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Introduction: Ovarian cancer (OC) is one of the most frequent gynecologic cancers among women, and
high-accuracy risk prediction techniques are essential to effectively select the best intervention strategies
and clinical management for OC patients at different risk levels. Current risk prediction models used in
OC have low sensitivity, and few of them are able to identify OC patients at high risk of mortality, which
would both optimize the treatment of high-risk patients and prevent unnecessary medical intervention
in those at low risk.
Objectives: To this end, we have developed a bagging-based algorithm with GA-XGBoost models that pre-
dicts the risk of death from OC using gene expression profiles.
Methods: Four gene expression datasets from public sources were used as training (n = 1) or validation
(n = 3) sets. The performance of our proposed algorithm was compared with fine-tuning and other exist-
ing methods. Moreover, the biological function of selected genetic features was further interpreted, and
the response to a panel of approved drugs was predicted for different risk levels.
Results: The proposed algorithm showed good sensitivity (74–100%) in the validation sets, compared
with two simple models whose sensitivity only reached 47% and 60%. The prognostic gene signature used
in this study was highly connected to AKT, a key component of the PI3K/AKT/mTOR signaling pathway,
which influences the tumorigenesis, proliferation, and progression of OC.
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Conclusion: These findings demonstrated an improvement in the sensitivity of risk classification of OC
patients with our risk prediction models compared with other methods. Ongoing effort is needed to val-
idate the outcomes of this approach for precise clinical treatment.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Ovarian cancer (OC) is the seventh most common malignancy,
and it causes the eighth highest mortality rate of all cancer types
worldwide; 295,414 new cases were diagnosed, and 184,799
patients died of this disease in 2018 [1]. OC was initially divided
into epithelial and non-epithelial types, but some recent literature
has indicated that epithelial OC also has histological subtypes
including high-grade serous (>70%), endometrioid (10%), clear cell
(10%), mucinous (<5%), and low-grade serous (<5%) [2]. These his-
tologically distinct tumor types have shown a wide range of differ-
ent prognoses. For example, epithelial tumors classified as low-
grade serous, endometrioid, mucinous, or clear cell usually present
themselves at an early stage and have a good prognosis, while the
high-grade serous type mostly presents itself at an advanced stage
with a poor prognosis [3]. It has been revealed that the five-year
survival of OC patients diagnosed at an early stage is about 90%,
whereas that of patients at a late stage is less than 30% after sur-
gery [4,5]. However, most OC patients are diagnosed at the
advanced stage due to the asymptomatic features of the early
stage. As a result, more sophisticated research into both the diag-
nostic and predictive aspects of OC is urgently needed.

According to a clinical guideline from the National Comprehen-
sive Cancer Network (NCCN), whether OC patients should receive
post-surgery chemotherapy mainly depends on their clinical fea-
tures, such as tumor stage and tumor grade [6]. In general, it is rec-
ommended for OC patients at stages II to IV to receive
chemotherapy after surgery. OC patients at stages IA or IB with
grade 1 tumors are recommended to have follow-up tests after sur-
gery, while those with grade 2 tumors are suggested for either
follow-up with the regular investigative tests or post-surgery
chemotherapy. However, there is still some controversy regarding
which OC patients, especially advanced-stage patients, will obtain
themost clinical benefit frompost-surgery adjuvant chemotherapy.
National cancer statistics from the Taiwan Cancer Registry reported
that 72.56% of OC patients had received post-surgery chemotherapy
in 2016, and 60.65% of these patients were diagnosed at stage I [7],
revealing that decisions regarding medical intervention do not
always follow the NCCN guideline. To date, there are no entirely
acceptable criteria to guide treatment decisions, especially in terms
of post-surgery treatment in patients with low risk.

