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Latent Change Score models (LCS) are a popular tool for the study of dynamics in
longitudinal research. They represent processes in which the short-term dynamics have
direct and indirect consequences on the long-term behavior of the system. However, this
dual interpretation of the model parameters is usually overlooked in the literature, and
researchers often find it difficult to see the connection between parameters and specific
patterns of change. The goal of this paper is to provide a comprehensive examination of
the meaning and interpretation of the parameters in LCS models. Importantly, we focus
on their relation to the shape of the trajectories and explain how different specifications
of the LCS model involve particular assumptions about the mechanisms of change.
On a supplementary website, we present an interactive Shiny App that allows users to
explore different sets of parameter values and examine their effects on the predicted
trajectories. We also include fully explained code to estimate some of the most relevant
specifications of the LCS model with the R-packages lavaan and OpenMx.

Keywords: latent change score models, longitudinal data analysis, structural equation models, dynamic models,
developmental trajectories, theory of change

INTRODUCTION

A Latent Change Score (LCS) model is a latent variable dynamic model for the analysis of processes
that unfold over time. It was originally introduced by Hamagami and McArdle (2001) and McArdle
(2001) and it stemmed from the need to incorporate a dynamic perspective into developmental
research. In dynamical systems theory, development is defined as the continuous interaction of all
the elements within a system as it unfolds over time (Thelen and Smith, 2006), and the observed
changes are represented as a function of the previous states of the system (Voelkle et al., 2018).
Consider, for example, embryonic development in smoking mothers, or cognitive reserve and
memory declines in aging. In both scenarios, the multivariate repeated measures taken from the
individuals are conceptualized as developing systems in which the changes are partially determined
by some previous conditions. Initial fluctuations in the chemical composition of the amniotic
fluid will alter the patterns of interaction between cells, which will affect the process of tissue
differentiation and organ formation. Likewise, the genetic heritage, environmental stimulation, and
developmental history of the elderly will determine the rate at which cognitive decline occurs.

To study the dynamic and multivariate nature of developmental phenomena such as those
described above, statistical models are needed that provide a representation of the process where
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past events have future consequences, and the mechanisms of
change can be continuously affected by internal and external
influences. LCS models were developed for this purpose and
are a flexible framework for examining dynamics in longitudinal
research. In particular, they are typically applied to situations in
which the interest is in characterizing both the mean changes
as well as the covariances over time (as opposed to, say, auto-
regressive models where the main focus are the covariances,
cf., McNeish and Hamaker, 2020). As such, researchers have
used different versions of LCS models to study change in a
variety of constructs, including cognitive function and academic
achievement in children (Peng and Kievit, 2020), pulmonary
function and fluid intelligence in middle-aged and older adults
(Finkel et al., 2013), or depressive symptoms and perceptual
speed in late life (Bielak et al., 2011), among others. Despite this
popularity, and the existence of excellent literature on how to
specify the model and interpret some of its features (i.e., Ghisletta
and McArdle, 2012; Kievit et al., 2018), several key aspects of LCS
models remain misunderstood. In particular, the interpretation
of some of the model dynamic parameters and their connection
with theoretical mechanisms of change has not been addressed in
a comprehensive way.

In this paper, we aim to provide a clear and accessible
interpretation of the parameters in LCS models and their
dynamical properties. First, we will provide a conceptual and
mathematical description of the LCS model in connection with
the dynamic systems literature. Second, we will clarify how LCS
parameters can be interpreted to test hypotheses about both the
short-term dynamics and the long-term development of a system.
Third, we will extend this interpretation to bivariate LCS models
and elaborate on the importance of including prediction errors at
the latent level. Finally, we conclude with some examples of how
the LCS model can be adapted to represent specific theoretical
mechanisms of change. Furthermore, we provide an interactive
online Shiny App to examine how the model parameters can
be modified to express different patterns of change, as well as
lavaan and OpenMx code for the estimation of LCS models (see
https://marjfollero.github.io/LCSmodels/docs/index.html).

UNIVARIATE LATENT CHANGE SCORE
MODELS

Imagine a researcher who is interested in the development of
reading abilities from childhood to early adulthood. Her goal
is to study reading acquisition and performance during this
developmental period and to examine whether the evolution of
reading is related to other relevant variables, such as cognition,
socio-economical status, or academic performance. For such
purpose, she decides to use a latent change score approach, which
is known to be a flexible and powerful model for the analysis of
developmental data.

