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Abstract

Motivation: Single-cell multi-omics sequencing data can provide a comprehensive molecular view of cells.
However, effective approaches for the integrative analysis of such data are challenging. Existing manifold alignment
methods demonstrated the state-of-the-art performance on single-cell multi-omics data integration, but they are
often limited by requiring that single-cell datasets be derived from the same underlying cellular structure.

Results: In this study, we present Pamona, a partial Gromov-Wasserstein distance-based manifold alignment frame-
work that integrates heterogeneous single-cell multi-omics datasets with the aim of delineating and representing the
shared and dataset-specific cellular structures across modalities. We formulate this task as a partial manifold align-
ment problem and develop a partial Gromov-Wasserstein optimal transport framework to solve it. Pamona identifies
both shared and dataset-specific cells based on the computed probabilistic couplings of cells across datasets, and it
aligns cellular modalities in a common low-dimensional space, while simultaneously preserving both shared and
dataset-specific structures. Our framework can easily incorporate prior information, such as cell type annotations or
cell-cell correspondence, to further improve alignment quality. We evaluated Pamona on a comprehensive set of
publicly available benchmark datasets. We demonstrated that Pamona can accurately identify shared and dataset-
specific cells, as well as faithfully recover and align cellular structures of heterogeneous single-cell modalities in a
common space, outperforming the comparable existing methods.

Availabilityand implementation: Pamona software is available at https://github.com/caokai1073/Pamona.

Contact: lwan@amss.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The latest developments in high-throughput single-cell multi-omics
sequencing technologies, e.g. single-cell RNA-sequencing (scRNA-
seq) and ATAC-sequencing (scATAC-seq), enable cell-resolved
investigation of heterogeneous cellular populations that make up tis-
sues, the dynamics of developmental processes and the underlying
regulatory mechanisms that control cellular functions (Stuart and
Satija, 2019). The integration of emerging single-cell multi-omics
datasets, however, poses fresh data integration challenges such as
unmatched/distinct features and/or unpaired cells across datasets
(Efremova and Teichmann, 2020; Scherer et al., 2021). Integrative
methods have been developed to enable joint learning across mul-
tiple types of data. For example, the celebrated single-cell data ana-
lysis platform Seurat (Stuart et al., 2019) projected (distinct) feature
spaces across datasets into a common subspace using canonical cor-
relation analysis (CCA), which maximizes inter-dataset correlation,

and selected mutual nearest-neighbors (MNNs) (Haghverdi et al.,
2018) as anchors to align datasets. Although it achieved success in
batch effect correction, Seurat relies on the linear mapping of CCA
and the linear alignments of MNNs, thus weakening its ability to
handle non-linear geometrical deformations and rotations of intrin-
sic manifolds embedded across cellular modalities. A growing num-
ber of supervised methods, which require cross-correspondence of
cells given as a priori, have been developed for single-cell multi-
omics integration. For example, Multi-Omics Factor Analysis
(MOFA) (Argelaguet et al., 2018) employed a Bayesian Group
Factor Analysis approach; IntNMF (Chalise and Fridley, 2017) and
scAI (Jin et al., 2020) adopted the non-negative matrix factorization
(NMF) approach; scMVAE (Zuo and Chen, 2021) proposed a
single-cell multimodal variational autoencoder model and achieved
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state-of-the-art performance in jointly clustering of cells across
modalities.

Recently, manifold alignment approaches, which aimed to align
embedded low-dimensional manifolds, have been developed for hol-
istic representation of the intrinsic cellular structures across cellular
modalities, without requiring any correspondence information, ei-
ther among cells or among features, e.g. MATCHER (Welch et al.,
2017), MMD-MA (Liu et al., 2019; Singh et al., 2020), UnionCom
(Cao et al., 2020) and SCOT (Demetci et al., 2021). These methods
were derived under various advanced machine learning techniques,
such as linear trajectory alignment using the latent Gaussian process,
as in MATCHER (Welch et al., 2017); kernel space matching based
on maximum mean discrepancy, as in MMD-MA (Liu et al., 2019);
metric space matching based on the graph-matching/quadratic as-
signment formulation, as in UnionCom (Cao et al., 2020), or the op-
timal transport formulation, as in SCOT (Demetci et al., 2021).
Although these state-of-the-art methods have achieved integrative
performance with encouraging results (Demetci et al., 2021), current
manifold alignment methods often automatically assume that all
datasets share the same underlying structure across cellular modal-
ities. Such assumption can be easily nullified by presenting dataset-
specific cell types/structures across the heterogeneous single-cell
datasets. The dataset-specific cell types/structures may be introduced
by differences due to experimental batch, sample collection or ex-
perimental technology (Hie et al., 2019a). Therefore, it remains
computationally challenging for state-of-the-art manifold alignment
algorithms to preserve both shared and dataset-specific cellular
structures across datasets during integration.

