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Abstract: Classifying emotional states is critical for brain–computer interfaces and psychology-related
domains. In previous studies, researchers have tried to identify emotions using neural data such as
electroencephalography (EEG) signals or brain functional magnetic resonance imaging (fMRI). In this
study, we propose a machine learning framework for emotion state classification using EEG signals
in virtual reality (VR) environments. To arouse emotional neural states in brain signals, we provided
three VR stimuli scenarios to 15 participants. Fifty-four features were extracted from the collected
EEG signals under each scenario. To find the optimal classification in our research design, three
machine learning algorithms (XGBoost classifier, support vector classifier, and logistic regression)
were applied. Additionally, various class conditions were used in machine learning classifiers to
validate the performance of our framework. To evaluate the classification performance, we utilized
five evaluation metrics (precision, recall, f1-score, accuracy, and AUROC). Among the three classifiers,
the XGBoost classifiers showed the best performance under all experimental conditions. Furthermore,
the usability of features, including differential asymmetry and frequency band pass categories, were
checked from the feature importance of XGBoost classifiers. We expect that our framework can be
applied widely not only to psychological research but also to mental health-related issues.

Keywords: electroencephalography; virtual reality; emotion recognition; machine learning

1. Introduction

The identification of neural states plays an important role in a variety of domains
including brain–computer interaction (BCI) and psychological research [1–3]. In several
previous studies, diverse methodologies have been applied to measure neural state vari-
ations among participants. Kevric and Subasi [4] proposed a motor imagery BCI model
using electroencephalography (EEG) signals. Giuseppina et al. [5] utilized brain functional
magnetic resonance imaging (fMRI) data to construct a BCI system. Among several brain
imaging techniques used in associated research, the EEG-based approach is primarily used
to analyze neural activities. In Xiaotong et al. [6], the authors suggested high temporal res-
olution reaching the millisecond level as advantages of EEG signals in associated research.
Additionally, the signal reliability and mobility of recently used EEG collection devices
have been positively evaluated for real-world BCI and clinical usage.

Based on the aforementioned advantages of EEG signals, several researchers collected
EEG signals and used them to compare or classify the psychological states of participants.
Duan et al. [7] attempted to classify the emotional states of participants using EEG signals.
Fluctuations in EEG signals were recorded with movie clips used as stimuli. Secerbegovic
et al. [8] used a single-channel EEG signal to differentiate between mental workload and
stress in student groups. To investigate the different neural state variations in stress and
workload, two scenarios were provided for distinct groups. The student group conducted
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3-back visual tasks with high difficulty in the first scenario. For the other group, the
same visual tasks (i.e., 3-back visual task) and Lumosity games were offered sequentially.
Dong et al. [9] evaluated the spatial cognitive ability based on EEG signal analysis. They
recorded and compared EEG signals before and after a spatial navigation training program.
Navigation tasks for visible/hidden routes in a virtual city street environment were used
for evaluation.

In recent research, virtual reality (VR) has been widely used as an experimental or
therapeutic material. Kim et al. [10] proposed a human perception test framework for
Hemispatial neglect based on VR. The test framework consists of screens with targets
in 3D environments. Selections of participants about the target were recorded to assess
their perception abilities. Elizabeth et al. [11] utilized VR tools to investigate the efficacy
of exposure therapy for posttraumatic stress disorder (PTSD). Exposure therapy with
imaginal exposure was offered in the display of VR devices. To compare the level of
PTSD, clinician interviews were conducted before and after treatment. Torrico et al. [12]
examined the emotional responses to chocolate in VR environments. Three environments,
including traditional booths and VR devices, were used to identify differences in the effects
of sensory responses.

Various virtual environments with EEG signals have been considered as research
methods in the associated research. To check neural state variations in VR conditions,
the measured EEG signals were analyzed by reaction from participants. Yu et al. [13]
organized research designs using VR emotion recognition tasks and EEG measurements.
Three different categories of stimuli (positive, neutral, and negative) were included in
the tasks to compare emotional responses in experimental conditions. Functional brain
network indices were calculated to detect the influence of tasks in a virtual environment.
Tamburin et al. [14] used VR settings in their research to check the associations between
craving and EEG measurements. Among diverse craving situations, the authors evaluated
smoking-related cue reactivities in smokers and non-smokers. The participant groups
(i.e., smokers and non-smokers) were exposed to two VR scenarios (mountain landscape
and office). Band-pass power values were processed from EEG signals collected in virtual
scenarios to distinguish the effects of the cues.

