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Abstract

The a-proteobacterial genus Bartonella comprises a group of ubiquitous mammalian pathogens that are studied as a model for

the evolution of bacterial pathogenesis. Vast abundance of two particular phylogenetic lineages of Bartonella had been linked to

enhanced host adaptability enabled by lineage-specific acquisition of a VirB/D4 type IV secretion system (T4SS) and parallel

evolution of complex effector repertoires. However, the limited availability of genome sequences from one of those lineages as

well as other, remote branches of Bartonella has so far hampered comprehensive understanding of how the VirB/D4 T4SS and its

effectors called Beps have shaped Bartonella evolution. Here, we report the discovery of a third repertoire of Beps associated with

the VirB/D4 T4SS of B. ancashensis, a novel human pathogen that lacks any signs of host adaptability and is only distantly related

to the two species-rich lineages encoding a VirB/D4 T4SS. Furthermore, sequencing of ten new Bartonella isolates from under-

sampled lineages enabled combined in silico analyses and wet lab experiments that suggest several parallel layers of functional

diversification during evolution of the three Bep repertoires from a single ancestral effector. Our analyses show that the Beps of

B. ancashensis share many features with the two other repertoires, but may represent a more ancestral state that has not yet

unleashed the adaptive potential of such an effector set. We anticipate that the effectors of B. ancashensis will enable future

studies to dissect the evolutionary history of Bartonella effectors and help unraveling the evolutionary forces underlying bacterial

host adaptation.
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Introduction

The successful infection of eukaryotic hosts by many bacteria

depends on the subversion of host cell functioning by effec-

tor proteins that are translocated into target cells via macro-

molecular machineries like the type IV secretion system

(T4SS) (Costa, et al. 2015; Gonzalez-Rivera et al. 2016).

The evolution of these machineries from ancestors with func-

tions in genuine bacterial processes is well established (Abby

and Rocha 2012; Frank et al. 2005; Guglielmini et al. 2013).

However, the evolutionary trajectories of secreted effectors

have proven difficult to study, because they are frequently

blurred by horizontal gene transfer (Brown and Finlay 2011;

Burstein et al. 2016). One major exception is the a-proteo-

bacterial genus Bartonella where two distinct effector sets

secreted by the VirB/D4 T4SS have evolved from a single

common ancestor and are thought to promote host adapt-

ability (Engel et al. 2011; Saenz et al. 2007). These bacteria

therefore provide an ideal setting to study the molecular basis

of host adaptation and the evolution of bacterial effector

proteins.

The characteristic stealth infection strategy of Bartonella is

hallmarked by arthropod transmission and persistent, hemo-

tropic infections in their respective mammalian reservoir hosts

(Harms and Dehio 2012). Host-specific adaptation is critical for

successful implementation of the Bartonella stealth infection

strategy, because reservoir host infections are typically long-

lasting but do not cause obvious disease symptoms. In con-

trast, infections of incidental hosts are often self-limiting but

can be accompanied by considerable morbidity (Angelakis and

Raoult 2014; Harms and Dehio 2012). The phylogeny of

Bartonella is divided into four major lineages (L1–L4) of

which L3 and L4 together comprise the overwhelming major-

ity of different reservoir hosts (Engel et al. 2011). Conversely,

B. bacilliformis (L1) is a strict human pathogen, whereas the

species of L2 seem to be limited to ruminant hosts (Harms and

Dehio 2012; Minnick et al. 2014). The diversity of species in L3

and L4 is the result of two parallel adaptive radiations that

have been linked to the acquisition of the VirB/D4 T4SS and

the vast potential of its secreted effectors to manipulate host

cell functions (Engel et al. 2011; Saenz et al. 2007). Previous

work showed that the VirB/D4 T4SS had been independently

acquired in L3 and L4 together with a single primordial effec-

tor that, via parallel series of effector gene duplication and

functional diversification, evolved into complex effector reper-

toires (Engel et al. 2011). The modular evolvability and func-

tional diversity of these effector repertoires is thought to have

enabled the surge of host adaptability that sparked the adap-

tive radiations of L3 and L4 (Engel et al. 2011; Guy et al. 2013).

This view is supported by the observation that neither B. bacil-

liformis (L1) nor any species of L2 encode host-interacting

T4SS or show any evidence of recent host shifts (Engel et al.

2011; Saenz et al. 2007). Surprisingly, a recent study on B.

ancashensis, a new species of L1 that shares its human reser-

voir host with B. bacilliformis, reported the discovery of a VirB/

D4 T4SS in the genome of this organism, but no further func-

tional or evolutionary analyses were carried out (Hang et al.

2015).

All Bartonella effector proteins (Beps) share a bipartite se-

cretion signal composed of a C-terminal Bep intracellular de-

livery (BID) domain and a positively charged tail (Schulein et al.

2005; Siamer and Dehio 2015). In addition, the far majority of

Beps contain an N-terminal filamentation induced by cAMP

(FIC) domain. The FIC—BID domain structure is thought to

reflect the ancestral state of these effector proteins from

which other effector architectures have derived throughout

the course of evolution (Engel et al. 2011). FIC domains are

enzymatic domains that mediate the posttranslational modi-

fication of target proteins via AMPylation, which typically re-

sults in target protein inactivation (Harms et al. 2016). The

AMPylation activity of FIC domains is dependent on the integ-

rity of an HPFX[D/E]GNGRXXR signature motif that forms part

of the active site. Alternative sequences at the signature motif

are indicative of divergent molecular activities, e.g., in case of

the Legionella pneumophila effector AnkX that mediates

target protein phosphocholination or the Doc toxin of bacte-

riophage P1 that is a kinase (Castro-Roa et al. 2013;

Mukherjee et al. 2011). With regard to the Beps, it has been

shown that Bep1 of B. rochalimae (L3) AMPylates a specific

subset of small host GTPases (Dietz et al., in revision), that

Bep2 of the same organism AMPylates the host intermediate

filament protein vimentin (Pieles et al. 2014), and that BepA of

B. henselae (L4) causes the AMPylation of two unknown host

proteins of ca. 40–50 kDa (Palanivelu et al. 2010). Apart from

effectors harboring a FIC domain, novel effector types have

evolved independently in both L3 and L4. These derived ef-

fector architectures consist of one or several BID domains and/

or tyrosine-containing motives phosphorylated by host kinases

to subvert host cell functioning (Engel et al. 2011; Siamer and

Dehio 2015).