Because LCS models are built as structural equation models,
our researcher can easily separate the true scores from their
measurement error, so the change is studied at the latent level.
Thus, her LCS model represents the observed state of reading
performance Y for individual i at any given time t as a function

of a latent initial level (y0), and the past history of changes up
to that time (1yik), plus some measurement error (McArdle and
Hamagami, 2001; McArdle, 2001, 2009):

Yi[t] = yi,0 +

t∑
k =1

1yik + εi[t] (1)

where k quantifies the number of discrete changes up to time t.
Based on this general expression, changes in reading performance
(1y) can be expressed through different mechanisms. In a
dynamical system, the level of the variable at any given point
in time t constitutes the initial conditions for the change up to
t + 1. However, our construct of interest is often only one of
multiple processes in constant interaction within a larger system,
and thus the scores at t + 1 will only be partially determined
by the scores at the previous occasion t. Based on this idea, the
latent changes can be predicted by (i.e., regressed on) several
determinants of change.

For simplicity, our fictional researcher decides to focus her
analysis on reading performance only, leaving other variables
aside for the time being. She opts for one of the most typical
specifications for univariate systems, the so-called dual LCS
model, in which changes (1yi[t ]) are determined by: (1) the latent
level of the process at the previous occasion (yi[t−1]), through a
self-feedback regression parameter β, representing the strength
of the association between the change and the latent level at the
previous occasion and (2) an additive component representing
a linear effect on the system, ya,i, exerting influence through a
regression parameter α:

1yi[t] = α · ya,i + β · yi[t−1] (2)

Because the coefficient α is usually fixed to 1, it will be omitted
in the following sections (for other alternative specifications
of change, see McArdle and Nesselroade, 2014; Hamagami
and McArdle, 2018). Figure 1 illustrates a path diagram of
the univariate dual LCS model with seven parameters: two
means (µy0 and µya), three variances (σy0

2, σya
2, and σe

2), one
covariance (σy0,ya), and one self-feedback effect (β).

The LCS model in Figure 1 combines between- and
within-individual information from the initial level of reading
performance, the additive component, and the self-feedback to
generate specific trajectories for each individual. Children are
expected to exhibit differences in reading ability, not only at the
first measurement occasion, but also during their development.
For that reason, the researcher specified two sources of between-
individual variability: (1) the initial level, which captures the
mean µy0 and variance σy0

2 in the latent level at the first
measurement occasion and (2) the additive component, with
mean µya and variance σya

2. Between-individual differences in
the trajectories are then determined by the combination of σy0

2

and σya
2 over time. These two elements are usually allowed to

correlate, with covariance σy0,ya. Thus, if children with lower
initial reading scores change more than those with higher initial
reading scores, the correlation between the initial level and the
additive component will be negative.

Once the latent initial level of reading performance for each
individual is specified, the developmental trajectories are defined
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FIGURE 1 | Univariate dual LCS model with five measurement occasions.
Unnamed paths have weights of 1.

as a function of the additive component and the self-feedback
(β). This means that all within-person variability at the latent
level is determined by the change equation (Equation 2), and
any fluctuation around the implied individual trajectories is
considered measurement error (with variance σe

2). That is, LCS
models estimate latent trajectories that approximate the observed
data, and any difference between the predicted trajectories and
the observed scores will be treated as measurement error.
However, it is also possible to include an additional source
of within-person variance in the form of prediction error to
account for deviations from the expected changes (see the section
“Introducing Uncertainties at the Latent Level: Stochastic LCS
Models,” below, for a conceptual and mathematical description
of this model specification).

Importantly, the researcher in our example specified a time-
invariant additive component and self-feedback, reflecting a
particular mechanism of change that governs the development
of reading performance throughout the sampled time range.
In other words, the constant amount of change added on
each occasion, as well as the relation between the previous
level of reading performance and the subsequent changes, are
invariant over time. However, this does not necessarily have
to be the case, as it depends on our hypothesis about the
mechanism that generates the observed changes. For example,
some theoretical frameworks include changes in the nature of
a construct occurring at different stages, such as Piaget’s stages
of child development (Piaget and Inhelder, 1969). Similarly, our
researcher could be planning an intervention on dyslexic children
with the aim of modifying some reading-related mechanisms of
change during a treatment phase. If the mechanisms that bring
about change are expected to change over different phases or
stages, extensions of LCS models such as time-varying parameters
(see Butner et al., 2021) or regime-switching (see Chow et al.,
2013) may be more appropriate.