Li and Kim [15] evaluated the effects of task complexity in a VR environment using
EEG signals. They calculated descriptive statistics from the behavioral responses. To com-
pare responses between conditions, the authors conducted a repeated-measures ANOVA
test. Kisker et al. [16] gathered electrophysiological correlates of fear and avoidance tenden-
cies from EEG signals. Subsequently, Shapiro–Wilk tests were used to check the normality
of the variables. Moreover, ANOVA and t-tests were applied to investigate the differences
between responses and EEG analysis results.

Various studies have applied machine or deep learning algorithms to find latent
patterns in EEG data. Qureshi et al. [17] utilized K-nearest neighbor (KNN) and fuzzy
rough nearest neighbor (FRNN) algorithms to classify epileptic seizures from EEG signals.
They suggested EEG feature extraction algorithms based on discrete wavelet transformation
(DWT) methods. Additionally, the classification performances of fuzzy function-based
algorithms were compared with traditional algorithms (such as decision tree and random
forest). Furthermore, Geraedts et al. [18] proposed a fully automated EEG-based machine-
learning pipeline to identify patients with PD. The proposed pipeline showed a better
classification performance than the other frameworks.

Based on previous studies, we proposed a machine learning framework for neural
state classification in a virtual environment based on EEG analysis. EEG signals were
collected from 15 participants before and after the tasks to investigate the influences of VR
tasks. A total of three virtual environments (high, low arousal, and social anxiety) were
provided to participants for the evaluation of emotional responses. To identify optimal
classification algorithms for our framework, three machine learning models (k-nearest
neighbors, support vector machine, and random forest) were applied to the experiments in
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our study. Furthermore, we checked the important features of the classification models to
interpret our experimental results.

The main contributions of our research are as follows. First, regarding the external
environment during EEG signal collection, we provided various virtual situations in VR
devices to investigate the influence of virtual content on neural state variation. Second, for
checking suitable classification algorithms in our research scheme, we found the appropri-
ateness of the XGBoost classifier based on comparisons between three machine learning
classifiers. Third, as regards identification of important features in classification tasks,
we verified the usability of fourteen features for classification among fifty-four features
widely used in previous studies. Finally, we proposed a machine learning-based emotion
classification framework with EEG signals in a virtual environment. This framework can
contribute to future research in the field of mental states-related health issues (such as
PTSD, obsessive-compulsive disorder, autism spectrum disorder, and attention deficit
hyperactivity disorder).

2. Materials and Methods
2.1. Overview

Our experimental design comprised six steps. First, we collected VR-evoked EEG
signals from participants in three virtual environment conditions. Second, EEG signals
were preprocessed to perform feature extraction. Third, 54 features were extracted from
the preprocessed EEG signals. Fourth, lasso and ridge regression models were used to
select the proper features from the 54 extracted features. Fifth, we applied three machine
learning classifiers to classify emotional neural states based on EEG signal features. Finally,
the classification performance was evaluated using five evaluation indices. The detailed
steps are shown in Figure 1.

Figure 1. Overview of the research scheme.
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2.2. Participants

Fifteen participants (eight men and seven women; age range, 19–38 years; mean = 26.27,
standard deviation = 5.38) participated in the study. None of the participants reported
any mental illness. The experiments were designed and conducted in accordance with the
institutional review board approval at Yonsei University. In the experiment, participants
were required to experience three types of 360-degree VR content on YouTube to induce
different neural states [19–21]. Oculus Quest 2, a VR head-mounted display, was used to
experience the VR content.

2.3. EEG Data Acquisition and Experimental Procedure

The three types of VR content—low arousal, high arousal, and social anxiety—were
provided as stimuli. In the low-arousal condition, a virtual calm sea view was shown to
experience a low-arousal state. In contrast, environments with skydiving were shown to
experience a high-arousal state in high-arousal conditions. A previous study validated
that skydiving experiences elicited a hyperarousal state [22]. To arouse a relatively higher
emotional state than the aforementioned two conditions, we conducted group interviews
under social anxiety conditions. Evoked social anxiety through VR content has been
revealed in previous studies [23,24].