Due to the complexity and heterogeneity of cancer, gene
expression profiling can provide biological insights into cancer
prognosis, over and above the use of clinical features [8]. Hence,
more and more cancer-related studies are taking these molecular
indicators into account [9–12]. For example, a commercially avail-
able 70-gene signature test (MammaPrint) has been able to distin-
guish breast cancer patients at high versus low risk of recurrence,
based on their 5- or 10-year recurrence rate [13], which can assist
with clinical decision-making for early-stage patients [14]. Onco-
type DX is another example of a genomic test that uses a clinically
validated set of 21 genes to assess the risk of breast cancer recur-
rence [15]. Nevertheless, this kind of test may only be applicable to
a particular set of patients (e.g., those with a particular hormone
expression pattern) and may not fully explain the eventual clinical
outcome, suggesting that unbiased approaches with a full prognos-
tic gene signature are needed for accurate cancer risk assessment
[16].
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Prior studies on OC [17,18] have proposed models for predict-
ing survival and have discussed hazard ratios (HRs) based on gene
expression data. However, very few classifiers have been built to
predict high risk of mortality in OC patients with high sensitivity.
Several recent studies have extensively investigated robust
machine learning-based methods for the identification of prog-
nostic molecules in breast cancer, which shares many standard
pathological features with OC [19–22]. However, few of these
novel approaches have been applied to OC [23]. Therefore, the
purpose of our study was to incorporate a bagging-based algo-
rithm with GA-XGboost models into a comprehensive risk predic-
tion model, using prognosis-related genes to arrive at a clinically
meaningful classification of OC patients. The accuracy of our pre-
diction model was evaluated in comparison with that of other
conventional methods. The primary objective of this study was
to effectively identify high-risk OC patients, with the long-term
goal of reducing unnecessary preventive treatments in low-risk
patients.
Materials and methods

An overview of the workflow is illustrated in Fig. 1. With the
aim of identifying high- risk patients with OC, we constructed a
complex set of procedures, including data preprocessing, dimen-
sional reduction, a bagging-based algorithm with GA-XGBoost
models, and external validation, to construct a comprehensive pre-
diction model.
Datasets and data preprocessing

For the evaluation of the predictive model, four gene expres-
sion datasets (GSE26193 [24,25], GSE30161 [26], GSE19829 [27],
GSE63885 [28]) that had OC outcomes were collected in this work
(Table 1). All datasets used were from the publicly available Gene
Expression omnibus (GEO) database (https://www.ncbi.nlm.nih.-
gov/geo/), and the platform used for these datasets was the Affy-
metrix Human Genome U133 Plus 2.0 Array (GPL570). In each
dataset, patients who lacked 3-year follow-up information were
excluded. Then, the GSE26193 dataset (n = 106) was divided into
a training set and a validation set for building the prediction
model. The remaining datasets, including GSE63885 (n = 73),
GSE30161 (n = 50) and GSE19829 (n = 23), were used for external
validation. Based on the clinical data, we further stratified
patients in each dataset into two groups. Two previous studies
have suggested that around 50% of OC patients suffer from recur-
rence within 1.5–2 years [29,30]; hence, we set three years as a
cut-off to ensure most patients with recurrence were included
in the following analyses. The low-risk group was defined as
patients with overall survival of three years or more, whereas
the high-risk group was defined as patients with overall survival
less than three years.

For the minimization of batch effects among different datasets,
raw intensity-level data merged from all datasets were first nor-
malized using robust multichip averaging (RMA) and then by
quantile normalization with default parameters using the affy
(version 1.62.0) [31] and preprocessCore (version 1.46.0) [32] R
packages.
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Fig. 1. The pipeline of our bagging-based algorithm with GA-XGBoost models.

Table 1
Summary of GEO datasets used in this study.

Datasets (GEO Accession) Year Country Number of total samples Number of used samples Chemotherapy

GSE26193 2011 France 107 106 Yes
GSE30161 2012 United States 58 50 Yes
GSE19829 2010 United States 28 23 Yes
GSE63885 2014 Poland 75 73 Yes
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Variable selection of gene expression patterns for dimension reduction

For feature reduction of the training dataset from GSE26193,
the t-test and fold change method was used as a criterion to iden-
tify differentially expressed genes between low- and high-risk OC
patients. An absolute log2 fold change � 2 and a P-value < 0.05
were set as the cut-off values to screen for these probes.
XGBoost

The XGBoost (extreme gradient boosting) algorithm is a learn-
ing framework based on gradient boosted decision trees [33]. Com-
pared with traditional boosting tree models implemented with
only first order derivative information [34], this boosting model
uses a second-order Taylor expansion for calculating the loss func-
tion and its scalability to enhance not only computational speed
but also the model performance. Therefore, XGBoost was used for
risk prediction classifiers for OC patients in this paper.
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Genetic algorithm for the most suitable combination of selected gene
expression patterns

