MCV gave rise to ACC, Sn, Sp and MCC of 

0.833, 0.889, 0.778 and 0.671, respectively, 

as evaluated by independent test. 

 

Deep learning-based PVP method 

To the best of our knowledge, there is one 

PVP predictor in existence that was develo-

ped using the DL algorithm and this is Viri-

onFinder (Fang and Zhou, 2021). Particularly, 

Fang and Zhou employed the CNN algorithm 

for model building using one-hot representa-

tion and 20 PCPs. Interestingly, this method 

was effective in identifying both complete 

and partial PVP from the virome data. Their 

comparative results with related PVP predic-

tors (i.e. PVPred (Ding et al., 2014), PVP-

SVM (Manavalan et al., 2018), PVPred-SCM 

(Charoenkwan et al., 2020b) and Meta-iPVP 

(Charoenkwan et al., 2020d)) using their da-

tasets showed that the Sn of VirionFinder was 

higher than those of the compared PVP pre-

dictors on both the complete and partial data-

sets. 

 

PERFORMANCE COMPARISON AND 

ANALYSIS 

As can be seen from Table 3, almost all of 

the existing PVP predictors were developed 

and optimized using the three well-known 

benchmark datasets (i.e. Feng2013 (Feng et 

al., 2013), Manavalan2018 (Manavalan et al., 

2018) and Charoenkwan2020_2.0 

(Charoenkwan et al., 2020b)), with only few 

exceptions (i.e. iVIREONS (Seguritan et al., 

2012), Ru et al.’s method (Ru et al., 2019) and 

VirionFinder (Fang and Zhou, 2021)). Herein, 

we conducted a comparative analysis of these 

existing PVP predictors. Cross-validation and 

independent test results are summarized in 

Tables 4 and 5, respectively. Several of these 

existing PVP predictors including Feng et 

al.’s method (Feng et al., 2013), PVPred 

(Ding et al., 2014), PVP-SVM (Manavalan et 

al., 2018), PhagePred (Pan et al., 2018), Tan 

et al.’s method (Tan et al., 2018), Pred-BVP-

Unb (Arif et al., 2020), PVPred-SCM 

(Charoenkwan et al., 2020b) and iPVP-MCV 

(Han et al., 2021), were developed and evalu-

ated using the benchmark dataset  through the 
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10-fold cross-validation test. As can be seen 

from Table 4 and Figure 1, PhagePred achie-

ved the highest ACC and MCC of 0.970 and 

0.963 while PVPred-SCM (0.938, 0.866) and 

Pred-BVP-Unb (0.925, 0.850) performed 

well with the second and third highest ACC 

and MCC, respectively. For the Mana-

valan2018 dataset, six out of eleven existing 

PVP predictors were built using this dataset 

(i.e. PVPred (Ding et al., 2014), PVP-SVM 

(Manavalan et al., 2018), Tan et al.’s method 

(Tan et al., 2018), Pred-BVP-Un (Arif et al., 

2020), PVPred-SCM (Charoenkwan et al., 

2020b), iPVP-MCV (Han et al., 2021)). Table 

5 and Figure 2A show that iPVP-MCV and 

Pred-BVP-Unb could achieve the best inde-

pendent test results as evaluated by ACC 

(0.836-0.840) and MCC (0.621-0.660). PVP-

SVM could perform well with the second hig-

hest ACC and MCC of 0.798 and 0.531, 

respectively. In the meanwhile, five out of 

eleven existing PVP predictors were evalua-

ted by the Charoenkwan2020_2.0 dataset and 

this included PVPred (Ding et al., 2014), 

PVP-SVM (Manavalan et al., 2018), PVPred-

SCM (Charoenkwan et al., 2020b), Meta-

iPVP (Charoenkwan et al., 2020b) and iPVP-

MCV (Han et al., 2021). Meta-iPVP and 

iPVP-MCV could achieve the best indepen-

dent test results in terms of ACC (0.817-

0.833) and MCC (0.642-0.671) (Figure 2B). 