Participants were instructed to look around their surroundings in high- and low-
arousal conditions. In social anxiety conditions, interviews with three interviewers were
conducted. The level of arousal could be similar in conditions of high arousal and social
anxiety. However, high arousal and social anxiety were distinct in that the condition of
social anxiety involved interactions with the interviewer. In addition, the two conditions
differed in valence of emotions. Skydiving is a positive experience associated with fun,
happiness, and pleasure [25]. The social anxiety condition can induce more negative
feelings than the high-arousal condition, since the interview can evoke anxiety and distress
on account of the fact that the participants are evaluated by the interviewer [26]. Examples
of virtual content are shown in Figure 2.

Figure 2. VR content to induce the state.

The portable EEG device, which is the MUSE2 headset band from InteraXon, Inc.,
recorded brain activity. It has seven electrodes: four active electrodes located at AF7, AF8,
TP9, and TP10, which are included in the prefrontal and temporoparietal lobe regions, a
ground electrode located at FPz in the center, and two reference electrodes to the left and
right of the ground (Figure 3). EEG data were acquired using a 256 Hz sampling frequency.

Figure 3. Electrode and channel information of EEG devices used in this study. (a) Muse2 headset
band. (b) EEG montage of Muse 2 headset band based on the International 10–20 EEG electrode
placement standard [27,28].
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Prior to the experiment, we explained the EEG signal collection procedure to the
participants and asked each participant to sign a consent form. Once the consent form was
signed, eyes-open resting state EEG was recorded for 5 min while the participant sat in
a relaxed position to obtain baseline activity. Following the baseline EEG recording, the
emotional states following each VR experience were examined for each participant. A block
diagram of the collection procedure is presented in Figure 4.

Figure 4. Block diagram of EEG signal collection with VR contents.

2.4. EEG Preprocessing

The VR-evoked EEG signals from the participants were preprocessed using the
EEGLAB (interactive MATLAB toolbox) [29]. First, baseline correction was accomplished
by subtracting the mean baseline value from each epoch to reduce baseline differences
across the EEG channels and temporal drifts. Second, the band-pass filter was applied from
0.5 to 70 Hz in order to minimize artifacts such as direct current shifts and filtering artifacts
at epoch boundaries [30]. Third, the continuous resting state EEG data were segmented
into a 2 s epoch, the length of which is advisable in order to remove short artifacts and
improve non-stationarity [31,32]. Finally, 2 s lengths of epochs with noise or artifacts such
as eye movements, eye blinks, and muscle activity were removed manually based on their
signal shape (e.g, sudden spikes and similar patterns with cardiac cycles). In addition, an
independent component analysis (ICA) algorithm, which identifies maximal temporally
independent EEG signals, was used to remove deliberate noise in the EEG signals. As a
result, an average of 54.27 epochs remained and was applied for analysis from 150 epoch
sets after removal.

2.5. EEG Feature Extraction

We extracted a total of fifty-four features for the analysis. The power spectral den-
sity was calculated by averaging the power for the frequency band in each epoch and
then averaging it for all epochs. The frequency bands were divided into delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–50 Hz). Twenty frequency
power features, that is, five frequency bands for the four electrodes, were extracted. Previ-
ous findings have suggested that frequency power analysis of resting-state EEG provides
insight into the neural correlates of emotional mental state. For example, frontal delta
power is presented during reduced alertness, such as at rest [33]. Lower delta activity in the
posterior temporal and occipital areas before target onset is related to a more alert state [34].
Resting state theta activity has been linked to anxiety states, including social anxiety [35,36].
Alpha power is an index of the resting state with reduced cortical arousal. Lower alpha
power in the posterior region has been reported in the high-arousal group [37], and high
beta power is related to stress and anxiety [38]. Resting state gamma power is associated
with high-arousal states, such as higher cognitive and emotional processes [39]. Resting
frontal gamma power is associated with early cognition and language [40]. Differential
asymmetry (DASM) is the difference in the frequency band power of symmetrical electrode
pairs (TP9&TP10 and AF7&AF8), and there are ten DASMs comprising five frequency band
powers for the two electrode pairs used [41]. Rational asymmetry (RASM) is the ratio of
the frequency band power of symmetrical electrode pairs (TP9&TP10 and AF7&AF8) [42].
A total of ten RASM features, comprising five frequency band powers for two electrode
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pairs, were used. Correlation coefficients of frequency band power on pairs of electrodes,
TP9&TP10 and AF7&AF8, were also used [43]. Thus, a total of ten correlation coefficient
features, comprising five frequency bands for two electrode pairs, were used. The fractal
dimension (FD) is a measure of the complexity of a key feature of fractals. The nonlinear
property of the EEG signal in the time domain can be analyzed using the FD. A low FD
corresponds to a regular signal; conversely, a high FD corresponds to an irregular signal.
The FD could distinguish the EEG data of subjects in different states [44,45]. The Katz FD
was used in this study based on previous results that showed superior performance in the
classification of EEG data [46]. The FDs of the four electrodes are calculated in this study.