Genetic algorithms (GAs) have been designed to replicate the
concept of natural selection by searching for an available combina-
tion of gene expression profiling probes which will produce a pre-
dictive model with superior performance [35,36]. Therefore, in
terms of feature selection, the XGBoost algorithm could be further
improved by using a GA, a process that we call GA-XGBoost. As
shown in Fig. 2, a GA involves five main phases: initial population,
fitness function, selection, crossover, and mutation. In the GA,
genetic coding segments of a chromosome are represented using
a string of zeros and ones. Therefore, in this study, in order to cor-
respond to expression being either on or off, significantly
expressed probes were denoted as 1, whereas the rest were
assigned as 0 (Figure S1).

First, we randomly sampled a combination of probes from those
significant probes that were determined in the previous step to be
a chromosome (i.e., a string of zeros and ones corresponding to the



Fig. 2. Genetic Algorithm flowchart. GA algorithm includes five main steps: initial population, fitness function, selection, crossover, and mutation.
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expression status of each gene expression profiling probe), and
then repeated this procedure to generate a population of chromo-
somes defined as the first generation. Second, the fitness values
(i.e., sensitivity and specificity in this study) of each chromosome
was calculated by the fitness function (i.e., the XGBoost model),
and only the ones with the highest fitness were retained in the
next generation. In the roulette wheel selection, the wheel is
divided according to the fitness values; that is, the fittest chromo-
some has the largest share, whereas the weakest chromosome has
the smallest percentage (Figure S2A). The underlying assumption
of this step is that the fitter chromosomes will tend to have a better
chance of survival among the whole population, and then will mate
to create the next generation. As a result, the fittest individuals will
be stochastically selected from a particular population to form the
next generation.

The chromosome showing the best fitness value (i.e., highest
sensitivity) among the models (i.e., XGBoost model) from the first
generation is either passed directly to the next generation, or
crossover and mutation operators are performed to generate the
next generation. In the crossover step, two parental chromosomes
with the best fitness are selected from the original population, and
a random threshold (for example, 20% of genetic information from
parent chromosomes) is defined to determine the proportion of
values within the chromosome that should be swapped to form
two offspring chromosomes (Figure S2B). For emulating the disper-
sion of a mutation in a population, a proportion of the values (such
as 10%) in a chromosome should be flipped, which means if it is a
zero it now becomes a one and vice versa (Figure S2C and S3).

Finally, the conditions for evaluating when the GA should be
stopped are defined as follows:
training sensitivity� validation sensitivity � 0:05
training specificity� validation specificity � 0:05 ð1Þ
The process of crossover and mutation will be repeated until

these criteria are met or the final generation is reached (a predeter-
mined number), unless the chromosomes with the best fitness of
all generations meet the criteria and are outputted as a prediction
model. By this process, the outputted model with the highest sen-
sitivity for the classification of OC patients into risk response
groups (high risk/low risk) is developed. The GA-XGBoost model
was performed using R (version 3.5.2) and the xgboost R package
(version 0.82.1) [37].
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Bagging-based algorithm and external validation

To construct a robust bagging algorithm [38], GSE26193 was
first divided into training and internal validation datasets, with a
2:1 split. Then, 70% of the training data was randomly selected to
perform variable selection as described above, which generated
15 GA-XGBoost models for bagging. Those with a specificity < 0.3
were dropped, and based on each model’s performance in both
internal and external validation sets, the voting system was used
to further identify OC patients with high risk.

Other existing methods

Other proposed methods can also be used in risk prediction
based on gene expression values. Two traditional methods used
in this study were least absolute shrinkage and selection operator
(LASSO) regression [39] and forward stepwise logistic regression
[40]. The performance evaluation was conducted by comparison
of the predictive results, including accuracy, specificity, sensitivity,
and F1-score, between GA-XGBoost and these two methods.