 

 
 

Table 4: Cross-validation results for different PVP predictors evaluated on the Feng2013 dataset 

Method ACC Sn Sp MCC AUC 

Feng et al.’s methoda 0.758 0.808 0.792 - 0.855 

PVPreda 0.758 0.894 0.850 - 0.899 

PVP-SVMa 0.737 0.933 0.870 0.695 0.900 

PhagePreda 0.970 0.986 0.981 0.963 0.990 

Tan et al.’s methoda 0.838 0.899 0.880 0.761 0.915 

Pred-BVP-Unbb 0.925 0.938 0.913 0.850 - 

PVPred-SCMa 0.938 0.948 0.933 0.866 0.960 

iPVP-MCVc 0.879 0.778 0.928 0.720  

a Results were reported from the work of PVPred-SCM (Charoenkwan et al., 2020b). 
b Results were reported from the work of Pred-BVP-Unb (Arif et al., 2020). 
c Results were reported from the work of iPVP-MCV (Han et al., 2021). 

 

 

Table 5: Independent test results from different PVP predictors as evaluated on Manavalan2018 and 
Charoenkwan2020_2.0 datasets 

Dataseta Method ACC Sn Sp MCC AUC 

Manavalan2018 PVPredb 0.713 0.600 0.765 0.357 0.742 

 PVP-SVMb 0.798 0.667 0.859 0.531 0.844 

 Tan et al’s methodb 0.755 0.700 0.781 0.464 0.651 

 Pred-BVP-Unbc 0.836 0.867 0.797 0.660 - 

 PVPred-SCMb 0.777 0.767 0.781 0.523 0.781 

 iPVP-MCVd 0.840 0.667 0.922 0.621 - 

Charoenkwan2020_2.0 PVPrede 0.730 0.892 0.663 0.505 0.857 

PVP-SVMe 0.746 0.816 0.701 0.505 0.844 

PVPred-SCMe 0.714 0.745 0.690 0.432 0.781 

Meta-iPVPf 0.817 0.889 0.746 0.642 0.870 

 iPVP-MCVd 0.833 0.889 0.778 0.671 - 

aThe independent test datasets (PVPs, non-PVPs) of Manavalan2018 and Charoenkwan2020_2.0 consisted of (30, 64) and 
  (63, 63), respectively 
b Results were reported from the work of PVPred-SCM (Charoenkwan et al., 2020b). 
c Results were reported from the work of Pred-BVP-Unb (Arif et al., 2020). 
d Results were reported from the work of iPVP-MCV (Han et al., 2021). 
e Results were reported from the work of Meta-iPVP (Charoenkwan et al., 2020b). 
f Results were reported from the work of Meta-iPVP (Charoenkwan et al., 2020d). 

https://sawebmail.mahidol.ac.th/owa/#_ENREF_11
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Figure 1: Performance evaluation on the Feng2013 dataset as deduced from 10-fold cross validation 
test 
 

 
Figure 2: Performance evaluation on Manavalan2018 (A) and Charoenkwan2020_2.0 (B) datasets as 
deduce from independent test 

 

 

From Tables 4 and 5, several observations 

can be made. Firstly, iPVP-MCV and Pred-

BVP-Unb were found to provide the best in-

dependent test results as evaluated on both 

Manavalan2018 and Charoenkwan2020_2.0 

datasets. However, no web server was provi-

ded from these two PVP predictors. Hence, 

their utility and usage is quite limited. Se-

cond, although, PhagePred achieved the best 

cross-validation results on the Feng2013 da-

taset, this predictor did not provide the inde-

pendent test. It could be stated that PhagePred 

might not be a suitable tool for identifying 

candidate PVPs from large-scale proteins. 
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Third, PVP-SVM and Meta-iPVP yielded re-

latively predictive performance to iPVP-

MCV and Pred-BVP-Unb on both Mana-

valan2018 and Charoenkwan2020_2.0, 

respectively. In the meanwhile, these two 

PVP predictors were deployed as a user-

friendly web server 

(http://www.thegleelab.org/PVP-SVM/PVP-

SVM.html  and http://camt.py-

thonanywhere.com/Meta-iPVP). Altogether, 

these comparative results indicated that PVP-

SVM and Meta-iPVP could outperform 

iPVP-MCV and Pred-BVP-Unb as well as 

other existing PVP predictors in terms of their 

prediction results and community utility. 