Here, we present Pamona, a partial Gromov-Wasserstein-based
manifold alignment algorithm, that integrates heterogeneous single-
cell multi-omics datasets to delineate and represent both shared and
dataset-specific cellular structures (Fig. 1a and Section 2). Optimal
transport (OT) is a powerful tool in the analysis of complex data, as
it learns an optimal cost-effective mapping between data distribu-
tions (Peyré and Cuturi, 2019). Although OT has a wide range of
successful applications including computer vision (Solomon et al.,
2015) or domain adaptation (Courty et al., 2017), it relies on the as-
sumption of the same feature space. Gromov-Wasserstein (GW) dis-
tance, a generalized OT which overcomes the lack of intrinsic
correspondence between feature spaces, has been proven to be in-
creasingly valuable for diverse fields (Mémoli, 2011; Peyré and
Cuturi, 2019). In the single-cell data analysis community, GW has
been applied to the spatial reconstruction of gene expression cartog-
raphy by novoSpaRc (Nitzan et al., 2019) and single-cell multi-
omics data integration by SCOT (Demetci et al., 2021). While GW
seeks a transportation map that preserves the total mass between the
two probability distributions (Mémoli, 2011; Peyré and Cuturi,
2019), partial-GW extends the GW framework by allowing only a
fraction of the total mass to be transported (Chapel et al., 2020).
The spirit of partial-GW is built upon adding virtual or dummy
points onto the marginals and enforcing points with large discrepan-
cies absorbed by the virtual points (Caffarelli and McCann, 2010;
Chapel et al., 2020). As such, partial-GW enables Pamona to recon-
struct the probabilistic couplings of cells across datasets to identify
both shared and dataset-specific cells. Based on the probabilistic
couplings, Pamona further aligns single-cell multi-omics datasets in
a common low-dimensional space, while preserving both shared and
dataset-specific cellular structures across modalities.

Before Pamona, only a few methods were developed specifically
for integrating single-cell datasets with dataset-specific cell types/
structures. For example, Scanorama (Hie et al., 2019a) efficiently
integrated multiple scRNA-seq datasets based on a generalized
MNN matching technique for ‘panorama stitching’ of heterogeneous
scRNA-seq datasets. Liger (Welch et al., 2019), which employed an
integrative NMF approach to find the shared and dataset-specific
components across datasets, required pre-matched common feature
space across modalities and could not integrate datasets into a com-
mon space. The manifold alignment method UnionCom (Cao et al.,
2020) showed its ability to accommodate dataset-specific cells, but
remains to be further explored.

Notably, Pamona can perform both global and partial manifold
alignments for single-cell multi-omics data integration. In this study,
we propose a Scree-Plot-Like (SPL) method paralleled with Pamona
to estimate the shared cell number which needs to be specified by the
partial-GW framework (Fig. 1b and Supplementary Note S4). With
no inherent reliance on any prior information, our framework offers
the flexibility to match prior information, e.g. cell type annotations
or cell-cell correspondence, when available. To assess its perform-
ance, we applied Pamona to 2 simulated and 4 real single-cell multi-
omics datasets on various tasks. We demonstrate that Pamona can
accurately identify shared and dataset-specific cells, as well as faith-
fully recover and align intrinsic manifolds across heterogeneous cel-
lular modalities in the common space.

2 Materials and methods

2.1 Overview of Pamona
Pamona is a partial manifold alignment algorithm for heteroge-
neous single-cell multi-omics data integration based on the founda-
tion of partial-GW framework (Chapel et al., 2020). The main
inputs of Pamona are the data matrices of single-cell multimodal
profiles, e.g. gene expression, chromatin accessibility and DNA
methylation. The main outputs of Pamona are (i) the probabilistic
couplings of cells across datasets in order to identify both shared
and dataset-specific cells and (ii) the common low-dimensional
space that recovers and aligns intrinsic structures of heterogeneous
cellular modalities.

2.2 Mathematical formulation of Pamona
The procedure used by Pamona includes four major steps (see
Fig. 1a and Supplementary Note S1 for the pseudocode).

First, suppose that X ¼ ½x1; . . . ; xnx � 2 R
dx�nx and Y ¼

½y1; . . . ; yny
� 2 R

dy�ny are the inputs of two single-cell multi-omics
datasets where dxðdyÞ and nxðnyÞ are the number of features and
cells for X(Y). We compute the weighted k-nn graphs for each of the
two datasets where the nodes of each graph correspond to cells with-
in the dataset, and edges have weights based on pairwise Euclidean
distances between cells. In case the k-nn graph for a given k is not
connected, we adopt the same procedure as that in Klimovskaia
et al. (2020) to enforce connectivity.

Second, we compute the geodesic distances of cells within the
same dataset by calculating the shortest distance between each pair
of nodes (cells) on the k-nn graph using the Dijkstra algorithm,
which was proposed by UnionCom (Cao et al., 2020) and then fol-
lowed by SCOT (Demetci et al., 2021). The path with the shortest
distance will approximate to geodesic distance on the embedded
manifold (Tenenbaum et al., 2000). We denote the geodesic distance
matrices for X and Y as ½Dx�nx�nx

and ½Dy�ny�ny
, respectively.

Third, we compute the probabilistic cell-cell correspondence be-
tween X and Y to identify the shared and dataset-specific cells. Here,
we formulate the problem as the partial-GW optimal transport
framework (Chapel et al., 2020). Partial-GW extends the GW opti-
mal transport to allow only a fraction of the total mass to be
matched/transported (Peyré and Cuturi, 2019).