Survival analysis

Through this bagging algorithm of GA-XGBoost models, the
common differentially expressed genes from all models were iden-
tified for the classification of two risk groups. Survival analyses
were performed by the survival R package [41], and Kaplan-Meier
survival curves were plotted to compare whether those expression
profiles could distinguish between high- and low-risk groups of OC
patients in internal and external validation sets. A Cox proportional
hazards model was also used to compare the difference between
survival curves for different risk groups.

Drug prediction for the identification of effective drugs

To further identify potential drugs effectively targeting each
risk group, the dataset GSE36133, including gene expression pro-
files and a drug sensitivity indicator represented by activity area
in the Cancer Cell Line Encyclopedia (CCLE) project, was used
[42]. This project collected the drug response of 44 OC cell lines
exposed to 24 commercially available drugs. The values of the
activity area quantify the drug responses of each cell line. For this
analysis, the expression profiles of the 44 OC cell lines were used as
the inputs of our model to identify their potential risk level (high or
low). Then, the Wilcoxon rank-sum test was used to evaluate
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which drugs have a significant difference in the activity area
between high- and low-risk groups.

Functional analysis

To understand the relationship between the respective differen-
tially expressed genes obtained from this bagging algorithm of GA-
XGBoost models and OC, we also used the Ingenuity� Pathway
Analysis (IPA�) software program (QIAGEN Inc., https://www.qia-
genbio-informatics.com/products/ingenuity-pathway-analysis) to
identify their potential functional role in biological processes.

Statistical analysis

Categorical variables, such as stages, grades, clinical signatures,
and subtypes, were reported as counts and percentages. Between-
group comparisons (i.e., high- and low-risk groups) were per-
formed by a Fisher’s exact test. A P-value below 0.05 was defined
as statistically significant. The analyses were conducted using R
(version 3.5.2).

Results

Clinical characteristics for the training set

Table 2 presents the clinical characteristics of the training set
(GSE26193; n = 106). The majority of samples in this dataset were
from patients with stage III and grade III, constituting 55.7% and
63.2% of the samples, respectively. However, there were no signif-
icant differences, in terms of stage (P = 0.2828) and grade
(P = 0.2665), between the two risk groups. Similarly, clinical signa-
tures (P = 0.2515) and subtypes (P = 0.8113) also showed no differ-
ence between the two groups. Therefore, these clinical variables do
not account for the risk of death from OC.

Parameter optimization

After dimension reduction of gene expression features, 507 dif-
ferentially expressed probes (i.e., 406 genes) were extracted and
used to inform the bagging-based algorithm that uses GA-
XGBoost models. The bagging results using an internal validation
set, three individual external validation sets, and a combined
external validation set for different combinations of parameters
are displayed in Table 3. To determine the best combination of
parameters for our model, it is possible to fix all the settings except
one and then decide which one has the strongest effect on model
Table 2
Statistical analysis of clinical variables in the GSE26193 dataset.

Overall survival < 3 years (N = 52) N

Stage I 15(14.15)
II 4(3.77)
III 33(31.13)

Grade I 2(1.89)
II 19(17.92)
III 31(29.25)

Signature Oxidative stress 22(20.75)
Fibrosis 30(28.30)

Subtype Adenocarcinoma 1(0.94)
Brenner Tumor 1(0.94)
Carcinosarcoma 2(1.88)
Clear Cell 3(2.83)
Endometrioid 3(2.83)
Mucinous 5(4.72)
Serous 37(34.91)
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performance. The optimum combination of parameters has moder-
ate specificity when the maximum sensitivity is reached, and these
outcomes need to be supported by at least two external validation
sets. First, we adjusted the number of GA-XGBoost models used in
the bagging algorithm, and it can be seen that using 15 models
showed the best performance, in terms of both specificity and sen-
sitivity. Using more than 15 models may cause overfitting, while it
may not be stable due to the small sample size when the number of
models is less than 15. Second, the proportion of the GSE26193
dataset used for training (50%, 70%, or 90%) was adjusted, and
70% was optimal. Fewer training samples (50%) may generate an
unstable bagging algorithm; on the contrary, a larger sample size
may have an overfitting issue due to less variation among the mod-
els. Then, four tunable parameters used in GA-XGBoost were
adjusted: the number of chromosomes in a generation, the number
of generations, the mutation rate, and the number of tree layers. It
can be observed that the combination of 300 chromosomes, 500
generations, a 50% mutation rate, and three tree layers are the best
conditions. Lastly, imposing a requirement for high specificity
(>70%), led to a less robust model with extremely low sensitivity
and accuracy in many validation sets; for example, in GSE63885,
the specificity, sensitivity, and accuracy were 0.784, 0.417, and
0.603, respectively.
Validation of the bagging-based algorithm that uses GA-XGBoost
models