In this work, we report the discovery of a third set of Beps

linked to a VirB/D4 T4SS in B. ancashensis, a human pathogen

of L1 that is clinically indistinguishable from its sister species

B. bacilliformis (Blazes et al. 2013; Minnick et al. 2014; Mullins

et al. 2013). We performed an extensive analysis of the Beps

of B. ancashensis, L3, and L4, that revealed signs of functional

diversification in all three effector repertoires. However, our

results suggest that the Beps of B. ancashensis may not yet

have explored the full adaptive potential as present in the

other lineages. Furthermore, we present the genome se-

quences of eight additional isolates of L3 that enabled a com-

prehensive view on the Beps of this lineage for which only a

few genomes have previously been available (Engel et al.

2011). Taken together, our analyses shed new light on the
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evolutionary trajectories of Bartonella effector proteins and

highlight their value as a model for the evolution of bacterial

pathogenesis.

Materials and Methods

Bacterial Strains and Growth Conditions

Escherichia coli strains were routinely grown in LB medium.

Plasmids were moved into Bartonella by conjugation using an

E. coli donor strain with chromosomal RP4 machinery (Jonas

Körner, unpublished). All bartonellae were routinely grown for

3–7 days on nutrient agar containing 5% defibrinated sheep

blood in a water-saturated atmosphere with 5% CO2 at

35 �C. Most species and isolates were grown on heart infusion

agar (Oxoid), but B. birtlesii and B. taylorii were cultured on

Columbia agar (Oxoid) and the two isolates from Sika deer

were cultured on tryptic soy agar (Oxoid). Derivatives of

pCD366 were selected with kanamycin ad 50 mg ml�1 (E.

coli) or ad 30 mg ml�1 (Bartonella), and the rpsL genotype of

the B. henselae Houston-1 lab strain RSE247 was selected

with streptomycin ad 100 mg ml�1.

Bartonella Isolates and Genome Sequences

Bartonella organisms were from our laboratory collection or

were obtained from different sources as listed in table 1.

Bartonella taylorii IBS296 isolated from a vole (Microtus sp.)

was obtained from Dr. Yves Piemont and Dr. Remy Heller.

Bartonella sp. CDCskunk was isolated from a stripped skunk

(Mephitis mephitis) at the Janos Biosphere Reserve, Mexico.

Genome sequences of relevant Bartonella species and other

organisms were downloaded from the National Center for

Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.

gov; last accessed March 9, 2017). The genome sequences

of additional Bartonella isolates were determined as described

below. Comprehensive information regarding all genomes

Table 1

Genomic Features of Bartonella Genomes That Were (Re)Sequenced or Reannotated as Part of This Study

Organism Reservoir Host Lineage Size (bp)a Contigsa GC %a CDS Analysis Source of Strain/Sequence

B. ancashensis 20.00 Human

(Homo sapiens)

1 1,467,789 1 37.1 1,251 reannotated ATCC BAA-2694/

(Hang et al. 2015)

B. schoenbuchensis R1 Roe deer

(Capreolus capreolus)

2 1,672,626/55,761 1/1 37.9/35.2 1,555/84 resequenced Dehio collection/this study

B. sp. Sika Deer

WD12.1

Sika deer

(Cervus nippon)

2 1,739,423/49,553 2/1 37.9/34.9 1,565/71 sequenced (Sato et al. 2012b)/this study

B. sp. Sika Deer

WD16.2

Sika deer

(Cervus nippon)

2 1,762,996 1 37.6 1,526 sequenced (Sato et al. 2012b)/this study

B. sp. CDC_skunk Stripped skunk

(Mephitis mephitis)

3 1,615,223 1 36.1 1,374 sequenced this study/this study

B. sp. JB15 Japanese badger

(Meles anakuma)

3 1,494,018 1 35.3 1,283 sequenced (Sato et al. 2012a)/this study

B. sp. JB63 Japanese badger

(Meles anakuma)

3 1,493,693 1 35.3 1,255 sequenced (Sato et al. 2012a)/this study

B. sp. Hoopa

Fox 11B

Gray fox (Urocyon

cinereoargenteus)

3 1,579,438 1 36 1,316 sequenced (Henn et al. 2007)/this study

B. sp. Hoopa Dog 114 Dog (Canis canis) 3 1,571,582 1 35.9 1,348 sequenced (Henn et al. 2007)/this study

B. sp. A1379B Red fox

(Vulpes vulpes)

3 1,541,976 1 35.8 1,289 sequenced (Henn et al. 2009)/this study

B. sp. Coyote22sub2 Coyote

(Canis latrans)

3 1,561,331 1 35.9 1,325 sequenced (Henn et al. 2009)/this study

B. sp. Racoon60 Raccoon (Procyon lotor) 3 1,615,700 1 36.1 1,400 sequenced (Henn et al. 2009)/this study

B. sp. AR15-3 American Red Scquirrel

(Tamiasciurus

hudosonicus)

3 1,630,082 2 35.9 1,447 resequenced Dehio collection/

(Engel et al. 2011)

B. sp. 1-1c Rat (Rattus norvegicus) 3 1,600,621 1 35.9 1,358 resequenced Dehio collection/

(Engel et al. 2011)

B. taylorii IBS325 Vole (Microtus sp.) 4 1,677,768 194 38.8 1,336 sequenced Dr. Y. Piemont,

Dr. R. Heller/this study

NOTE.—Relevant features of the Bartonella genomes sequenced, resequenced, or reannotated as part of this study. A comprehensive list of all Bartonella genomes used
throughout this work is presented in supplementary table S1, Supplementary Material online.

aThe first number refers to the main chromosome, the second number refers to plasmids.
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used in this study is assembled in supplementary table S1,

Supplementary Material online.

Plasmid Construction

Plasmids were constructed using standard restriction-based

procedures. Derivatives of pCD366 (an RSF1010 derivative

encoding promoterless gfpmut2 downstream of a multiple

cloning site (Seubert et al. 2003) were used for

PvirB2::gfpmut2 promoter probes as described previously

and designated the pAH196 series (Quebatte et al. 2010).

All oligonucleotide primers are listed in supplementary table

S2, Supplementary Material online. All vectors and details of

their construction are listed in supplementary table S3,

Supplementary Material online.

Genome Sequencing, Assembly, and Annotation

Genomic DNA was isolated from about 0.25 g of bacterial

material using the Power Soil DNA isolation kit (Mobio).