RELATION BETWEEN LCS PARAMETERS
AND EXPONENTIAL TRAJECTORIES

When examining visually the development of reading, as well
as other cognitive variables, our researcher realizes that they
follow exponential trajectories of various shapes. After fitting
univariate LCS models to these variables, she notices that the
self-feedback and the additive component vary substantially from
one variable to another, both in sign and magnitude. In fact, the
differences in these parameters seem to be related to the shapes
of the trajectories. But what is the connection between these
components?

First, in order to better understand the relationship between
the self-feedback, the additive component, and the specific shape
of the resulting trajectory, it is useful to examine the relation
between the univariate LCS model and the exponential function
below:

y (t) = yAs −
(
yAs − y (t0)

)
· e−r·t (3)

This expression looks very different from the LCS equations
presented in the previous section, but we will clarify their relation
shortly. Using Equation 3, our researcher can represent the level
of a variable y at any given time t as a function of the asymptote
of the trajectory yAs, the initial level y(t0), and the rate of change r
(i.e., rate at which the distance between those two components
is reduced).1 Figure 2 illustrates four exponential trajectories
derived from Equation 3 with varying values for r = {−0.4 and 4}
and initial level y(t0) = {0 and 10}, and a fixed asymptote yAs = 5.

The asymptote yAs represents a horizontal line, where the
trajectory flattens out as time approaches −∞ or ∞, and
the initial level y(t0) represents the intercept of the trajectory
(i.e., the value of the variable y when t = 0). If r is positive,
the variable y approaches its asymptotic level as t→∞, while
growing (green-dashed line) or decaying (red line) without
bound as t→−∞. In contrast, negative values of r indicate that
y approaches its asymptotic level as t→−∞, while exhibiting
an accelerated growth (purple line) or decay (blue-dashed line)
when t→∞. Of course, the study of developmental processes
only makes sense when time moves from the past into the
future (i.e., when t→∞). Therefore, if the development of
reading performance describes decelerated change over time,
it will be defined by a positive r, which determines how
fast the difference between the asymptote and the initial
level (yAs – y(t0)) is reduced over time. In contrast, if it
describes a pattern of accelerated change, it will be defined
by a negative r, representing the speed at which the level
of y moves away from the asymptote over time. In other
words, the magnitude of r indicates the speed at which reading
performance moves from the initial point to the asymptote
(when r is positive), or away from the asymptote (when
r is negative).

1Interestingly, Equation 3 can be implemented as a latent growth curve model
(LGC) to describe exponential growth. Serang et al. (2019) demonstrated that both
LGC and LCS models are mathematically equivalent in certain scenarios. In such
scenarios, both models provide identical information about growth, asymptotes,
and rates of change.
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FIGURE 2 | Exponential trajectories with varying values for the initial level y(t0) and the rate of change r. Note: Negative values of time are shaded. The asymptote is
represented by a horizontal dotted line.

The dual LCS model represented in Equation 2 describes
the changes in reading ability between measurement occasions,
which are modeled as latent variables 1yi[t ]. In contrast, in
the exponential function in Equation 3 we describe the level
of reading ability y(t) on each occasion, instead of the changes
in between. Both approaches, however, are very closely related,
because Equation 2 is an approximation to the first derivative
with respect to time of Equation 3. The derivative of Equation 3
results in a first order ordinary differential equation that provides
the change in reading ability dy(t) as a function of the level y(t),
for an infinitesimally brief time lag dt (Brown, 2007):

dy (t)
dt

= r · yAs − r · y (t) (4)

By replacing r· yAs with the additive component ya, and r with
−β, this expression becomes:

dy (t)
dt

= ya + β · y (t) (5)

which represents the continuous-time (CT) version of Equation
2. Note that the latent changes in Equation 2 are defined in
discrete-time (DT) because they represent the change in reading
performance 1y[t ] for a specific time lag of 1t = 1 (i.e., the left-
hand side of Equation 2 could be specified as 1yi[t ]/1, but it is
usually simplified by removing the denominator). In contrast,
changes in Equation 5 are defined in CT, as they represent
the change in reading ability dy(t) for an infinitesimally brief
time lag dt2.