Table 4 presents the prediction ability of the 15 GA-XGBoost
models used in the bagging algorithm using the internal validation
set (GSE26193; n = 35). The range of the number of selected gene
expression patterns among these models was 24–150 based on 15
cycles of variable selection using fold-change and P-value cut-offs
after randomly selecting 70% of the training dataset, and the sensi-
tivity of each model was over 0.8. A patient was considered as
‘‘high risk” when there were over seven models supporting this.
As shown in Table 5, the bagging algorithm also maintains high
sensitivity (100%) and specificity (52.4%) in the internal validation
set. Among 35 patients in this validation set, 24 of them were pre-
dicted as high risk, and 11 were low risk. Kaplan-Meier survival
analysis was also performed to determine the prognostic outcome,
and the result indicated a significant difference (P = 0.0024)
between high-risk and low-risk groups (Fig. 3A). Notably, the sur-
vival time of the high-risk group decreased, while that of the low-
risk group was maintained as time passed.

In order to confirm that the high sensitivity of our bagging algo-
rithm in predicting the risk level was not caused by model overfit-
o. (%) Overall survival � 3 years (N = 54) No. (%) P-values

22(20.76) 0.2828
6(5.66)
26(24.53)

5(4.72) 0.2665
13(12.26)
36(33.96)

29(27.36) 0.2515
25(23.59)

2(1.88) 0.8113
0(0)
0(0)
3(2.83)
5(4.72)
3(2.83)
41(38.69)

https://www.qiagenbio-informatics.com/products/ingenuity-pathway-analysis
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Table 3
Parameter tuning of bagging-based algorithm with GA-XGBoost models.

GSE26193 (internal validation set) Combined external validation set*

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

1. Number of GA-XGBoost models for bagging
10 models/1 model deleted 0.829 1 0.667 0.5 0.853 0.192
15 models/1 model deleted 0.714 1 0.524 0.589 0.824 0.385
20 models/1 model deleted 0.829 1 0.684 0.541 0.588 0.5

2. The size of training data (Proportion of samples in GSE26193)
50%/3 models deleted 0.857 0.95 0.733 0.623 0.544 0.692
70%/1 model deleted 0.714 1 0.524 0.589 0.824 0.385
90%/1 model deleted 0.857 1 0.667 0.603 0.544 0.654

3. Number of chromosomes in each generation
100 chromosomes/0 model deleted 0.857 1 0.737 0.582 0.72 0.462
300 chromosomes/1 model deleted 0.714 1 0.524 0.589 0.824 0.385
500 chromosomes/1 model deleted 0.943 1 0.894 0.555 0.632 0.487

4. Number of generations in GA-XGBoost
300 generations/0 model deleted 0.886 1 0.789 0.596 0.544 0.641
500 generations/1 model deleted 0.714 1 0.524 0.589 0.824 0.385
1000 generations/0 model deleted 0.857 1 0.737 0.562 0.456 0.654

5. Mutation rates in GA-XGBoost
0.3/1 model deleted 0.8 1 0.632 0.527 0.765 0.321
0.5/1 model deleted 0.714 1 0.524 0.589 0.824 0.385
0.7/2 models deleted 0.771 1 0.579 0.514 0.735 0.321

6. Number of tree layers used in GA-XGBoost
two layers/1 model deleted 0.714 1 0.524 0.589 0.824 0.385
three layers/0 model deleted 0.914 1 0.85 0.589 0.706 0.487
five layers/0 model deleted 0.914 1 0.842 0.562 0.574 0.551

7. Model with high specificity
High specificity 0.943 1 0.895 0.582 0.485 0.667

*This combined dataset included three external validation sets (GSE30161, GSE19829, and GSE63885; n = 146).

Table 4
Results of individual models for an internal validation set based on bagging of GA-
XGBoost models.