SMRT sequencing (Pacific Biosciences) and assembly with

HGAP (Chin et al. 2013) were carried out at the Yale Center

for Genome Analysis. For all newly sequenced genomes, we

obtained 1–3 contigs representing the entire chromosome of

a given species. In case of complete genomes (i.e., one contig

with overlapping ends), the origin of replication was set at the

change in sign of the GC skew and annotations were subse-

quently carried out using the Integrated Microbial Genomes

(IMG) platform (Markowitz et al. 2014). The genome of B.

taylorii IBS296 was sequenced separately (see below). Beps

were identified and manually annotated in all genomes

based on the presence of a BID domain secretion signal as

described below. Frameshifts were identified in coding regions

using the Microbial Genome Submission Check tool on NBCI

(https://www.ncbi.nlm.nih.gov/genomes/frameshifts/frame-

shifts.cgi; last accessed March 9, 2017). Frameshifts close to

homopolymeric sequence stretches were corrected manu-

ally by inserting or deleting a single base in the homopoly-

meric stretch. These stretches are prone to SMRT

sequencing errors and their corrections resulted in all cases

in a single continuous ORF. Inconsistencies identified in the

previously published genome of B. ancashensis (Hang et al.

2015) were confirmed by resequencing the corresponding

locus using the Microsynth Barcode Economy Run service.

Sequencing of Bartonella Taylorii IBS296

Bartonella taylorii IBS296 was sequenced at the Quantitative

Genomics Facility of the Department of Biosystems Science

and Engineering (D-BSSE) of the ETH Zürich in Basel,

Switzerland. Two read sets were generated from a 50 bp

single-read run on a HiSeq2000 and a 150 bp paired-end

run on a MiSeq sequencer (Illumina), achieving an average

coverage above 400�. Mapping against the genome se-

quence of the B. taylorii 8TBB reference strain using Bowtie2

(Langmead and Salzberg 2012) was complemented by a de

novo assembly of mis and unmapped reads using

SOAPdenovo2 (Luo et al. 2012).

Identification and Protein Domain Annotation of
Bartonella Effector Proteins

Bep and biaA genes in the genomes of all organisms shown in

figure 1 were systematically identified in silico using BLAST

implemented in Geneious v9.1.5 with amino acid query se-

quences against the translation of a local genome sequence

database in all six reading frames (tBLASTn). Beps were iden-

tified with the bipartite secretion signal (terminal BID domain

and C-terminal tail) of all effectors of B. henselae (L4) and B.

sp. 1-1c (L3) where the effectors had been annotated previ-

ously (Engel et al. 2011; Schulein et al. 2005). BiaA orthologs

were identified analogously with BLAST searches using the

homologous FicA antitoxins VbhA of B. schoenbuchensis

and YeFicA of Y. enterocolitica as query sequences (Harms

et al. 2015).

FIC domains were manually annotated in all effectors using

the protein analysis and classification tool of InterPro (http://

www.ebi.ac.uk/interpro/; last accessed March 9, 2017) imple-

mented in Geneious v9.1.5. BID domains of all effectors were

manually annotated based on BLAST searches with all BID

domains (including internal ones) of the effectors of B. hense-

lae (L4) and B. sp. 1-1c (L3). Eukaryotic-like tyrosine phosphor-

ylation motifs were identified and annotated in all effectors

using ScanSite3 (http://scansite3.mit.edu/; last accessed March

9, 2017) with medium stringency and 0.25% fidelity cutoff.

Sequence logos were determined using WebLogo (http://

weblogo.berkeley.edu/; last accessed March 9, 2017).

Phylogenetic Analyses of Bartonella Species

The maximum likelihood phylogeny of figure 1 was created

from 29 bartonellae and 5 outgroup species based on a con-

catenate alignment of the nucleotide sequence (fig. 1) or

amino acid sequence (supplementary fig. S1B,

Supplementary Material online) of 509 core gene orthologs.

Orthologous gene families were identified using the

OrthoFinder software (Emms and Kelly 2015). From the result-

ing 4981 protein families (excluding singletons), we selected

families which contained exactly one gene from each genome

in our analysis. This resulted in 494 core genes for tree con-

struction, to which we added 14 ribosomal protein genes that

are duplicated in B. bacilliformis, and the housekeeping gene

groEL which was clustered by OrthoFinder with multiple

orthologs for some outgroup species. For each of these addi-

tional genes, we used the homolog that was most similar to its

counterpart in the other strains. We aligned the protein se-

quences with ClustalW2 (Larkin et al. 2007). The nucleotide

sequences were aligned in codons according to the protein

alignments with an in-house Python script. From all align-

ments, we removed the columns with gaps in over 50% of

the sequences with trimAl v1.2 (Capella-Gutierrez et al. 2009).
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The best model of evolution for each gene was predicted with

Prottest-3.4 (Darriba et al. 2011) and MEGA v6.0 (Tamura

et al. 2013) for protein and nucleotide sequences, respectively.

Invariable site models were not taken into consideration as

recommended by the author of RAxML (Stamatakis 2014).

We inferred single gene trees for all protein and DNA se-

quence alignments with RAxML v8.0.0. The trimmed protein

and DNA alignments were concatenated with an in-house

Python script. Next, genome-wide trees were inferred with

RAxML v8.0.0 using the model of evolution that overall was

the best model of evolution for most single gene alignments

(GTR + G for DNA; JTT + G for protein). To assess the robust-

ness of the phylogenies, we did 100 bootstrap replicates and

counted the number of single gene trees that were congruent

with the genome-wide phylogenies at each branch using an

in-house Python script and the package APE v3.4 (Paradis

et al. 2004) in R v3.2.0.

Whole-Genome Alignments

Whole genome alignments were generated as pairwise

tBLASTx files using the DoubeACT tool (http://www.hpa-

bioinfotools.org.uk; last accessed March 9, 2017) and visual-

ized using the genoPlotR package in R v3.2.0 (Guy et al.

2010).

Phylogenetic Analyses of VirB/D4 T4SS and Beps

For phylogenies of Bartonella effector proteins, Bep sequences

of all species shown in figure 1 were aligned using MAFFT

implemented in Geneious v9.1.5. This alignment was manu-

ally curated to remove regions of largely gapped or obviously

nonhomologous sequence. The optimal model for maximum

likelihood analysis was determined using ProtTest3 and found

to be JTT in all cases (Darriba et al. 2011). Maximum likelihood

phylogenies were constructed from the alignments using

FIG. 1.—Comprehensive phylogeny of the genus Bartonella. Maximum likelihood phylogeny of Bartonella based on the nucleotide sequence alignment

of 509 concatenated core genes. Branch labels show bootstrap support (top; 100 replicates) and % support by single gene phylogenies (bottom). Lineages

encoding a VirB/D4 T4SS are highlighted by grey shading. Reservoir hosts are shown on the right-hand side of the illustration (simplified; for details, see table

1 and supplementary table S1, Supplementary Material online). A representation of the phylogeny with full outgroup as well as an analogous phylogeny

based on concatenated protein sequence are shown in supplementary figures S1A and S1B, Supplementary Material online.
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PhyML implemented in Geneious v9.1.5 with standard set-

tings and 100 bootstraps. Outgroups were chosen as indi-

cated either from effectors of a different phylogenetic

lineages or from homologous regions of conjugative relaxases.