Specifically, we assign each cell from each of the two datasets
with a point mass 1=N, where N ¼ maxfnx;nyg. Partial-GW aims
to match (transport) a fraction of s/N mass from X to Y. Here, s �
minfnx;nyg needs to be specified, and it can be regarded as the num-
ber of shared cells between X and Y. Partial-GW finds a probabilis-
tic coupling matrix T 2 R

nx�ny from nx cells in X to ny cells in Y able
to minimize discrepancy between the geodesic distances in ½Dx�nx�nx

and ½Dy�ny�ny
, that iS

PGWðp; qÞ ¼def
min

T2Puðp;qÞ

X
i;j;k;l

ðDx
ik �D

y
jlÞ

2TijTkl; (1)

where Tij is the relative probability that matches cell i in X to cell j
in Y, satisfying the constraints on the set of all admissible coupling
Puðp; qÞ as
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Puðp; qÞ¼deffT 2 R
nx�ny

þ : T1ny
� p; T>1nx

� q;1>nx
T1ny

¼ s=Ng;
(2)

where p ¼ 1nx
=N and q ¼ 1ny

=N are the uniform mass marginal dis-
tributions for X and Y, which was proposed by SCOT (Demetci
et al., 2021). Here, 1n 2 R

n denotes an n-dimensional vector of ones,
and the superscript > denotes the transpose of a vector or matrix.
The equality 1>nx

T1ny ¼ s=N in Puðp; qÞ enforces the relaxed require-
ment that only a fraction of s/N cells needs to be matched/trans-
ported between the two datasets.

We write PGW in matrix form and add an entropic regulariza-
tion penalty to the original problem, resulting in the entropic regu-
larized partial-GW metric as follows:

PGW�ðp;qÞ ¼ min
T2Puðp;qÞ

h‘ðDx;DyÞ � T; Ti � �HðTÞ; (3)

where h�; �i denotes Frobenius dot product of matrices, ð‘� TÞ
denotes an nx � ny cost matrix with its (i, j)th element defined as

ð‘� TÞij¼def
Pnx

k¼1

Pny

l¼1 ‘ijklTkl, the discrepancy between geodesic

distances ‘ijkl ¼def ðDx
ik �D

y
jlÞ

2, the entropic regularization term

HðTÞ¼def �
P

i;j TijðlogðTijÞ � 1Þ and � is a tradeoff parameter be-

tween PGW and HðTÞ.
To solve the optimization problem of PGW�, Pamona adds vir-

tual points onto the marginals as in Chapel et al. (2020). The virtual

points are used as buffers when comparing distributions with differ-
ent probability masses. In this way, the partial-GW problem is
equivalent to a point (cell) augmented, but still standard GW prob-
lem, which can be efficiently solved by Sinkhorn iterations (Cuturi,
2013; Peyré et al., 2016). Here, different from the optimization
framework of partial-GW which resorted to a Frank-Wolfe method
(Chapel et al., 2020), Pamona adds the entropic regularization term
in Equation (3) and applies the efficient mirror descent algorithm to
solve this problem (Peyré et al., 2016; Solomon et al., 2016).
Pamona solves it iteratively as follows: for each iteration k:

A1.Update the cost matrix CðkÞ ¼ ð‘� TÞðkÞ as follows:

CðkÞ ¼ ðDxÞ2TðkÞ1ny
1>ny
þ 1nx

1>nx
TðkÞððDyÞ2Þ>

�2DxTðkÞðDyÞ>;
(4)

where C
ðkÞ
ij represents the cost of aligning cell i in X to cell j in Y at it-

eration k.
A2.Add two virtual points (cells), one to X and the other to Y,

resulting in augmented cost matrix ~C
ðkÞ

and marginal distributions
(~p; ~q) defined as follows:

~C
ðkÞ ¼

"
CðkÞ n1nx

n1>ny
a

#
; (5)
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Fig. 1. Overview of Pamona. Pamona is a partial manifold alignment algorithm for heterogeneous single-cell multi-omics data integration. Given inputs of multiple cellular

modalities (e.g. scATAC-seq and scRNA-seq), it identifies both shared and dataset-specific cells based on the computed probabilistic couplings of cells across datasets, and it

aligns cellular modalities in a common low-dimensional space, while simultaneously preserving both shared and dataset-specific structures. (a) Pamona constructs a weighted

k-nn graph of cells for each dataset (step 1), computes the geodesic distance matrix of cells within each dataset (step 2), computes the probabilistic coupling matrices of cells

based on the partial Gromov-Wasserstein optimal transport (step 3), and aligns cellular modalities with distinct unmatched features in a common low-dimensional space to hol-

istically represent the cellular structures (step 4). (b) A Scree-Plot-Like (SPL) method is proposed to estimate the shared cell number s when it is not available
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~p ¼ ½p; ðny � sÞ=N�; ~q ¼ ½q; ðnx � sÞ=N�; (6)

where the variable a 2 Rþ is set as a relatively large value greater
than the elements of the cost matrix CðkÞ, with the aim of preventing
the alignment within virtual cells between two datasets. In practice, a

can be chosen as any value such that > max
�

C
ðkÞ
ij

�
ð8i; jÞ, and the per-

formance of Pamona is robust to the choice of a (see Supplementary

Fig. S2e and f). The mass of virtual cell in X is set as ðny � sÞ=N in ~p,

and the mass of virtual cell in Y is set as ðnx � sÞ=N in ~q. The n is a
bounded scalar and should be n < a

2 (Chapel et al., 2020).

A3.Compute GW optimal transport plan with ~C
ðkÞ

and (~p; ~q).

We first normalize ~p  ~p
jj~p jj1

and ~q  ~q
jj~q jj1

to construct probability

distributions. Afterwards, we formulate the problem aS

~T
ðkþ1Þ ¼ argmin

~T2Psð~p ;~qÞ

D
~C
ðkÞ
; ~T
E
þ �
X

i;j

~Tijðlogð~T ijÞ � 1Þ; (7)

where

Psð~p; ~qÞ¼deff~T 2 R
ðnxþ1Þ�ðnyþ1Þ
þ : ~T1nyþ1 ¼ ~p; ~T

>
1nxþ1 ¼ ~qg; (8)

which is a standard entropic regularized optimal transport problem.