Model No. Number of
variables

GSE26193 (internal validation set)

Sensitivity Specificity Accuracy F1-score

1 81 0.929 0.429 0.629 0.667
2 117 0.929 0.81 0.857 0.839
3 39 1 0.143 0.486 0.609
4 140 0.929 0.619 0.743 0.743
5 52 0.929 0.524 0.686 0.703
6 25 1 0.81 0.886 0.875
7 53 1 0.524 0.714 0.737
8 70 1 0.476 0.686 0.718
9 129 1 0.333 0.600 0.667
10 73 1 0.333 0.600 0.667
11 59 1 0.524 0.714 0.737
12 87 1 0.476 0.686 0.718
13 30 1 0.476 0.686 0.718
14 24 0.929 0.524 0.686 0.703
15 150 0.857 0.619 0.714 0.706

Table 5
Performance comparison between the bagging of GA-XGBoost models and two
existing models.

Accuracy Sensitivity Specificity F1-score

GA-XGBoost
GSE26193 (internal

validation set)
0.714 1 0.524 0.737

Combined external
validation set*

0.589 0.824 0.385 0.651

GSE30161 0.580 0.739 0.444 0.618
GSE19829 0.478 1 0.143 0.600
GSE63885 0.630 0.833 0.432 0.690

Forward logistic regression
GSE26193 (internal

validation set)
0.600 0.533 0.650 0.533

Combined external
validation set*

0.514 0.456 0.564 0.466

GSE30161 0.620 0.652 0.593 0.612
GSE19829 0.478 0.556 0.429 0.455
GSE63885 0.452 0.306 0.595 0.355

LASSO regression
GSE26193 (internal

validation set)
0.543 0.643 0.476 0.529

Combined external
validation set*

0.555 0.544 0.564 0.532

GSE30161 0.520 0.478 0.556 0.478
GSE19829 0.565 0.889 0.357 0.615
GSE63885 0.575 0.500 0.649 0.537

*This combined dataset included three external validation sets (GSE30161,
GSE19829, and GSE63885; n = 146).
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ting to the training set, we also tested the same bagging algorithm
using a combined external validation set (GSE30161, GSE19829,
and GSE63885; n = 146) (Table 5). The sensitivity and specificity
values of the bagging algorithm in this combined set were 82.4%
and 38.5%. The Kaplan-Meier survival analysis was performed after
combining all external validation sets, displaying that there is a
significant difference between the two risk groups (P = 0.014;
Fig. 3B). The individual external validation sets (GSE30161,
n = 50; GSE19829, n = 23; GSE63885, n = 73) were also tested
(Table S1). The sensitivity values of the bagging algorithm in these
sets were 73.9%, 100%, and 83.3%, respectively, while the specificity
values were 44.4%, 14.3% and 43.2%. The Kaplan-Meier survival
analysis also showed a distinct difference in the survival time
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between the two groups in GSE63885 (P = 0.035), while the other
two datasets (GSE30161, P = 0.2; GSE19829, P = 0.29) did not have
a significant difference, likely due to the small sample size. The val-
ues of the HR and corresponding 95% confidence interval for each
validation set were further visualized using forest plots, except



Fig. 3. Survival analysis of the internal validation set and external validation sets. (A) Kaplan-Meier analysis was conducted for the internal validation set (GSE26193;
n = 25), and the patients were divided into two groups based on their risk scores. Significant differences (P < 0.05) were identified between the two groups over time. (B)
Similar results are shown in the combined external validation set (GSE30161, GSE19829 and GSE63885; n = 146). (C) Forest plot of the hazard ratio (HR) and corresponding
95% confidence interval (CI) for individual external validation sets, excepting GSE19829. The vertical line indicates the null value (HR = 1). Each box indicates an individual
study point estimate of the HR, and horizontal lines crossing these boxes indicate the 95% confident intervals. The diamond denotes the overall summary estimate of pooled
studies.
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for one individual external validation set (GSE19829) with an
extremely large HR because no events happened in the low-risk
group during the observed period (Fig. 3C). The HR point estimates
of GSE63885 and GSE30161 were 2.502 (1.037, 6.033) and 2.156
(1.154, 4.027). Overall, the pooled HR of these external validation
sets was 2.161 (1.144, 4.082).
Performance comparison