The VirB/D4 T4SS phylogeny of figure 2B was generated sim-

ilarly from a concatenate of alignments of all single compo-

nents of the machinery.

Flow Cytometric Analysis of Gene Expression

The expression of GFP promoter fusions in B. henselae carrying

pCD366-derived reporter plasmids was probed using flow cy-

tometry as described previously (Quebatte et al. 2010;

Quebatte et al. 2013). In brief, bacteria were grown on

Columbia blood agar plates at 35 �C and 5% CO2 for 2

days. The bacteria were resuspended in M199 (Gibco) supple-

mented with 10% fetal calf serum (Amimed) to a final OD600

of 0.008 and incubated in 48-well plates in a humidified

atmosphere at 35 �C and 5% CO2. Expression of the

gfpmut2 reporter was measured as GFP fluorescence of ca.

25,000 cells using a FACSCalibur flow cytometer (BD

Biosciences) with an excitation at 488 nm. Data analysis was

performed using the FlowJo software (Flowjo LLC).

Results

Comprehensive Phylogeny of Bartonella Suggests Three
Separate Instances of VirB/D4 T4SS Acquisition

We determined the genome sequences of eight new isolates

of L3 and resequenced a number of additional Bartonella spe-

cies (table 1; see also supplementary table S1, Supplementary

Material online, for a comprehensive list of bartonellae used in

this study). Our assemblies yielded for many genomes a single,

circular chromosome with a GC skew typical for bacteria.

Genome sizes and GC content were in the range of previously

FIG. 2.—The VirB/D4 T4SS of B. ancashensis was acquired independently from its homologs in L3 and L4. (A) Whole-genome alignment of B.

bacilliformis KC583 (lacking any VirB/D4 T4SS), B. ancashensis, B. clarridgeiae (representing L3), and B. henselae (representing L4) with grey bands indicating

tblastx hits. virB/bep and bep loci are colored in black and green, respectively. Although the virB/D4/bep locus of B. ancashensis is clearly at a distinct position

from any related locus in L3, it is found close to the virB/D4/bep locus of L4 at a different position of the secretion system cassette (SSC) region that encodes

various horizontally acquired virulence factors (Guy et al. 2013) (more details shown in supplementary fig.S2, Supplementary Information online). (B)

Maximum likelihood phylogeny of the Bartonella VirB/D4 T4SS and related machineries based on concatenated protein alignments of all components

(with rhizobial conjugation systems as outgroup). Branch numbers represent bootstrap support when >80 (of 100 replicates).

Harms et al. GBE

766 Genome Biol. Evol. 9(3):761–776. doi:10.1093/gbe/evx042 Advance Access publication March 7, 2017

Deleted Text: c
Deleted Text: a
Deleted Text: g
Deleted Text: e
Deleted Text: two 
Deleted Text: 25'000 
Deleted Text: p
Deleted Text: s
Deleted Text: t
Deleted Text: s
Deleted Text: i
Deleted Text: a
Deleted Text: -


sequenced Bartonella species (Engel et al. 2011; Guy et al.

2013; Saenz et al. 2007). Based on 509 core genes of these

genomes and the genomes of additional bartonellae as well as

five rhizobial outgroup species, we constructed a robust max-

imum-likelihood phylogeny (fig. 1 and supplementary fig. S1,

Supplementary Material online). The topology of this phylog-

eny is largely similar to previous phylogenies based on smaller

sets of taxa (Guy et al. 2013; Segers et al. 2017; Zhu et al.

2014). Generally, the phylogeny shows that the genus

Bartonella comprises two deeply rooting lineages (B. apis

and B. tamiae) and the radiating lineage of the eubartonellae

(Segers et al. 2017; Zhu et al. 2014). The eubartonellae are

split into the previously described four phylogenetic lineages

L1, L2, L3, and L4, and Bartonella australis. Monophyly of

these major phylogenetic groups is well supported by the

single gene phylogenies, suggesting that horizontal gene

transfer and recombination did not greatly affect the topology

of the phylogeny. B. australis was placed as the earliest diverg-

ing lineage of the eubartonellae in accordance with a previous

analysis (Guy et al. 2012) and thus cannot be assigned to any

of the lineages L1-4. Within the eubartonellae, L3 shows a

bifurcated organization with one sublineage being formed by

B. clarridgeiae and two newly sequenced isolates from

Japanese badgers (Meles anakuma) and a second sublineage

consisting of B. sp. AR15-3, B. sp 1.-1-c, B. rochalimae, and

diverse newly sequenced isolates that are closely related to B.

rochalimae. For simplicity, we named these sublineages L3a

and L3b, respectively (fig. 1).

The phylogeny confirms that Bartonella L4 is composed of

three discernible sublineages plus B. doshiae that occupies a

more basal position (fig. 1) (Guy et al. 2012; Zhu et al. 2014).

Similar to the sublineages of L3, we classified the four sub-

groups of L4 as L4a-d. As expected from previous phyloge-

netic analyses (Mullins et al. 2013), B. ancashensis is robustly

placed within L1, but sits on a remarkably long branch that

indicates considerable evolutionary distance to its sister species

B. bacilliformis. Furthermore, the phylogeny confirms that L1

and L2 form a monophyletic clade as proposed by Guy et al.

(2013). None of the sequenced strains of these two lineages

encode a VirB/D4 T4SS except for B. ancashensis. When this

machinery was acquired in L1 and which sets of effector pro-

teins are encoded in B. ancashensis has so far remained

elusive.

Three Separate VirB/D4 T4SS Machineries in Bartonella
Form a Monophyletic Group Closely Related to the
Vbh/D4 T4SS

A comparison of the chromosomal loci encoding the VirB/D4

T4SS of L3, L4, and B. ancashensis shows that these machin-

eries are encoded at distinct positions in the genome (fig. 2A

and supplementary fig. S2, Supplementary Material online).