In summary, the EEG frequency power analysis was performed using a fast Fourier
transform. Frequency bands were divided into delta (0–4 Hz), theta (4–7 Hz), alpha (8–12 Hz),
beta (12–30 Hz), and gamma (30–50 Hz). The absolute power of each frequency band was
estimated for each EEG channel. A total of 20 values (four EEG channels × five frequency
bands) was estimated. DASM and rational asymmetry (RASM) are the differences and
ratios of symmetrical electrode pairs, which are TP10-TP9 and AF8-AF7. Each pair from
five frequency bands (two pairs of EEG channels × five frequency bands) was measured in
the DASM and RASM. The correlation coefficient between paired regions was calculated
for the five frequency domains (two pairs of EEG channels × five frequency bands). The
fractal dimension, which measures the fractal complexity, was calculated for each electrode
(four channels). The 54 features mentioned above were analyzed in this study. Detailed
extracted features were listed in Table 1.

Table 1. Extracted features from EEG signals.

Feature Category Feature No. of Features

Frequency band power (FP) Delta power

20 features
(4 electrodes × 5 band power)

Theta power
Alpha power
Beta power

Gamma power

Differential asymmetry (DASM) Delta power

10 features
(2 electrode pairs × 5 band power)

Theta power
Alpha power
Beta power

Gamma power

Rational asymmetry (RASM) Delta power

10 features
(2 electrode pairs × 5 band power)

Theta power
Alpha power
Beta power

Gamma power

Correlation coefficient (CC) Delta power

10 features
(2 electrode pairs × 5 band power)

Theta power
Alpha power
Beta power

Gamma power

Fractal dimension (FD) AF7
4 features

(4 electrodes)
AF8
TP9

TP10

2.6. Feature Selection

Fifty-four features extracted from EEG signals may have two problems. First, a
high correlation can be observed between features included in the same categories (multi-
collinearity or redundancy for classification). Second, irrelevant features for classification
can be included in the features (low correlation). To identify the proper features for classifi-
cation tasks, we applied lasso and ridge regression for feature selection [47,48].
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In this step, we fitted the lasso and ridge regression models based on a dataset consist-
ing of EEG feature values. Fifty-four features were applied as independent variables and
emotional states were used as dependent variables for regression models. The coefficients
were checked for individual features and sorted by scale. After sorting features by their
coefficients, we selected and compared the top 20 features between the lasso and ridge
regression conditions. As a result, 14 common features were selected from 54 features. The
selected features are listed in Table 2.

Table 2. Coefficient values of each feature from lasso and ridge regression models.

Rank Ridge Regression
Coefficient Feature Lasso Regression

Coefficient Feature No. Selected Features
(Common Feature)