To verify the necessity and effectiveness of constructing a
highly sensitive prediction model using such complicated GA-
XGBoost models in the bagging algorithm, we replaced the GA-
XGBoost model with two simple models: forward stepwise logistic
regression and LASSO regression. The performance of these two
models in both internal and external validation sets is displayed
in Table 5. It can be seen that the results of the GA-XGBoost model
in both internal and external validation sets achieved higher sensi-
tivity and accuracy than the other two models, showing that the
GA-XGBoost model is superior for risk prediction using gene
expression values.
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Functional analysis

To identify the biological function associated with the differen-
tially expressed probes, we uploaded our probe list to the Ingenu-
ity� Pathway Analysis (IPA�) server. The top disease/function
annotations were significantly enriched in female genital tract ser-
ous carcinoma (P = 2.33E-34), and 64 differentially expressed
genes (DEGs) were involved (Table S2 and S3). Additionally, based
on a network analysis, it is noteworthy that the top regulatory net-
work constructed by the DEGs was mainly regulated by the hub
gene, AKT, which is implicated in many cancers (Fig. 4).
Effective drug prediction

For the identification of drugs effective in either high- or low-
risk OC patients, the expression profiles and drug responses of 44
OC cell lines in the CCLE project were used. Through our
bagging-based algorithm with GA-XGBoost models, 35 cell lines
were defined as high risk, whereas the others were classified as
low risk. Regarding the drug response, however, only 17-AAG



Fig. 4. The top network result from the Ingenuity� Pathway Analysis (IPA�) program. Red molecules represent the respective differentially expressed genes in our
dataset, while white molecules indicate the putative genes that may be possibly involved in this network based on the IPA� database. Solid lines infer a direct interaction
while dashed lines infer an indirect interaction.
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(17-N-allylamino-17-demethoxygeldanamycin/ Tanespimycin), an
antitumor antibiotic, and RAF265, a novel RAF/VEGFR2 inhibitor,
had a slight difference in treatment efficacy at killing tumor cells
between high-risk and low-risk cell lines, with P-values of 0.08
and 0.055, respectively (Table S4).
Discussion

As previously mentioned, few risk prediction models can pre-
dict high-risk OC patients with excellent sensitivity, and most of
these models are not machine learning-based approaches. There-
fore, we coupled t-tests and 2-fold changes to select features that
were fitted by a GA-XGBoost model within a bagging algorithm.
This method exhibited high sensitivity and moderate specificity
in identifying high-risk patients who qualify for chemotherapy.
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Also, the combined HR point estimate of external validation sets
indicated that the selected predictors are effective to distinguish
the two risk groups.

Although our bagging algorithm successfully showed a high
sensitivity for detecting high-risk OC patients, the low specificity
of 38.5% in the external validation sets inferred a low accuracy
for identifying the low-risk groups. Yet, few studies have focused
on risk prediction models using gene expression for OC, so it is
not feasible to compare the performance of our method with other
models. However, two prediction models for breast cancer were
amenable to comparison. Naderi et al. [43] used a Cox-ranked clas-
sifier with a prognostic signature of 70 genes and found it to have
sensitivities of 77% and 63% in two external datasets, suggesting it
may tend to ignore some high-risk patients who need to take
chemotherapy. Similarly, another breast cancer study [44] devel-
oped three predictive models with good sensitivities (0.97–1) but
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low specificity (30%), suggesting that the issue of low specificity in
current risk prediction models remains a challenge in these
female-specific cancers.

The specificity of the bagging algorithm was lower in the com-
bined external validation sets than in the internal validation set,
showing that some overfitting issues may exist in this approach.
GAs themselves tend to overfit the training set, and unfortunately,
there is no solution to this problem in GAs [45]. Overfitting may
also arise from the complexity of the GA-XGBoost model [46] or
from model diversity (Table S5), which limits the prediction per-
formance [47]. We tried various strategies to avoid overfitting,
including random sampling of the training set to increase the vari-
ety of each GA-XGBoost model, combining the GA with XGBoost
via the shrinkage method [48], and comparison with forward step-
wise logistic regression and LASSO regression. These methods pro-
duced an improved but still suboptimal prediction model, showing
that the process of risk prediction is imperfect and iterative. Future
research should balance the complexity and diversity of the predic-
tion model with the performance of the bagging algorithm.