We therefore hypothesized that the VirB/D4 T4SS of B. anca-

shensis may have a distinct evolutionary history than the

homologous machineries present in L3 and L4. In order to

test this hypothesis, we generated a phylogeny based on all

proteins that form the VirB/D4 T4SS and also included closely

related machineries mediating bacterial conjugation (Saenz

et al. 2007; Schulein et al. 2005) (fig. 2B). This tree shows

that the VirB/D4 T4SS machineries of Bartonella form a mono-

phyletic clade that is the sister group of the conjugative Vbh/

D4 T4SS of Bartonella (Saenz et al. 2007; Schulein et al. 2005).

The tree also shows that the VirB/D4 T4SS of B. ancashensis

forms a separate deep-branching lineage, which supports the

hypothesis that this system is evolutionary distant from the

VirB T4SS systems in L3 and L4. Interestingly, the topology

of the VirB/D4 T4SS tree for L3 and L4 is congruent with the

species phylogeny (fig. 1), suggesting that these machineries

coevolved with the host genome after their original

acquisition.

Three Bep Repertoires Evolved by Parallel Series of Gene
Duplication and Diversification from a Single Common
Ancestor

We next studied the secreted effectors of the three Bartonella

VirB/D4 T4SS with a particular focus on the question if the

effector genes of B. ancashensis had evolved independently,

as in the case of L3 and L4, or if they are direct orthologs of

one of the other two lineages. For this purpose, we identified

all Beps of B. ancashensis, the newly sequenced genomes of

L3, and the other bartonellae shown in figure 1 (see details in

Materials and Methods). B. ancashensis encodes at least eigh-

teen bona fide effectors that were numbered according to the

index of the locus_tag of the effector genes in the previously

published genome sequence of this organism (Hang et al.

2015). Direct comparison of the genetic organization of virB/

D4/bep genes in the three lineages (including all newly se-

quenced organisms) revealed that the virB/D4 and bep

genes are encoded in a single genomic island in B. ancashensis

similar to the loci of L4, but different from the more dispersed

organization that is found in L3 genomes (fig. 3A) (Engel et al.

2011).

A maximum likelihood phylogeny based on the conserved

BID domain secretion signal of the Beps was generated to

study the evolutionary relationship of the three effector sets

with related sequences found in conjugative relaxases as out-

group (fig. 3B and supplementary fig. S3A, Supplementary

Material online). The tree topology shows that the Beps of

B. ancashensis form a monophyletic sister clade of the effec-

tors of L3 and L4. Although this topology mirrors the phylog-

eny of the VirB/D4 T4SS machinery, it is not supported by the

bootstrap analysis (i.e., values< 80), likely due to the high

degree of sequence divergence within Bartonella effectors

and compared with conjugative relaxases. Therefore, we ad-

ditionally generated an unrooted phylogeny of all Beps exclud-

ing the distantly related relaxase sequences. This tree supports

the monophyly of B. ancashensis effectors (fig. 3C and
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supplementary fig. S3B, Supplementary Material online) with

bootstrap values>80. These results imply that – beyond the

two well-described lines of effector evolution in L3 and L4—a

third Bep repertoire evolved independently from a single

common ancestor linked to the VirB/D4 T4SS of B.

ancashensis.

More targeted phylogenies of L3 and L4 Beps enabled us

to study the phylogenetic positions of the effectors encoded

in the newly sequenced genomes (supplementary figs. S4

and S5, Supplementary Material online). Most Beps of the

new L3 isolates fell within one of the ortholog groups that

had been previously identified within this lineage (Engel et al.

2011). However, our enhanced resolution of the internal di-

versity of L3 also revealed new aspects. Previously, B. clarrid-

geiae had been the only representative of a deep-branching

sublineage of L3, and some differences between its effector

repertoire and the Beps of other L3 species were apparent

but could not be interpreted with certainty (Engel et al.

2011). Our new genome sequences both of L3a and L3b

show that there are systematic differences between the

effector repertoires of the two sublineages of L3: whereas

L3b bartonellae encode each one ortholog of Bep4 and typ-

ically two closely related effectors classified as Bep7, the spe-

cies of L3a encode no Bep4 and only one Bep7 (fig. 4A and

supplementary fig. S4, Supplementary Material online).

Instead, they feature two additional paralogs of Bep8 (clas-

sified as Bep8/2 and Bep8/3) and one additional paralog of

Bep3 (classified as Bep3/2). Furthermore, there are differ-

ences regarding the genetic organization of Bep9 (see

below). Conceptually similar variations in the effector reper-

toire have long been known for L4 where, e.g., well-studied

B. henselae encodes BepG, a unique effector composed of

four BID domains (see below), while this organism and closely

related species in L4b lack orthologs of the otherwise ubiq-

uitous FIC–BID effector BepI (supplementary fig. S5,

Supplementary Material online) (Engel et al. 2011; Saenz

et al. 2007). Our observations strongly suggest that continu-

ous pathoadaptation is driving the diversification of effector

repertoires of L3 as well as L4.

FIG. 3.—The phylogeny of Bartonella effectors reveals that the repertoire of B. ancashensis evolved independently. (A) Genetic architecture of virB/D4/

bep loci of B. ancashensis, B. clarridgeiae (L3), and B. henselae (L4). Very short effector-like genes of B.ancashensis that may be gene fragments are marked

with an asterisk. (B) Maximum likelihood phylogeny of Beps encoded by the organisms shown in figure 1 based on their terminal BID domain and C-terminal

region and including the homologous part of rhizobial relaxases as outgroup to root the tree. Bootstrap values (of 100 replicates) are shown for the clade

formed by all Beps as well as the monophyletic groups formed by effectors of B. ancashensis or L3/L4 species. (C) Maximum likelihood phylogeny created

similar to (B), but without outgroup and thus based on a longer sequence alignment. The phylogeny strongly supports the monophyly of B. ancashensis Beps

(89/100 bootstraps; highlighted with an asterisk). The full phylogenies of (B) and (C) with all labels are shown as supplementary figures S3A and S3B,

Supplementary Information online.

Harms et al. GBE

768 Genome Biol. Evol. 9(3):761–776. doi:10.1093/gbe/evx042 Advance Access publication March 7, 2017

Deleted Text:  -- 
Deleted Text: While 
Deleted Text:  
Deleted Text:  


Protein Domain Architecture of B. Ancashensis Beps

A deeper analysis of the protein domain architecture of the

Beps that we identified in the newly sequenced organisms of

L3andL4confirmedthatall isolatesencodeeffector repertoires

fully orthologous to Beps of bartonellae in the same phyloge-

netic sublineage but different from those of other sublineages

or lineages (supplementary figs. S4 and S5, Supplementary

Material online). Apart from the minor variations described

above, all species of L3 encode a set of around ten orthologous

Beps with FIC-BID domain architecture as it had been reported

for the original four genomes of this lineage (Engel et al. 2011;

Bep1-8 and Bep10; fig. 4A and supplementary fig. S4,

Supplementary Material online). Additionally, the species of

L3b encode a single, rather large Bep with eukaryotic-like

tyrosine phosphorylation motifs (Bep9), whereas three smal-

ler effectors (one with tyrosine phosphorylation motifs) har-

boring closely homologous BID domains are found at the

same locus in L3a (classified as Bep9/1-3; fig. 4A and sup-

plementary fig. S4, Supplementary Material online).