 

CHARACTERIZATION OF PHAGE 

VIRION PROTEINS 

From amongst the eleven current PVP 

predictors, PVPred-SCM as introduced by 

Charoenkwan et al. ( 2020b) represents a 

simple and easily interpretable approach 

(Charoenkwan et al., 2021a, 2020a, 2020b, 

2013, 2020f). Particularly, the PVPred-SCM 

model was built using 99 PVPs and 208 non-

PVPs as derived from Feng2013 dataset and 

their PVP scores were calculated using the 

scoring function S(P). Results from Charo-

enkwan et al. (2020b) indicated that four of 

ten proteins having the highest PVP scores 

were capsid protein (capsid protein G8P, 

capsid protein G8P, G VIII capsid protein 

precursor, and major coat protein). In addi-

tion, the SCM-derived propensity score of 20 

amino acids and 400 dipeptides for PVPs 

were determined for analyzing the biochemi-

cal and biophysical properties of PVPs 

(Charoenkwan et al., 2020b). Charoenkwan et 

al. ( 2020b) reported that Ala, Thr, Val, Gly 

and Ser were the five top-ranked amino acids 

with the highest propensity scores of 529.50, 

511.43, 506.88, 506.68 and 504.63, respec-

tively, while Leu, Arg, His, Glu, and Lys were 

found to be amongst the five top-ranked 

amino acids with the lowest propensity 

scores. This finding was consistent with re-

sults reported by Ding et al. (2014). Particu-

larly, in their study it was found that from 

amongst the GGAP (g=1) features, Ala, Gly, 

Pro, Ser, Thr were beneficial for PVPs while 

Glu, Lys, Leu and Arg were beneficial for 

non-PVPs. Moreover, informative PCPs from 

the AA index were also determined for ana-

lyzing important characteristics of PVPs. Re-

sults showed that alpha-helix propensity 

(KOEP990101) and hydrophobicity index 

(WOLR790101) were crucial properties of 

PVPs. Particularly, KOEP990101 and 

WOLR790101 properties exhibited high po-

sitive correlations of 0.502 and 0.484, respec-

tively, while the side-chain of amino acids ex-

hibited high negative correlation of -0.516. 

Two of five top-ranked amino acids having 

the highest propensity scores (i.e. Gly and 

Thr) were found to have high alpha-helix pro-

pensity with ranks of propensity scorers (PS, 

alpha-helix) of (4, 1) and (2, 3), respectively. 

Moreover, the helix propensity of amino acids 

was mentioned to be amongst the important 

contributors of protein stability as rationali-

zed by strong H-bond and Van der Waals in-

teractions (Pace and Scholtz, 1998). Moreo-

ver, important amino acids (i.e. Ala, Val and 

Gly) were found from amongst the ten top-

ranked highest propensity scorers and hydro-

phobicity index as (1, 5), (3, 4) and (4, 1), 

respectively. Several studies have highlighted 

the importance of hydrophobic side chain 

amino acids in the stability of procapsids and 

phage virions. Gly and Ala were discovered 

in 50-residues, which were necessary for the 

inclusion of the M13 filamentous bacterio-

phage coat (Roth et al., 2002). Furthermore, 

Ala substitution at Glu52, Glu59, and Glu72 

in the coat protein E-loop enhanced the stabi-

lity of procapsids and virions of bacteriopha-

ges P22 (Asija and Teschke, 2019). Accord-

ing to these results, PVPs favored amino acids 

with high alpha-helix propensity and hydro-

phobic side index. It was also found that the 

side-chain property of amino acids were ne-

gatively correlated with PVPs. Charoenkwan 

et al. (2020b) reported that Ala, Thr, Val, Gly 

and Ser had propensity scorer (PS, side-chain) 

ranks as follows: (1,19), (2,15), (3,16), (4,20) 

and (5,18), respectively. The role of each 

http://www.thegleelab.org/PVP-SVM/PVP-SVM.html
http://www.thegleelab.org/PVP-SVM/PVP-SVM.html
http://camt.pythonanywhere.com/Meta-iPVP
http://camt.pythonanywhere.com/Meta-iPVP
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amino acid in this protein was studied by per-

forming random mutations at the N-terminal 

region of fusion phage protein containing the 

β-galactosidase-binding peptide. The findings 

revealed that short amino acids play a crucial 

role in providing a high binding affinity for 

the principal coat protein's domain C 

(Kuzmicheva et al., 2009). PVPs favored 

short amino acids because they had a low ra-

dius of octapeptide composing domain C, 

which can build alpha helix areas and have 

low steric hindrances, resulting in a low con-

formation number. 