Regarding the biological evidence of significantly differentially
expressed genes involved in our bagging algorithm, the network
analysis from Ingenuity� Pathway Analysis (IPA�) revealed that
the AKT (AKT serine/threonine kinase) gene is a hub for many
of these genes. This gene is a crucial molecule in the PI3K/AKT/
mTOR signaling pathway, which is vital in regulating cell prolifer-
ation, survival, and migration [49]. It has been reported that this
pathway is frequently deregulated and associated with poor prog-
nosis at advanced tumor stage in OC [50]; as a result, this path-
way has become one of the famous anticancer targets in OC
[51,52]. Both PAK (P21 activated kinase) and INHBA (inhibin sub-
unit beta A) showed direct interactions with AKT, but only the
latter was present in our dataset. A recent study revealed that
higher expression of INHBA was connected to higher risk of death
in patients with late-stage OC; hence, it is a potential target for
blocking tumor progression [53]. The IPA results also revealed
that AKT has many indirect interactions with insulin-like growth
factor binding protein family members (e.g., IGFBP-4 and IGFBP-
5), which can modulate insulin-like growth factors that have
endocrine, autocrine, or paracrine functions [54]. IGFBP-4 expres-
sion is elevated in the early tumor stage [55], and IGFBP-5 is
known to be a tumor suppressor by inhibiting expression of
AKT [56]. In addition, several other genes connected to AKT also
play important roles in the prognosis of OC. For example, GHR
(growth hormone receptor), including estrogen or progesterone
receptors, has been associated with better survival outcomes
[57]. VAV3 (vav guanine nucleotide exchange factor 3) overex-
pression in cancer stem cells is a biomarker for poor survival out-
comes in OC [58]. Moreover, PCSK5 encodes a proprotein
convertase, and the increased expression of this protein family
was related to poor survival outcomes in OC [59]. These findings
suggest that the function of selected genes in this study is highly
associated with the survival of OC patients.

Several factors may explain the slight difference in the response
of high-risk and low-risk cell lines to 17-AAG and RAF265. First,
only 55 of the 1457 cell lines (3.77%) in the CCLE are ovary cell
lines, illustrating that a small number of samples may produce
biased performance estimates when performing cross-validation
of such high-dimensional data [60]. Second, although it has been
reported that various types of OC, such as clear cell carcinoma, ser-
ous carcinoma, and endometrioid and mucinous carcinoma,
showed different drug responses [61] the cell lines in CCLE were
not classified into these subtypes, suggesting that the heterogene-
ity of the ovary cell lines may also affect the drug response results.
Lastly, the expression patterns in tumor tissues and normal cell
lines are not the same [62], so a model trained by tumor tissue
samples may not be generalized to cell line samples.
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Some drawbacks exist in this study. First, the insufficient num-
ber of samples may influence the accuracy of this method, and
expanding the sample size of OC patients is still necessary. Second,
unmeasured and residual confounders may exist that affect the
results. Finally, quantile normalization did not remove the batch
effect across these datasets. Moreover, the feature combinations
from the GA were different even when the same parameters were
set. Because the risk prediction approach we present here is not
comprehensive enough to extend into other cancers, further
research is required to fully develop a risk prediction model that
considers cancer heterogeneity, cancer subtypes, and functional
pathways. In the future, we will work to apply our method to other
data sources, such as gene expression profiles from next-
generation sequencing data in OC.
Conclusion

Predictive modeling using gene signatures for the early identifi-
cation of high-risk individuals has shed light on personalized med-
icine, especially in stratified prevention strategies and clinical
management. Considering that there are few risk-prediction mod-
els of OC using gene expression, we developed a bagging-based
algorithm with GA-XGBoost models to predict the mortality risk
of OC patients based on their gene expression patterns. Our
method accurately predicted high-risk OC patients and has the
potential to reduce unnecessary healthcare for those with low risk.
However, several limitations still need to be addressed. Therefore,
in the future, further investigations are necessary and warranted to
validate the outcomes before clinical application.
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