1 1.6540 CC_Gamma_AF 1 1.6025 CC_Gamma_AF 1 CC_Gamma_AF
2 1.5410 CC_Gamma_TP 1.1770 CC_Gamma_TP 2 CC_Gamma_TP
3 1.4678 DASM_Beta_TP 2 0.7070 FP_Alpha_AF7 3 DASM_Beta_TP
4 1.2270 FP_Delta_TP9 3 0.6682 DASM_Beta_TP 4 DASM_Delta_TP
5 1.2219 DASM_Delta_TP 0.5537 CC_Beta_AF 5 FP_Beta_TP9
6 1.2061 FP_Beta_TP9 0.5525 FP_Beta_TP9 6 FP_Alpha_AF7
7 1.1511 FP_Alpha_AF7 0.5366 FP_Beta_AF8 7 CC_Beta_AF
8 1.1342 RASM_Delta_AF 4 0.2972 CC_Delta_AF 8 FP_Beta_AF8
9 1.0362 CC_Beta_AF 0.2726 DASM_Alpha_AF 9 FP_Gamma_TP9
10 1.0280 DASM_Gamma_TP 0.2453 FP_Alpha_TP10 10 CC_Delta_AF
11 0.8683 FP_Beta_AF8 0.2225 FP_Gamma_AF8 11 DASM_Alpha_AF
12 0.8216 FP_Gamma_TP9 0.1509 DASM_Delta_TP 12 FP_Alpha_TP10
13 0.5619 RASM_Gamma_TP 0.1448 FP_Theta_TP9 13 DASM_Theta_AF
14 0.5369 CC_Delta_AF 0.1327 FP_Theta_AF7 14 FP_Theta_AF7
15 0.4626 DASM_Alpha_AF 0.1064 FP_Delta_AF8
16 0.4328 RASM_Beta_TP 0.0798 DASM_Gamma_TP
17 0.4295 RASM_Theta_AF 0.0751 FP_Delta_AF7
18 0.3106 FP_Alpha_TP10 0.0561 DASM_Theta_AF
19 0.2201 DASM_Theta_AF 0.0329 DASM_Beta_AF
20 0.1270 FP_Theta_AF7 0.0081 FP_Gamma_TP9

1 CC, correlation coefficient; 2 DASM, differential asymmetry; 3 FP, frequency band power; 4 RASM, rational asymmetry.

2.7. Machine Learning Classification Algorithm

To classify emotional neural states based on EEG signals, we utilized three machine
learning classifiers with 14 EEG features. The first classifier was the XGBoost classifier,
which is based on an ensemble of multiple decision tree models. A given dataset with n
samples and m features (D =

{(
xi, yj

) ∣∣ xi ∈ Rm, yj ∈ R
}

) was used to train the classifier.
In our study, we applied a dataset of 60 rows and 14 features. Gradient boosting methods
with regularized objective functions constitute the basis for the algorithm.

L(φ) = ∑
i

l
(
yi, y′i

)
+ ∑

k
Ω( fk) (1)

where Ω( f ) = γT +
1
2

λ||ω||2 (2)

y′i = φ(xi) =
K

∑
k=1

fk(xi), fk ∈ F (3)

To optimize the XGBoost classifier with a dataset, we minimize the objective function
with regularized terms in (1), where y′i denotes the predicted values from decision tree
models and fk indicates individual tree models. Differentiable convex loss functions that
compare the difference between the predicted value (y′i) and target value (yi) were included
in (1) as function l. Penalization term was added as function Ω in the second term. In this
study, we set yi as class labels to which emotional neural state levels were assigned (such
as baseline, low, high arousal, and social anxiety level).
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The second classifier was a support vector classifier (SVC) with nonlinear kernels.
This classification algorithm classifies the feature space using hyperplanes to separate
class labels. We applied a non-linear kernel (radial basis function kernel) to evaluate the
performance under more diverse class conditions. In addition, we trained and evaluated the
algorithm performance using completely participant-separated datasets to avoid overfitting
when non-linear kernels were used.

The third classifier was the logistic regression model (LR). A maximum likelihood esti-
mation method is used to estimate the coefficients of the regression model. Consequently,
the classifier calculates the likelihood value L(x), where 0 ≤ L(x) ≤ 1. This likelihood
value indicates associations between class labels and input vectors. We considered the
basic form of the logistic regression model with our EEG features and neural state classes
as follows:

F(z) = E(
Y
X
) =

1
1 + e−(α+∑ βiXi)

(4)

where z = α + β1X1 + β2X2 + . . . + βkXk (5)

where Y indicates the emotional neural state level as a class label. In summary, logistic
regression classifiers suggested the probability of categorizing each class under various conditions.

To determine the optimal hyperparameters of the three classification algorithms, we
conducted a random search. The detailed hyperparameters are presented in Table 3.

Table 3. Hyperparameters of three machine learning classifiers.