The ~T
ðkþ1Þ

is efficiently solved by Sinkhorn iterations (Cuturi, 2013).

Once ~T
ðkþ1Þ

is obtained, we remove the last row and column of

~T
ðkþ1Þ

to obtain Tðkþ1Þ as in Chapel et al. (2020).
The mechanism of adding virtual points with the designed aug-

mented cost matrix ~C
ðkÞ

and marginal distributions (~p; ~q), as defined
above, is based on the theory that the virtual cell in X attracts mass
of ðny � sÞ=N cells in Y, with large values in corresponding columns
of the cost matrix ~C

ðkÞ
, and that the virtual cell in Y attracts mass of

ðnx � sÞ=N cells in X, with large values in corresponding rows of the
cost matrix ~C

ðkÞ
. Equation (8) enforces that a fraction of s/N cells

needs to be transported between the two datasets, regardless of the
transport cost between datasets and virtual cells.

Four, we align cellular modalities with distinct unmatched fea-
tures in a common low-dimensional space for feature comparability.
The common space should preserve both shared and dataset-specific
structures across cellular modalities. Suppose we have l þ 1ðl � 1Þ
datasets. As in Seurat (Stuart et al., 2019), we fix a dataset Y 2
R

dy�ny as the reference dataset, and the other datasets Xi 2
R

di�ni ; i ¼ 1; . . . ; l as the query datasets. We apply partial-GW to Xi

and Y in the three steps above and obtain the probabilistic coupling
matrices Tis of cells between Xis and Y, respectively, as the prob-
abilistic cell-cell correspondence information.

We then align Xis and Y in a de-dimensional common space,
resulting in the new embeddings of Xie 2 R

de�ni ; i ¼ 1; . . . ; l, and
Ye 2 R

de�ny . To preserve the local neighborhood relationship, we
construct the graph Laplacian matrices Li

x of Xi; i ¼ 1; . . . ; l, and Ly

of Y, as other manifold learning algorithms have done (Belkin and
Niyogi, 2003; Cui et al., 2014; Roweis and Saul, 2000). Besides, we
also introduce the rotation-invariant constraints and find the embed-
dings of cells by solving the optimization problem as

max
Xe ;Ye

trðXeTeYe>Þ

s:t: XeSxxXe> ¼ I; YeSyyYe> ¼ I;
(9)

where

Xe ¼ ½X1e; . . . ;Xle�; Syy ¼
Xl

i¼1

ðLy þ kRi
yÞ; (10)

Ri
x ¼ diagðTi1ny

Þ;Ri
y ¼ diagð1>ni

TiÞ; i ¼ 1; . . . ; l; (11)

Te ¼
"T1

..

.

Tl

#
; Sxx ¼

"L1
x þ kR1

x

. .
.

Ll
x þ kRl

x

#
; (12)

and trð�Þ is the trace of matrix (see Supplementary Note S2 for

details). We solve this optimization problem using the eigenvalue de-
composition method as in Hardoon et al. (2004) and Cui et al.
(2014). This step is computationally efficient since its computational
cost mainly depends on feature dimension and does not increase sub-
stantially with the increasing number of samples/cells.

In addition, Pamona has the flexibility to incorporate existing
prior information during the alignment, such as cell types or cell-cell
correspondence, similar to the labeled graph matching problem
(Zaslavskiy et al., 2009). See Supplementary Note S3 for details. By
incorporate existing prior information, Pamona can greatly increase
the accuracy of data integration tasks and reduce the ambiguity of
manifold alignment (See Section 3.5).

3 Results

3.1 Pamona improved heterogeneous single-cell multi-

omics data integration
In the following, we compared Pamona to current state-of-the-art
single-cell multi-omics integration methods, including Seurat v3
(Stuart et al., 2019), MMD-MA (Liu et al., 2019), UnionCom (Cao
et al., 2020) and SCOT (Demetci et al., 2021). To the best of our
knowledge, SCOT is the first application of Gromov-Wasserstein
optimal transport to align single-cell multi-omics data.

For this purpose, we employed two simulated and four real-
world single-cell multi-omics datasets as follows: a simulated dataset
from MMD-MA (Liu et al., 2019), hereinafter denoted as
Simulation 1; a simulated dataset from UnionCom (Cao et al.,
2020), hereinafter denoted as Simulation 2; the single-cell analysis of
genotype, expression and methylation dataset from Cheow et al.
(2016), hereinafter denoted as sc-GEM; the single-cell nucleosome,
methylome and transcriptome dataset from Argelaguet et al. (2019),
hereinafter denoted as scNMT-seq; the single-nucleus chromatin ac-
cessibility and mRNA expression dataset from Chen et al. (2019),
hereinafter denoted as SNARE-seq; and the 10X Genomics scRNA-
seq and scATAC-seq dataset of human peripheral blood mono-
nuclear cells from Wang et al. (2020), hereinafter denoted as PBMC.
Detailed information of these datasets is provided in Supplementary
Notes S6 and S7.

We mainly employed two scores to assess the performance of
single-cell multi-omics data integration: (i) Label Transfer Accuracy
to measure the ability to transfer labels of the shared cells from one
dataset to another and (ii) Alignment Score to measure the ability to
preserve both shared and dataset-specific structures. What is note-
worthy is that Label Transfer Accuracy characterizes the local struc-
ture preservation across modalities, while Alignment Score
characterizes global structure preservation. In addition, we adopted
the FOSCTTM score to measure the preservation of cell-cell corres-
pondence across datasets for the SNARE-seq dataset. All three
scores work on the basis of the common space by integrative meth-
ods (See Supplementary Note S5).