Like most Beps encoded by species of L3 and L4, the far

majority of Beps of B. ancashensis display the characteristic

and ancestral FIC-BID domain architecture of the Beps (fig. 4A)

(Engel et al. 2011). Furthermore, the effector repertoire con-

tains several effectors consisting only of one or more BID do-

mains in a way similar to, e.g., BepG of L4. Additionally, one

effector (Bep197) contains three BID domains following an N-

terminal FIC domain, a domain organization not found in any

other effector of Bartonella. The presence of these effectors

FIG. 4.—Domain architectures and tyrosine phosphorylation motifs of the three Bep repertoires. (A) The domain architecture of all orthologous groups of

Beps found in B. ancashensis, L3, and L4 is shown in comparison. FIC domains are displayed in orange, BID domains are displayed in purple, BiaA-like

modules are shown in blue. Predicted tyrosine phosphorylation motifs are shown as vertical lines in cyan. The illustrations are based on representative

organisms (B. clarridgeiae for L3 and B. henselae for L4), and effectors absent in these species are shown from B. rochalimae (Bep4; L3) of B. tribocorum

(BepH and BepI; L4). (B) The consensus sequences of tyrosine phosphorylation motifs are shown for Bep226 and representative effectors of L3 (B. clarridgeiae/

B. rochalimae) and L4 (B. henselae/B. tribocorum).
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with several BID domains suggest that in B. ancashensis, just

like it had been shown for BepA or BepE of B. henselae

(Okujava et al. 2014; Pulliainen et al. 2012), BID domains

have secondarily evolved functions in host interaction on top

of their role as part of the Beps’ secretion signal.

Tyrosine Phosphorylation Motifs in Beps of
B. Ancashensis

One major discovery in the effector repertoires of L3 and L4

was the independent evolution of effectors containing

tandem arrays of eukaryotic-like tyrosine phosphorylation

motifs that are modified by host kinases after translocation

(Engel et al. 2011; Selbach et al. 2009). Upon phosphoryla-

tion, these Beps recruit diverse host proteins to form signaling

platforms that reorganize host cell signaling in favor of the

pathogen, similar to what has been shown for ancestrally

unrelated effectors with tyrosine phosphorylation motifs of

other pathogens (Hayashi et al. 2013; Selbach et al. 2009).

Because these motifs have not been studied by direct exper-

imentation in most effectors of Bartonella, we used ScanSite

to predict them in all Beps (fig. 4; see details in Materials and

Methods) (Obenauer et al. 2003). Apart from occasional single

and weak hits, tyrosine phosphorylation motifs of Beps of L3

and L4 were exclusively found in orthologous groups of effec-

tors that had already been known to harbor such motifs and

that contain only BID domains as additional features (Beps D/E/

F/H in L4 and Bep9 in L3; fig. 4) (Engel et al. 2011; Saenz et al.

2007). Interestingly, one single effector of B. ancashensis,

Bep226, also displays an array of predicted tyrosine phosphor-

ylation motifs, but these are found as an extension at the far

C-terminus of an effector with otherwise regular FIC-BID

domain architecture (fig. 4). The sequence logos of the pre-

dicted tyrosine phosphorylation motifs of Bep226 and the

Beps of L3 or L4 are clearly distinct from each other (fig, 4B)

(Engel et al. 2011). We therefore conclude that, similar to the

Bep repertoires as a whole, the tyrosine phosphorylation

motifs of Bartonella effectors evolved de novo at least three

times, i.e., at least once in each of the three lineages L1, L3,

and L4.

Analysis of Bep FIC Domains in B. Ancashensis Suggests
Functional Diversification during Effector Evolution

Among the FIC domains of L3 and L4 Beps, only the ortho-

logs of Bep1, Bep2, and Bep3 consistently display a canonical

HPFX[D/E]GNGRXXR active site motif that confers

AMPylation activity (figs. 5 and 6) of specific host target pro-

teins. Such enzymatic activity has indeed been shown for

Bep1 (Dietz et al., in revision) and Bep2 (Pieles et al. 2014).

Other orthologous groups of effectors share conserved, yet

noncanonical Fic signature motives like, e.g., the large ma-

jority of Bep4 orthologs that have a cysteine at the position

of the catalytic histidine of FIC domains (fig. 5A). We suggest

that these noncanonical (but conserved) active site motifs

may enable catalytic activities other than AMPylation as the

conserved molecular function of these effectors. A third

group of Bep FIC domains like those of BepA/B or Bep5 do

not show consistent sequence motifs at the FIC domain

active site, suggesting that these orthologs either have differ-

ent molecular functions or may have no enzymatic activity at

all and instead act, e.g., as target binders (fig. 5A and sup-

plementary fig. S6, Supplementary Material online).

Interestingly, the FIC domains of effectors of B. ancashensis

mostly display a canonical active site motif, suggesting that

they primarily contribute to pathogenesis by host protein

AMPylation (fig. 5B).

We recently discovered that the target specificity of one

Bartonella effector protein with AMPylation activity is largely

determined by the residues at the tip of an elongated b-sheet

(the “flap”) (Dietz et al., in revision). Interestingly, the ortho-

logs of Bep1 and Bep2 (AMPylating small GTPases and

vimentin, respectively) each consistently display very similar

motifs at the tip of the flap, whereas paralogous Beps gen-

erally have different motifs (fig. 5B) (Dietz et al., in revision)

(Pieles et al. 2014). The Bep FIC domains of B. ancashensis

show a wide variety of sequences at this position, suggesting

that they AMPylate different host proteins and indicating that

functional diversification and not gene dosage effects drive

maintenance of a large effector repertoire in this organism

(fig. 5B).