Classifier Hyperparameter Argument

XGBoost classifier Eta 0.3
Gamma 0

max_depth 6
min_child_weight 1

Support vector classifier Kernel rbf
Gamma auto

Logistic regression Penalty L2
Solver newton-cg

2.8. Evaluation Metrics

We evaluated the classification performance of the three classifiers by comparing five
evaluation metric values. The true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) values were calculated from the confusion matrix. The TP and TN
values indicate the ratio of correctly classified samples. In addition, the FP and FN values
indicate incorrectly classified samples. Finally, four metric values were obtained from
the aforementioned four values: precision, recall, f1-score, and accuracy. Additionally, to
establish the receiver operating characteristic (ROC) curve, the true positive rate (TPR) and
false positive rate (FPR) values were calculated. The area under the ROC curve (AUROC)
was determined using an ROC curve.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− score = 2× Precision× Recall
Precision + Recall

(8)

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

True Positive Rate =
TP

TP + FN
(10)
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False Positive Rate =
FP

FP + TN
(11)

A fivefold cross-validation was used to evaluate machine learning algorithms in robust
settings. Trained data for the classification used 80% of the data, while the remaining 20%
were used for testing. The classification scores were averaged across the iterations to
estimate the performance of the classifier.

2.9. Tools

All codes for ML classifiers and data preprocessing were written using Python (version
3.7.1; scikit-learn, version 2.4.1) and R (version 4.0.3) programming languages.

3. Results
3.1. Classification Performance of Machine Learning Classifiers

To identify optimal classification algorithms, we utilized three machine learning
classifiers (XGBoost, SVC, and LR) for emotional neural state classification. Classification
performance was evaluated based on five evaluation metrics (precision, recall, f1-score,
accuracy, and AUROC). In the experimental results, the XGBoost classifiers showed the
best classification performance under different conditions. We found the same trends in
performance in both binary-class and multi-class conditions. The detailed classification
performances and ROC curves are listed in Tables 4 and 5.

Table 4. Classification performance results for classifiers in binary-class condition.

Condition Classifier Precision Recall F1-Score Accuracy AUROC 1

Baseline vs. low arousal XGBoost 0.846 0.846 0.838 0.849 0.925
SVC 2 0.795 0.829 0.764 0.737 0.789
LR 3 0.533 0.563 0.528 0.522 0.583

Baseline vs. high arousal XGBoost 0.851 0.855 0.858 0.838 0.860
SVC 0.769 0.747 0.748 0.722 0.686
LR 0.651 0.673 0.663 0.632 0.669

Baseline vs. social anxiety XGBoost 0.929 0.914 0.915 0.929 0.941
SVC 0.843 0.833 0.860 0.830 0.856
LR 0.721 0.728 0.733 0.712 0.813

low arousal vs. high arousal XGBoost 0.853 0.858 0.880 0.843 0.858
SVC 0.757 0.751 0.752 0.750 0.814
LR 0.740 0.696 0.717 0.704 0.778

low arousal vs. social anxiety XGBoost 0.865 0.840 0.852 0.840 0.857
SVC 0.777 0.788 0.743 0.739 0.814
LR 0.514 0.555 0.573 0.558 0.474

high arousal vs. social anxiety XGBoost 0.903 0.921 0.907 0.892 0.936
SVC 0.839 0.854 0.826 0.853 0.855
LR 0.787 0.743 0.754 0.757 0.813

1 AUROC: area under the ROC curve, 2 SVC: support vector classifier, 3 LR: logistic regression.

3.2. Importance of Features for Classification of Emotional Neural States

We compared the important features of machine learning classifiers to find proper
feature categories for classification. Among the three classifiers (XGBoost, SVC, and LR)
used in the analysis, the feature importance of XGBoost classifiers was selected based on
their classification performance. The top five important features were compared in the
binary and multi-class conditions. In five feature categories (FP, DASM, RASM, CC, and
FD), features of differential asymmetry (DASM), and frequency band power (FP) categories
were mainly found in the experimental results. The detailed important features are listed
in Tables 6 and 7.
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Table 5. Classification performance results for classifiers in multi-class condition.

Condition Classifier Precision Recall F1-Score Accuracy AUROC 1

Baseline vs. low arousal vs. high arousal XGBoost 0.912 0.911 0.913 0.938 0.938
SVC 2 0.677 0.670 0.671 0.679 0.631
LR 3 0.579 0.572 0.527 0.531 0.578

Baseline vs. low arousal vs. social anxiety XGBoost 0.847 0.844 0.839 0.860 0.856
SVC 0.707 0.758 0.754 0.745 0.767
LR 0.537 0.532 0.564 0.547 0.534

low arousal vs. high arousal vs. social anxiety XGBoost 0.902 0.911 0.911 0.938 0.905
SVC 0.745 0.726 0.755 0.734 0.764
LR 0.660 0.664 0.651 0.664 0.725

Baseline vs. low 4 vs. high arousal vs. social anxiety XGBoost 0.843 0.874 0.846 0.845 0.858
SVC 0.730 0.752 0.752 0.742 0.683
LR 0.629 0.619 0.533 0.517 0.556

1 AUROC, area under the ROC curve; 2 SVC, support vector classifier; 3 LR, logistic regression; 4 low, low-
arousal condition.