In general, Pamona improved various partial manifold align-
ment tasks with the highest scores of Label Transfer Accuracy and
Alignment Score on Simulation 1, Simulation 2, sc-GEM and
scNMT-seq (Supplementary Fig. S1). Especially, Pamona increased
the Alignment Score markedly on the partial manifold alignment
tasks. On the global manifold alignment task of the scNMT-seq
dataset, Pamona achieved the second highest performance, slightly
below the highest one achieved by SCOT (Supplementary
Fig. S1d). Detailed results and comparison will be provided in the
following sections. Meanwhile, Pamona is robust to the hyperpara-
meter choices (Supplementary Fig. S2 and Supplementary Note
S8).

We demonstrated with detailed results that Pamona (i) resolved
the partial manifold alignment on simulated datasets of Simulation 1
and 2 (Section 3.2); (ii) identified informative genes in delineating
the shared and dataset-specific cellular structures of the sc-GEM
dataset (Section 3.3); (iii) resolved the integration of the scNMT-seq
dataset in both global and partial manifold alignment tasks (Section
3.4); (iv) improved the integration of the SNARE-seq dataset by
incorporating partial cell-cell correspondence information
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(Supplementary Result S1); (v) resolved the integration of the
heterogeneous PBMC dataset by incorporating cell type annotation
information (Section 3.5); (vi) achieved high accuracy on jointly
clustering of cells across modalities of SNARE-seq dataset in the
common space (Section 3.6).

3.2 Pamona resolved the partial manifold alignment on

simulated datasets
We assessed the performance of Pamona on partial manifold align-
ment using Simulation 1 and Simulation 2, and global manifold
alignment using 3 simulated datasets (denoted as Sim.1, Sim. 2 and
Sim. 3) in MMD-MA (Liu et al., 2019).

In Simulation 1, dataset X contains an embedded bifurcated
tree with three branches denoted as Type 1 (blue points), Type 2
(green points) and Type 3 (red points), respectively
(Supplementary Fig. S3a). The original dataset Y also contains an
embedded bifurcated tree with cell types corresponding to those
in Dataset X. To construct a partial manifold alignment task, we
removed the cells of Type 3 from dataset Y, resulting in a lineage
structure constituted only by cells of Type 1 (blue points) and
Type 2 (green points) (Supplementary Fig. S3a). Therefore, Type 3
becomes an X-specific branch. When we applied Pamona to inte-
grate X and Y, it aligned the shared cells of Type 1 (blue points)
and Type 2 (green points), accordingly, and preserved the cells of
Type 3 as the X-specific branch in the common space (Fig. 2a),
achieving the highest Alignment Score of 0.834 and Label
Transfer Accuracy of 97.92%. In contrast, Seurat v3, MMD-MA,
UnionCom and SCOT did not preserve either shared or dataset-
specific structures very well (Supplementary Fig. S4), resulting in
sharp drops of Alignment Score (Seurat v3, 0.215; MMD-MA,
0.507; UnionCom, 0.596; SCOT, 0.601) (Supplementary
Fig. S1a). MMD-MA has a lower Alignment Score since it
mixed cells of Type 1 and Type 2 (Supplementary Fig. S4c).
Meanwhile, MMD-MA, SCOT and UnionCom achieved Label
Transfer Accuracy similar to that of Pamona (MMD-MA,
95.85%; SCOT, 95.02%; UnionCom, 97.91%), while Seurat v3
had the lowest Label Transfer Accuracy of 70.12%
(Supplementary Fig. S1a).

In Simulation 2, dataset X contains an embedded bifurcated tree
with three branches denoted as Type 1 (red points), Type 2 (blue

points) and Type 3 (yellow points), respectively; dataset Y contains
an embedded trifurcated tree with three branches corresponding to
those in dataset X and a Y-specific branch of cells from Type 4
(green points) (Supplementary Fig. S3b). When we applied Pamona
to integrate X and Y, it aligned the shared cells of Type 1 (red
points), Type 2 (blue points) and Type 3 (yellow points), according-
ly, and preserved the cells of Type 4 as the Y-specific branch in the
common space (Fig. 2b). It had the highest Alignment Score of 0.885
and Label Transfer Accuracy of 93.5% (Supplementary Fig. S1b). In
comparison, UnionCom also integrated X and Y quite well
(Supplementary Fig. S5b) and had the second highest Alignment
Score of 0.698d Label Transfer Accuracy of 86.5% (Supplementary
Fig. S1b). In contrast, Seurat v3, MMD-MA and SCOT did not per-
form well on the partial manifold task (Supplementary Fig. S5),
showing sharp drops of Alignment Score (Supplementary Fig. S1b).

In three global alignment tasks, Pamona achieved the highest
Label Transfer Accuracy of 95.00% and 98.00%, and highest
FOSTCTTM scores of 0.073 and 0.011 in Sim. 1 and Sim. 2, re-
spectively (Supplementary Table S1). SCOT achieved the highest
Label Transfer Accuracy of 95.77%, and highest FOSTCTTM
scores of 0.009 in Sim. 3 (Supplementary Table S1).