FicA Antitoxin Homologs (BiaA) Found at Bep Loci and
Fused to Bep FIC Domains

It was previously shown that the enzymatic activities of FIC

domains are regulated by a small inhibitory module that ob-

structs binding of the ATP substrate and that is encoded as

part of a separate small protein in a group of FIC domain

proteins to which the Beps belong (Engel et al. 2012; Harms

et al. 2016). These small proteins were originally described as

FicA antitoxins that control the AMPylation activity of the FicT

toxins in the frame of a classical bacterial toxin-antitoxin

module (Harms et al. 2015). Moreover, previous work had

introduced a FicA homolog encoded at a bep locus as BiaA

(Pieles et al. 2014). Surprisingly, our analyses showed that all

bartonellae with VirB/D4 T4SS invariably encode one (or rarely

two) copies of BiaA at a virB/D4/bep locus (fig. 6; see also fig.

3A). All these BiaA orthologs have conserved the glutamate

that is characteristic of FicA orthologs and is essential for the

inhibition of FIC domain activities, suggesting that they are

functional and may regulate the activity of Bep FIC domains

(fig. 6) (Engel et al. 2012). Furthermore, we discovered that all

orthologs of Bep3 and Bep4 carry an N-terminal extension

that is homologous to BiaA (figs. 4A and 7; see also supple-

mentary fig. S7, Supplementary Material online). It therefore

appears that the FIC domain activity of Beps is tightly con-

trolled by several layers of regulation.

Harms et al. GBE

770 Genome Biol. Evol. 9(3):761–776. doi:10.1093/gbe/evx042 Advance Access publication March 7, 2017

Deleted Text: <italic>a</italic>
Deleted Text: Since 
Deleted Text: <italic>a</italic>
Deleted Text: s
Deleted Text: f
Deleted Text: d
Deleted Text: e
Deleted Text: e
Deleted Text: figures 
Deleted Text: -
Deleted Text: -
Deleted Text: figure 
Deleted Text: il
Deleted Text: a
Deleted Text: h
Deleted Text: f
Deleted Text: <italic>b</italic>
Deleted Text: l
Deleted Text: f
Deleted Text: d
Deleted Text: figure 


Regulation of All Three Instances of the VirB/D4 T4SS by
the BatRS Two-Component System

Previous work in the B. henselae model has shown that ex-

pression of the virB operon is driven from PvirB2. This pro-

moter is controlled by the BatR/BatS two-component

system, the Bartonella ortholog of a conserved rhizobial reg-

ulator of host interactions (Quebatte et al. 2010). We there-

fore suspected that all instances of the VirB/D4 T4SS in

Bartonella may be controlled by the BatR/BatS two-compo-

nent system, despite the fact that the chromosomal integra-

tion of the secretion machinery and the evolution of the

effector genes seem to have occurred independently.

Strikingly, sequences similar to the known binding site of

BatR in PvirB2 of B. henselae were found in the PvirB2 pro-

moters of all strains (fig. 8A). We therefore tested the induc-

tion of PvirB2::gpfmut2 promoter fusions in a host-like

FIG. 5.—FIC domains of B. ancashensis Beps show strong signs of functional diversification. (A) The sequence logos of FIC signature motifs are shown for

the different orthologous groups of Beps of L3 and L4 (see all signature motifs in supplementary fig. S6, Supplementary Information online). (B) Alignment of

B. ancashensis Bep FIC domains with representatives of L3 and L4 as well as FicT toxins. The variable region around the tip of the flap is highlighted with a red

frame and amino acid coloring. The position of the Fic signature motif at the active site is marked with a blue frame. Notably, all Beps share a short b-hairpin

right ahead of the b-sheet that is not part of the FIC domain core and absent from FicT toxins (cyan) (Palanivelu et al. 2010).
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environment and found that (i) all instances of the Bartonella

VirB/D4 T4SS are induced in this experimental setup and that

(ii) this induction was invariably dependent on BatR (fig. 8B)

(Quebatte et al. 2010). Conversely, no change in expression or

any BatR-dependency was found for the PvbhB2 promoter of

the conjugative Vbh/D4 T4SS of B. schoenbuchensis (fig. 8B).

Interestingly, the whole population of bacteria induced PvirB2

of L3 or B. ancashensis in this host-like environment, but—as

shown previously for B. henselae (Quebatte et al. 2010)—only

part of the population responded for PvirB2 of all sublineages

of L4. It therefore seems that this lineage has acquired an

additional level of regulation that controls expression of the

VirB/D4 T4SS, possibly involving signaling through the second

messenger (p)ppGpp as shown previously for PvirB2 expres-

sion of B. henselae (Quebatte et al. 2013).

Discussion

In this work, we presented several lines of evidence that the

VirB/D4 T4SS of B. ancashensis and its Beps are the product of

a third, independent series of chromosomal integration and

effector gene amplification/diversification events on top of the

two that had been described previously in L3 and L4 (figs. 1–5,

supplementary figs. S1–S5, Supplementary Material online;

Engel et al. 2011). It is striking that the three instances of

VirB/D4 T4SS and Beps exhibit many common features includ-

ing details of effector evolution (like the emergence of tyrosine

phosphorylation motifs) or regulation by the BatR/BatS two-

component system (figs. 4 and 8). Although the emergence of

similar effector sets is likely the result of parallel evolution

(Engel et al. 2011), it is possible that regulation by the BatR/

BatS two-component system may have already been a feature

of the ancestral VirB/D4 T4SS that harbored a single primordial

effector gene.

With the sequencing of eight additional strains from L3, our

study sheds light on the evolution and diversity of Beps in this

group of Bartonella spp. Despite the fact that the sequenced

strains were isolated from different host species in different

countries, we only found little sequence divergence compared

with the previously sequenced genomes. Although we cannot

FIG. 6.—FicA antitoxin homologs (BiaA) found at bep loci in all bartonellae. Alignment of BiaA orthologs with the antitoxins VbhA of B. schoenbuchensis

and YeFicA of Yersinia enterocolitica, The FIC inhibition motif [S/T]xxxE[G/N] is highlighted by a purple box. Notably, the glutamate essential for the regulation

of FIC domain functioning is conserved in all orthologs (marked by an asterisk).

FIG. 7.—BiaA-like modules of Bep3 and Bep4 orthologs. BiaA modules were found in the N-terminal regions of all orthologs of Bep3 and Bep4 (see also

fig. 4A). Note that the Bep3/2 effector, a basal member of the Bep3 clade (see fig. 4 and supplementary fig. S4, Supplementary Information online) has even

two such modules, one at the very N-terminus and one inserted into the FIC domain. The consensus sequence of FIC domain inhibition motifs is shown for

relevant orthologous groups. The inhibitory glutamate is generally conserved, but replaced by a positively charged residue in Bep3/2.
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fully rule out sampling biases, these results suggest that the

genetic diversity within this lineage is limited compared with

L4. Regarding the Bep repertoires, we found that the different

orthologous groups of FIC domain containing effectors display

extensive diversification of the active site motifs and conspic-

uous sequence variability at a site involved in target recogni-

tion (fig. 5 and supplementary fig. S6, Supplementary Material

online). It seems therefore likely that different orthologous

groups of Beps generally display different biological functions

and sometimes distinct molecular activities, just as it has been

worked out for several Beps of B. henselae (Siamer and Dehio

2015).