Table 6. Top 5 important features from XGBoost classifier in binary-class conditions.

Rank Baseline vs.
Low 1

Baseline vs.
High 2

Baseline vs.
Social 3 Low vs. High Low vs. Social High vs. Social

1 FP_beta_TP9 CC_delta_AF DASM_delta_TP DASM_delta_TP FP_theta_AF7 DASM_delta_TP
2 DASM_alpha_AF FP_alpha_TP10 FP_theta_AF7 CC_gamma_TP DASM_delta_TP FP_theta_AF7
3 CC_delta_AF DASM_alpha_AF DASM_theta_AF FP_alpha_TP10 CC_gamma_TP FP_beta_AF8
4 FP_alpha_AF7 CC_beta_AF DASM_beta_TP DASM_theta_AF FP_beta_AF8 DASM_alpha_AF
5 DASM_beta_TP FP_theta_AF7 FP_alpha_AF7 CC_beta_AF CC_delta_AF FP_beta_TP9

1 low: low-arousal condition, 2 high: high-arousal condition, 3 social anxiety condition.

Table 7. Top 5 important features from XGBoost classifier in multi-class conditions.

Rank Baseline vs. Low 1 vs.
High 2

Baseline vs. Low 1 vs.
Social 3 Low vs. High vs. Social Baseline vs. Low vs.

High vs. Social

1 DASM_theta_AF FP_theta_AF7 DASM_delta_TP FP_theta_AF7
2 CC_delta_AF DASM_alpha_AF FP_theta_AF7 DASM_delta_TP
3 DASM_alpha_AF FP_alpha_TP10 DASM_alpha_AF CC_gamma_TP
4 DASM_delta_TP FP_beta_AF8 CC_beta_AF FP_alpha_TP10
5 DASM_beta_TP FP_beta_TP9 DASM_theta_AF CC_delta_AF

1 low: low-arousal condition, 2 high: high-arousal condition, 3 social anxiety condition.

4. Discussion

In this study, we attempted to identify emotional neural states based on VR-evoked
EEG signals using machine learning classification algorithms. A total of 15 participants
were involved in our study to collect EEG signals from four virtual environments. To detect
the difference in neural variation between virtual stimuli, fifty-four features including five
categories, were extracted. In addition, 14 features were selected based on the coefficients of
the lasso and ridge regression models. After consisting of datasets with EEG features, three
classification algorithms were used to classify the emotional states. The XGBoost classifier
showed the best classification performance for our study design. Furthermore, the feature
importance of the XGBoost classifiers was compared to validate the usability of the features
for classification. Among the five feature categories, the rank of the DASM and FP features
was higher than that of the other categories. To suggest reasonable evidence of our research
topics (i.e., VR evoked emotional EEG signals, classification through machine learning
algorithms), we found associated previous research. First, related to the collection of EEG
signals based on VR content, Tauscher et al. [49] compared EEG signal quality between VR
content and traditional displays. They concluded that an improvement in signal quality
was found with the fixation of VR contents and straps. Tremmel et al. [50] estimated the