3.3 Pamona identified informative genes in delineating

the shared and dataset-specific cellular structures of the

sc-GEM dataset
We applied Pamona to the sc-GEM dataset of gene expression and
DNA methylation on samples of human cells undergoing reprogram-
ming to induced pluripotent stem (iPS) cells. In a previous study, we
applied UnionCom to this same dataset for a global manifold align-
ment task (Cao et al., 2020). However, in this study, we removed
the human foreskin fibroblast (BJ) cells from the DNA methylation
dataset to construct a partial manifold alignment task. Both gene ex-
pression and DNA methylation datasets demonstrated similar linear
structures with the same cell type orders when visualized using
Uniform Manifold Approximation and Projection (UMAP) (Becht
et al., 2019; McInnes et al., 2018) separately (Fig. 3a). The gene ex-
pression dataset showed the dataset-specific cell type BJ (green
points) located at one end of the linear trajectory (Fig. 3a, lower
panel).

Pamona aligned the shared cells of d8 (red points), d16Tþ (blue
points), d24Tþ (yellow points) and iPS (black points), accordingly,
and preserved BJ cells as the gene expression dataset-specific cells in
the common space (Fig. 3b). It achieved the highest Alignment Score
of 0.719 and Label Transfer Accuracy of 66.2% (Supplementary
Fig. S1c). In comparison, UnionCom achieved the second highest
Alignment Score of 0.592 and Label Transfer Accuracy of 45.77%
(Supplementary Fig. S1c). SCOT and UnionCom did not separate BJ
cells from d8 cells (Supplementary Fig. S6a and b); MMD-MA and
Seurat v3 failed to align the shared cells across the two datasets
(Supplementary Fig. S6c and d) and showed relatively low accuracy
(Supplementary Fig. S1c).

We further assessed the importance of all 32 genes from the gene
expression profile in delineating the shared and dataset-specific cel-
lular structures. We set the Alignment Score achieved by Pamona at
0.719 as baseline (Fig. 3c, upper panel, blue line). We removed each
gene from the gene expression profile, applied Pamona and com-
puted the Alignment Score separately (Fig. 3c, upper panel, orange
bars). We found that (i) removing each of DNMT3B, HAND1,
TFAP2A and TBX3 genes resulted in a dramatic lose of Alignment
Score, suggesting that these genes are informative features for the
partial alignment task, but that (ii) removing each of the LEFTY
and JARID2 genes resulted in a significant gain of Alignment Score,
suggesting that these genes are non-informative features for the
partial alignment task. To evaluate the significancy of the results, we
performed the permutation test on each gene as follows: (i) we ran-
domly shuffled the given gene’s expression values across cells and
calculated the corresponding permuted Alignment Score; (ii) we
repeated the step (1) for 1000 times to obtain the permutation distri-
bution which served as a reference to access the significance of the
given gene in the alignment; (iii) we computed the P-value of the
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Fig. 2. Pamona integrated two simulated datasets in partial manifold alignment

tasks. (a) Visualizations of the common space of the partial alignment of the two

aligned datasets in Simulation 1 by Pamona using UMAP: left panel: cells are col-

ored according to their corresponding datasets; right panel: cells are colored accord-

ing to their corresponding types. (b) Visualizations of the common space of the

partial alignment of the two aligned datasets in Simulation 2 by Pamona using

UMAP
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given gene by calculating the fraction of the permuted Alignment
Scores that are above the baseline 0.719 (Fig. 3c, lower panel). All
the informative genes DNMT3B, HAND1, TFAP2A and TBX3 have
significant P-values less than 0.05, but not for the non-informative
genes LEFTY and JARID2 (see the listed P-values of all 32 genes in
Supplementary Table S2). It also can be evidenced that the inform-
ative gene DNMT3B was highly expressed in the shared cells, but
not expressed in BJ cells, which are dataset-specific cells (Fig. 3d,
upper panel). The non-informative gene JARID2 was uniformly
expressed in both shared and dataset-specific cells (Fig. 3d, lower
panel).

3.4 Pamona resolved the integration of the scNMT-seq

dataset in both global and partial manifold alignment

tasks
We applied Pamona to the scNMT-seq dataset of chromatin accessi-
bility, DNA methylation and gene expression on mouse gastrulation
samples collected at four time stages, i.e. embryonic day 4.5 (E4.5),
E5.5, E6.5 and E7.5 (Argelaguet et al., 2019).

We conducted a global manifold alignment task to integrate the
two cellular modalities of chromatin accessibility and DNA methyla-
tion. Both datasets demonstrated similar linear structures which pre-
serve the time stage orders when visualized using UMAP separately
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Fig. 3. Pamona integrated the sc-GEM dataset and identified informative genes in delineating the shared and dataset-specific cellular structures. (a) Visualizations of the

DNA methylation (upper panel) and gene expression (lower panel) datasets separately using UMAP before alignment. BJ cells (green points) comprise the gene expression data-

set-specific cells. (b) Visualizations of the common space of the two aligned datasets by Pamona using UMAP: upper panel: cells are colored according to their corresponding

datasets; lower panel: cells are colored according to their corresponding types. (c) Alignment score of Pamona using expression profile with all 32 genes (red dashed line, base-

line 0.719) and without each of the 32 genes separately (upper panel, orange bars), or the permuted Alignment Scores by randomly shuffling the expression values of each of

the 32 genes across cells 1000 times (lower panel, blue boxes). The genes with significant P-values less than 0.05 are denoted with ‘*’. (d) Gene expression of cells in the com-

mon space: upper panel: DNMT3B (informative gene); lower panel: JARID2 (non-informative gene)
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(Fig. 4a). Pamona aligned the two datasets in a common space and
also preserved the time stage orders (Fig. 4b). Pamona achieved the
second highest Alignment Score of 0.866 and Label Transfer
Accuracy of 70.79%, slightly below the highest scores achieved by
SCOT (Alignment Score 0.88; Label Transfer Accuracy 74.03%).
See Supplementary Figures S7a–d and S1d for more results of the 4
compared methods.