 

PROSPECTIVE STRATEGIES FOR  

IMPROVING THE PREDICTION  

PERFORMANCE OF PVPS 

To date, there are 13 ML-based PVP pre-

dictors which have been proposed and deve-

loped for predicting and analyzing PVPs u-

sing primary sequence information only. 

From amongst these predictors, there were 

only four PVP predictors that were deployed 

as a web server (i.e. PVPred (Ding et al., 

2014), PVP-SVM (Manavalan et al., 2018), 

PVPred-SCM (Charoenkwan et al., 2020b) 

and Meta-iPVP (Charoenkwan et al., 2020b)). 

In the meanwhile, only one PVP predictor 

(i.e. PVPred-SCM (Charoenkwan et al., 

2020b)) could provide mechanistic under-

standing on the underlying properties govern-

ing PVPs and this was made possible via the 

use of SCM-derived propensity scores of 20 

amino acids and 400 dipeptides. Although 

current PVP predictors could achieve an ac-

curate and stable performance, there are still 

under explored aspects that can help to im-

prove the identification of PVPs. Firstly, suf-

ficient size of training datasets are often nee-

ded to enhance the predictive performance of 

the model. Although several research groups 

have made efforts in constructing up-to-date 

PVP datasets (Charoenkwan et al., 2020b; 

Ding et al., 2014; Manavalan et al., 2018), the 

relative size of PVPs is not of satisfactory le-

vel. Secondly, a number of sequence-based 

feature descriptors were used for the develop-

ment of current PVP predictors. However, 

these feature descriptors had certain shortco-

mings (Charoenkwan et al., 2021d). Thus, 

there is the need to employ a built-in feature 

extractor for encoding PVPs. Several previ-

ous studies have demonstrated a natural lan-

guage processing (NLP)-based technique 

(such as TF-IDF, Pep2Vec and FastText) that 

is known to be an effective built-in feature 

extractor technique, which is able to achieve 

an outstanding level of performance when 

compared to well-known sequence-based fea-

ture encodings (Charoenkwan et al., 2021d; 

Le et al., 2019; Li et al., 2020; Nguyen et al., 

2020a, ). Thirdly, it is highly desirable to 

utilize a feature representation learning (FRL) 

algorithm that can combine variant sequence-

based feature descriptors together with ML al-

gorithms in providing class information or 

probabilistic information. The original FRL 

algorithm was proposed by Wei et al. (2018), 

which was developed using several single fea-

ture-based SVM-based models. Recently, 

Charoenkwan et al. (2021b), Basith et al. 

(2021) and Hasan et al. (2021a, ) extended the 

FRL algorithm of Wei et al. ( 2018) by in-

tegrating various ML algorithms such as 

ANN, KNN, NB and SVM. Fourthly, DL 

techniques have been demonstrated to be 

powerful ML techniques that could achieve 

good level of performance for various biolo-

gical and chemical classification problems. 

Although VirionFinder (Fang and Zhou, 

2021) is a DL-based PVP predictor that was 

developed using the CNN algorithm, however 

its DL structure is quite simple. Thus, there is 

the need to develop a more comprehensive 

DL structure. 

 

CONCLUSIONS 

This study surveyed and evaluated all cur-

rently available ML-based predictors for PVP 

prediction and characterization. We exa-

mined, assessed, and ranked all known PVP 

predictors in terms of their training/indepen-

dent datasets, feature encoding algorithms, 

feature selection methods, core algorithms, 

performance evaluation metrics/strategies, 
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and website. We used three benchmark data-

sets in a comparison analysis to find the best 

PVP predictor. PVP-SVM and Meta-iPVP 

were found to exceed other existing PVP pre-

dictors in terms of effectiveness, according to 

a comparison investigation. PVP-SVM and 

Meta-iPVP were found to exceed other exis-

ting PVP predictors in terms of effectiveness, 

acceptability and community utility. This re-

search also provides useful information and 

future directions for the design and develop-

ment of new and more sophisticated compu-

tational approaches for identifying and chara-

cterization of PVPs. We hope that this review 

will be useful to researchers in identifying the 

best PVP predictor for their needs as well as 

assisting in the rapid identification of phage 

virion proteins. 
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