Int. J. Environ. Res. Public Health 2022, 19, 2158 11 of 15

cognitive workload in an interactive virtual reality environment using EEG signals. The
authors evaluated the feasibility of monitoring cognitive workload via EEG signals while
performing a classical n-back test in VR devices. Alimardani et al. [51] assessed empathy
levels in an effective virtual environment using EEG signals. The relationships between
empathy scores and frontal alpha asymmetry were examined in the experimental results.
Second, in terms of analysis with machine learning algorithms, Stevens et al. [52] conducted
an analysis of the relationship between EEG and distraction and engagement contents
based on machine learning models. An artificial neural network (ANN) model was utilized
to determine the influence of various contents on EEG signal values. In Gross et al. [53],
researchers attempted to diagnose premature Internet addiction using EEG spectra with
machine learning algorithms. A random forest classifier was utilized for the classification
of addiction. Baumgartl et al. [54] proposed a measurement system for social desirability
based on EEG data. They utilized random forest models to classify social desirability
levels. Based on the aforementioned previous studies, we concluded that our research
topic regarding emotional neural state analysis evoked by VR through machine learning
algorithms was reasonable. In addition, we designed our study based on related previous
research to compare or validate the experimental results. Wang et al. [55] attempted to find
detailed relationships between different emotional states and various EEG features. To
stimulate participants’ emotions, researchers provided a set of movie clips, including two
target emotional states (i.e., positive and negative emotions). EEG signals were collected
from six health participants while watching movie clips. Three analysis methods (power
spectrum, wavelet, and nonlinear dynamical analysis) were used to extract the features.
With regard to extracted features, feature dimensionality reduction was conducted using
principal component analysis, linear discriminant analysis, and correlation-based feature
selector. Support vector machine models were applied to binary classification tasks for
the two emotions. The performances of the algorithms were compared under various
parameter conditions. Bazgir et al. [56] developed an emotion recognition system using
EEG signals. EEG signals were measured with consecutive 1 min length music videos from
the participants. The discrete wavelet transform method was used to extract the gamma,
beta, alpha, and theta frequency band features. A principal component analysis was
applied to maintain the same dimensionality of features. Three classification algorithms
(support vector machine, k-nearest neighbor, and artificial neural network) were utilized to
classify emotional states. Among the various frequency band features, the beta frequency
band condition showed the best classification performance. Similar to the previously
mentioned studies, the study design of our research comprised similar steps. First, the
EEG dataset was collected in a VR content stimulus from 15 participants. Second, fifty-four
EEG features were extracted to evaluate the effects of each feature. Third, we applied
a lasso and ridge regression model to select the proper features from fifty-four features.
Fourth, XGBoost, SVC, and LR models were used to classify the emotional neural variations.
Finally, we compared the classification performances using five evaluation metrics. In our
experimental procedure, we compared four levels of emotional neural states in the virtual
environment. To set a baseline of the emotional state, we measured the EEG signals without
any stimulus materials. Additionally, in low- and high-arousal conditions, EEG signals
were collected in virtual environmental stimuli without interaction. Furthermore, neural
states in social anxiety were investigated with relatively higher emotional conditions than
other conditions in virtual interaction materials. To check the optimal algorithms for our
research topic, we validated the classification performances under various comparison
conditions. XGBoost classifiers showed the best classification performance among the three
algorithms and all experimental conditions. To examine the influence of the features, we
compared the feature importance results of XGBoost under all conditions. Differential
asymmetry and frequency band power features were frequently found in high rank (i.e.,
top five importance). This trend can be verified in previous studies. Jenke et al. [57]
suggested the utility of differential asymmetry in the emotion classification of EEG. In
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addition, Jatupaiboon et al. [58] and Li et al. [59] validated the influence of frequency band
power values as features for emotion classification.

5. Conclusions

We collected and analyzed EEG signals in virtual environments to identify emotional
states based on neural variations. To compare emotional influences in virtual content, we
set four levels of emotional arousal (baseline, low, high arousal, and social anxiety) in
our experimental materials. Three machine learning classification algorithms (XGBoost
classifier, support vector classifier, and logistic regression) were applied to classify the
neural fluctuations evoked by VR stimuli. Additionally, 54 features in five feature categories
were applied to compare the usability for classification. Among the three classifiers, the
XGBoost algorithm showed the best classification performance under all experimental
conditions. Furthermore, we found the effectiveness of features, including differential
asymmetry and frequency band power categories, to classify emotional states in our
study design.

The first strength of this study was the application of machine learning classification
algorithms to identify emotional neural states evoked by VR content. Second, the efficiency
of the features was investigated through the feature importance of machine learning
algorithms. Third, we collected EEG signals in VR content to examine the influence of the
virtual environment on emotion. Finally, our framework can utilize an emotional state
classification framework for various objectives. Our study has some limitations. First, we
extracted and compared several features, including five feature categories. Other features
or indices may be valuable for classification. However, we selected 54 features widely used
in previous studies. Second, various methodologies, including deep learning algorithms,
can be used in our research topics. In our study, we utilized machine learning models to
check the importance of the features in the models. Third, additional validation is required
in future studies with more participants to generalize our framework and results.
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