Interestingly, most effectors of B. ancashensis have con-

served a canonical Fic signature motif at the active site,

indicating that they may still largely act as AMP-transferases

but modify diverse host targets (fig. 6 and supplementary fig.

S6, Supplementary Information online). We therefore hypoth-

esize that, in three lineages of Bartonella, Beps have indepen-

dently explored the characteristic molecular plasticity of FIC

domains and evolved a wide range of biochemical activities

and target binding features to enable elaborate modulation

of host cell functioning (Harms et al. 2016). Future studies

should experimentally address the molecular functions of Bep

FIC domains in order to elucidate the basis of their

diversification.

Our analyses showed that B. ancashensis encodes one ef-

fector (Bep226) with an array of predicted eukaryotic-like ty-

rosine phosphorylation motifs. However, their positioning at

FIG. 8.—The BatR/BatS two-component system controls all three instances of the VirB/D4 T4SS. (A) The alignment of virB2 upstream regions (around

�300 bp) of B. ancashensis, L3, and L4 reveals similarities to the known BatR binding site in PvirB2 of B. henselae (�306 bp to� 277 bp [Quebatte et al.

2010]). (B) The BatR-dependent induction of PvirB2 of all Bartonella lineages and sublineages (organisms highlighted in bold in the tree adapted from fig. 2B)

was probed using flow cytometry after incubation in a setup mimicking the host environment (see Materials and Methods).
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the C-terminus of a FIC-BID effector is not like anything found

in the other lineages (fig. 4). In the absence of evidence for

horizontal gene transfer and given that the consensus se-

quence of these motifs is largely different from those of other

Beps (fig. 4B), we conclude that they have arisen three times

independently as a true innovation in all three Bep repertoires.

This finding highlights the critical role that Beps with tyrosine

phosphorylation motifs may play as signaling platforms in host

cells (Selbach et al. 2009), though no biological role for these

motifs in any Bep has yet been uncovered. Previous work on

Beps of L3 or L4 stayed descriptive regarding the phosphoryla-

tion itself and only studied phenotypes that appeared to be

unrelated to these motifs (Engel et al. 2011; Okujava et al.

2014). Future studies should therefore aim to comparatively

assign molecular and biological functions to the tyrosine phos-

phorylation motifs of Beps of all three lineages in order to un-

derstand the evolutionary driving forces behind the repeated

emergence of this effector type.

Every instance of VirB/D4 T4SS and Beps in Bartonella is

invariably associated with BiaA proteins, i.e., homologs of

FicA antitoxins (figs. 3A and 6). Bep3 and Bep4 orthologs ad-

ditionally harbor BiaA-like modules at their N-terminus (figs. 4A

and 7, supplementary fig. S7, Supplementary Information

online). Previous work reported that the coexpression of BiaA

can improve the yield of ectopic Bep expression and inhibit the

functioning of Bep FIC domains (Pieles et al. 2014), similar to

what had been shown for FicA antitoxins of FicTA modules

(Harms et al. 2015). It is therefore tempting to speculate that

BiaA proteins may serve as a chaperone for Beps with FIC do-

mains prior to their translocation into host cells, because type IV

secretion is generally thought to involve substrate unfolding

(Cabezon et al. 2015). Analogous proteins are well-known

for effector-secreting type III secretion systems and also not

uncommon for other host-targeting T4SS (Gonzalez-Rivera

et al. 2016). Similarly, such a chaperoning function could ex-

plain the presence of BiaA-like modules encoded at the N-ter-

minus of some Beps. However, in contrast to solitary BiaA

proteins, these would be translocated into host cells as part

of the Bep polypeptide. Given that the molecular function of

FicA antitoxins is to manipulate binding of the ATP substrate

(Engel et al. 2012), we speculate that these BiaA-like modules

may guide or modulate the enzymatic activities of FIC domains.

An adaptive radiation, i.e., the rapid diversification of an an-

cestral species into an array of divergently adapted derivatives,

can occur upon encountering unexplored ecological niches and/

or upon acquisition of an evolutionary key innovation that en-

ables the organism to explore niches that were previously not

accessible (Berner and Salzburger 2015). In case of L3 and L4 of

Bartonella, it has previously been argued that the hemotropic

lifestyle and vector transmission released these bacteria from

major resource competition, so that the availability of niches

would not be limiting as long as vector transmission is possible

(Engel et al. 2011; Saenz et al. 2007). Conversely, an evolutionary

key innovation such as enhanced host adaptability following the

acquisition of a VirB/D4 T4SS and the evolution of complex ef-

fector sets could well explain the adaptive radiations of L3 and

L4. The discovery of a VirB/D4 T4SS and Beps in B. ancashensis

seemed to challenge this model, because this organism is only

distantly related to Bartonella lineages exhibiting enhanced host

adaptability (fig. 1). However, our in silico analyses suggest that

the functional diversification of B. ancashensis Beps is less ad-

vanced those of L3 and L4 and largely relies on the ancestral type

of bona fide AMP-tranferases with FIC-BID domain architecture

(figs. 4 and 5, supplementary fig. S6, Supplementary Material

online). This effector set may therefore lack certain key features

that are essential to exploit the full adaptive potential of type IV

secretion in the context of Bartonella infections and that had

been acquired by the Beps of L3 and L4 during their parallel

functional diversification. Possibly, the Beps of B. ancashensis

may therefore represent an evolutionary state ancestral to the

effector sets of L3 and L4. However, the paucity of information

regarding the prevalence and pathogenesis of B. ancashensis

make it difficult to speculate in what way the evolution of its

Beps is linked to the evolution and the infection strategy of this

organism. A role of these effectors during infections of human

patients with B. ancashensis seems likely given the overall simi-

larities to Beps of L3 and L4, though the few available reports of

infections with B. ancashensis do not mention differences in dis-

ease manifestation to B. bacilliformis (Blazes et al. 2013; Mullins

et al. 2013). Future work should therefore comparatively dissect

the molecular functions and biological roles of the three effector

sets in order to understand the actual nature of the evolutionary

key innovation that sparked the adaptive radiations of L3 and L4.

We anticipate that these studies will also give new insight into

the evolutionary dynamics of bacterial effector proteins and the

molecular basis of bacterial host adaptation in general.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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