Next, we constructed a partial manifold alignment task by
removing the cells of time stage E4.5 from the chromatin accessibil-
ity dataset. Pamona aligned the shared cells from E5.5 to E7.5, ac-
cordingly, and preserved the cells of E4.5 as the DNA methylation
dataset-specific cells in the common space (Fig. 4c). It achieved the
highest Alignment Score of 0.907 and Label Transfer Accuracy of
75.34% (Supplementary Fig. S1e). In comparison, UnionCom
achieved the second highest Alignment Score of 0.669 and Label
Transfer Accuracy of 64.72%. SCOT, which was designed with the
underlying assumption of global manifold alignment, dropped its ac-
curacy markedly (Alignment Score 0.297; Label Transfer Accuracy
62.67%). See Supplementary Figures S7e–h and S1e for more results
of the 4 compared methods.

Finally, we conducted a partial manifold alignment task to
integrate the three cellular modalities of chromatin accessibility,
gene expression and DNA methylation by removing the cells of time
stage E4.5 from the chromatin accessibility dataset (Supplementary
Fig. S8a). Pamona successfully integrated the three modalities by
aligning the shared cells according to their time stages and preserv-
ing the cells of E4.5 as the DNA methylation- and gene expression-
specific cells in the common space (Supplementary Fig. S8b). In con-
trast, UnionCom, which can also handle multiple datasets, did not
clearly separate the cells of E4.5 of the DNA methylation and gene
expression datasets from the cells of the chromatin accessibility data-
set (Supplementary Fig. S8c).

3.5 Pamona resolved the integration of the

heterogeneous PBMC dataset by incorporating cell type

annotation information
We applied Pamona to integrate the heterogeneous PBMC dataset
by incorporating cell type annotation information. The PBMC data-
set consisting of gene expression (scRNA-seq) and chromatin acces-
sibility (scATAC-seq) was derived from samples of human
peripheral blood mononuclear cells released by 10X Genomics, and
it was previously analyzed by MAESTRO (Wang et al., 2020). We
adopted the annotations provided by MAESTRO (Wang et al.,
2020) as the benchmark to assess the performance of the methods
(see Fig. 5a for the annotated cell types of scRNA-seq and scATAC-
seq datasets on UMAP visualizations separately). Since both scRNA-
seq and scATAC-seq have dataset-specific cell types annotated by
MAESTRO (Fig. 5a), such data integrative analysis is a partial mani-
fold alignment task.

Here, the regulation parameter c 2 ½0;1�, which is defined in
Supplementary Note S3, represents a tradeoff between cost of indi-
vidual matchings and faithfulness to the data structure. When c¼0,
no prior information is incorporated. When no prior information
was used, all five methods tested had low scores of Label Transfer
Accuracy and Alignment Score (Fig. 5c). None of the 5 methods
tested could integrate the two modalities since they failed to preserve
both shared and dataset-specific cellular structures (Supplementary
Fig. S10). For example, Pamona could not align shared NaiveCD4T
cells across the two datasets in the common space (Supplementary
Fig. S10).

When incorporating cell type annotation information, however,
Pamona aligned the shared cells, accordingly, and preserved the
dataset-specific cells in the common space (Fig. 5b) with demon-
strably improved integrative accuracy in that the scores of Label
Transfer Accuracy and Alignment Score increased as the c increased
(Fig. 5c). We also incorporated cell type annotation information for
SCOT, as we did for Pamona, but SCOT only slightly improved its
Alignment Score (Fig. 5c) since it lacks a partial manifold alignment
strategy to separate out dataset-specific cells from the shared cells in
the common space. Pamona dropped its accuracy when c was set
greater than 0.5, which indicates that c ¼ 0:5 is an appropriate
trade-off parameter between cost of individual matchings and faith-
fulness to the data structure.

3.6 Pamona achieved high accuracy on jointly

clustering of cells across modalities of SNARE-seq data-

set in the common space constructed
We benchmarked the performance of Pamona with the state-of-the-
art supervised integration methods, MOFA and scMVAE, on jointly
clustering of single-cell multi-omics dataset of SNARE-seq (See
Supplementary Note S7 and Supplementary Result S1 for the infor-
mation about the SNARE-seq dataset). Both MOFA and scMVAE,
which were developed for parallel sequencing with multi-modality
in the same cell, took the information of cross-correspondence of
cells as a prior. We also included the unsupervised integration meth-
ods Seurat and CCA as comparisons. We adopted the Kappa coeffi-
cient utilized by scMVAE (Zuo and Chen, 2021) to measure
consistency between cell clusters predicted by each omic data. A
higher Kappa coefficient is indicative of higher accuracy. The calcu-
lated Kappa coefficients of Seurat, CCA, MOFA and scMVAE on
the SNARE-seq dataset was directly adopted from Zuo and Chen
(2021). We also calculated the Adjusted Rand Index (ARI) and
Normalized Mutual Information (NMI) indexes of Pamona for
evaluation of clustering performance.

We performed manifold alignment by Pamona without incorpo-
rating information of cross-correspondence of cells, and mapped the
cells into the common space. We then jointly clustered cells across
modalities in the common space into 4 clusters, the same number of
clusters as in scMVAE (Zuo and Chen, 2021), with the K-Means
clustering algorithm. It is worth note that Pamona achieved second
highest Kappa coefficient of 0.955, slightly below the highest coeffi-
cient of 0.985 by scMVAE (Supplementary Fig. S15). Besides,
Pamona also achieved high scores of ARI (0.92) and NMI (0.87).
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Fig. 4. Pamona integrated the scNMT-seq dataset in both global and partial mani-

fold alignment tasks. (a) Visualizations of chromatin accessibility (upper panel) and

DNA methylation (lower panel) datasets separately using UMAP before alignment.

(b) Visualizations of the common space of the global alignment of the two datasets

by Pamona using UMAP: upper panel: cells are colored according to their corre-

sponding datasets; lower panel: cells are colored according to their corresponding

types. (c) Visualizations of the common space of the partial alignment of the two

datasets (cells of E4.5 were removed from the chromatin accessibility dataset) by

Pamona using UMAP
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4 Discussion

In this study, we propose Pamona, a partial manifold alignment al-
gorithm, for heterogeneous single-cell multi-omics data integration.
Pamona delineates and represents the shared and dataset-specific cell
structures in the common space across modalities. It easily incorpo-
rates prior information, such as cell type annotations or cell-cell cor-
respondence, to further improve alignment quality. When applied to
two simulated and four real single-cell multi-omics datasets, Pamona
accurately identified shared and dataset-specific cells, and it faithful-
ly recovered and aligned cellular structures of heterogeneous cellular
modalities in the common space.

Pamona was developed based on the recently proposed partial-
GW optimal transport framework (Chapel et al., 2020). The key
technique of partial-GW is adding virtual/dummy points onto the
marginals to enforce points with large discrepancies absorbed by the
virtual points (Caffarelli and McCann, 2010; Chapel et al., 2020).
Virtual points have also been discussed in the partial graph matching
problem (Zaslavskiy et al., 2009). As we can see from the computed
probabilistic coupling matrices by Pamona, the virtual points
achieved the goal of absorbing the dataset-specific cells
(Supplementary Figs S11–S13). We also proposed an SPL method to
estimate the shared cell number across datasets. We demonstrate
that SPL is very accurate and robust in our tested datasets
(Supplementary Note S4, Supplementary Fig. S14).

Pamona is a computationally efficient algorithm (Table 1,
Supplementary Note S9). However, it requires Oðn2Þ memory con-
sumption in the storage of distance matrices. Therefore, it may not
perform well when sample size is in large-scale (e.g. > 1 million
cells). As large-scale single-cell multi-omics datasets are emerging, it
is challenging to resolve the scalability problem for Pamona. One ap-
proach to tackle this problem is to develop a distributed storage and
distributed computational framework for Pamona. Meanwhile, since
large-scale single-cell datasets can be highly redundant, we can take
the alternative approach by 1) adopting the state-of-the-art neural
network with mini-batch framework (Cho et al., 2018), or 2) select-
ing a subset of informative samples using the advanced geometric
sketching tool (Hie et al., 2019b) prior to applying Pamona. We
plan to pursue these topics in our future work.
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Peyré,G. and Cuturi,M. (2019) Computational optimal transport. Found.

Trends Mach. Learn., 11, 355–607.

Roweis,S.T. and Saul,L.K. (2000) Nonlinear dimensionality reduction by lo-

cally linear embedding. Science, 290, 2323–2326.

Scherer,M. et al. (2021) Machine learning for deciphering cell heterogeneity

and gene regulation. Nat. Comput. Sci., 1, 183–189.

Singh,R. et al. (2020) Unsupervised manifold alignment for single-cell multi-o-

mics data. In: Proceedings of the 11th ACM International Conference on

Bioinformatics, Computational Biology and Health Informatics, BCB ’20.

Association for Computing Machinery.

Solomon,J. et al. (2015) Convolutional Wasserstein distances: efficient optimal

transportation on geometric domains. ACM Trans. Graph., 34, 1.

Solomon,J. et al. (2016) Entropic metric alignment for correspondence prob-

lems. ACM Trans. Graph., 35, 1.

Stuart,T. and Satija,R. (2019) Integrative single-cell analysis. Nat. Rev. Genet.,

20, 257–272.

Stuart,T. et al. (2019) Comprehensive integration of single-cell data. Cell, 177,

1888–1902.e21.

Tenenbaum,J.B. et al. (2000) A global geometric framework for nonlinear

dimensionality reduction. Science, 290, 2319–2323.

Wang,C. et al. (2020) Integrative analyses of single-cell transcriptome and reg-

ulome using MAESTRO. Genome Biol., 21, 198–128.

Welch,J.D. et al. (2017) MATCHER: manifold alignment reveals correspond-

ence between single cell transcriptome and epigenome dynamics. Genome

Biol., 18, 138.

Welch,J.D. et al. (2019) Single-cell multi-omic integration compares and con-

trasts features of brain cell identity. Cell, 177, 1873–1887.e17.

Zaslavskiy,M. et al. (2009) A path following algorithm for the graph

matching problem. IEEE Trans. Pattern Anal. Mach. Intell., 31,

2227–2242.

Zuo,C. and Chen,L. (2021) Deep-joint-learning analysis model of single cell

transcriptome and open chromatin accessibility data. Brief. Bioinf. 22,

1–13.

Manifold alignment for single-cell multi-omics integration 219


	tblfn1