It is important to note that, because the additive component
and self-feedback from Equation 5 are defined in CT, they

2The right hand of Equations 2 and 5 differs in the specification of the previous
latent level of reading ability. For a time lag of 1 (DT), the previous level is
represented as y(t − 1), whereas for an infinitesimally brief time lag k (CT), there
is no difference between y(t) and y(t-k), and thus it is represented as y(t). Also note
that, to describe change over time, we are using the Greek letter 1 in DT, and the
Latin letter d in CT.

are only equivalent to their counterparts in Equation 2 if
they are first rescaled to a DT metric for a particular
time lag 1t. Nonetheless, the relation between the model
parameters and the shape of the trajectory is the same
regardless of the time metric and specific time interval. In
this paper we focus on clarifying this relation. For detailed
information on the correspondence between LCS-DT and LCS-
CT models, see Voelkle et al. (2012), Voelkle and Oud (2015),
and Estrada et al. (2020).

INTERPRETING THE LCS PARAMETERS:
SHORT-TERM DYNAMICS AND
LONG-TERM TRAJECTORIES

In our previous description of the univariate LCS model, we
defined the parameters in terms of the short-term dynamics of
the system: the self-feedback indicated the extent to which the
changes in reading performance y at time t were determined
by the scores at the previous time t − 1, and the additive
component was a constant amount added on each occasion. The
relation between the univariate LCS model and the exponential
function provides a new understanding of how these short-
term changes can lead to different long-term developmental
trajectories. In this section, we describe the type of trajectories
that univariate LCS models can reproduce. Next, through the
relation between Equations 2 and 5, we elaborate on the
meaning of the LCS model parameters and the information they
provide about change.

Figure 3 illustrates the four patterns of non-linear
change that the univariate LCS model can describe, and
two additional patterns of linear change: A) decelerated
growth (yAs > y0 and β < 0); (B) decelerated decline
(yAs < y0 and β < 0); (C) accelerated growth (yAs < y0
and β > 0); (D) accelerated decline (yAs > y0 and
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FIGURE 3 | Individual implied trajectories from a univariate LCS model with self-feedbacks of varying sign. Self-feedbacks are negative (A,B), positive (C,D), or zero
(E,F), indicating decelerated, accelerated, or linear change, respectively.

β > 0); (E) linear growth (β = 0); and (F) linear decline
(β = 0).3

Importantly, the LCS model is suitable for examining
longitudinal data when the mean structure is non-stationary
(i.e., the average scores are expected to grow or decline
over time). One key, and often overlooked, aspect of the
model is that it specifies the same mechanism of change
(i.e., set of equations) for characterizing both the short-term
dynamics and the long-term developmental trajectories (see
Equation 2). This feature makes the LCS model fundamentally
different from other models detaching the longitudinal mean
change from the autoregressive process, such as Random
Intercept Cross-Lagged Panel Model, or the Stable Trait
Autoregressive Trait and State model (see, for example,
Usami et al., 2019).

Specifying a common mechanism for both aspects of change
is consistent with most theories of biological and psychological

3When the rate of change r is 0, Equation 3 describes a horizontal line without
slope, and its derivative takes a value of 0. However, when the self-feedback β is 0 in
a LCS model, linear trajectories can still be described, with the additive component
acting as a slope. This occurs because the relation r· yAs = ya is only meaningful
when the model is dynamic (i.e., future states of the system are determined by past
states). In a LCS model, if β is exactly 0, growth (or decline) will be determined by
a positive (or negative) additive component.

development across the lifespan. Some examples of such
processes are age-related declines in cognitive function (Ritchie
et al., 2015), reading and writing skills during childhood
(Ahmed et al., 2014), volume changes in cortical structure
in childhood and adolescence (Bengtsson et al., 2005), or
physical functioning in aging (Sargent-Cox et al., 2012). Other
psychological phenomena are expected to fluctuate around a
stationary mean, such as state anxiety in adolescents during
the academic year (Steinmayr et al., 2016), marital satisfaction
in married couples (Hawrilenko et al., 2016), or the emotional
evolution after a romantic breakup (Sbarra and Ferrer, 2006). If
the changes in the mean structure are not considered important
for the study, LCS models are not the best option. In that
case, other dynamic models such as the Random Intercept
Cross Lagged Panel Model (RI-CLPM) (see, Hamaker et al., 2015;
Mulder and Hamaker, 2020; Zyphur et al., 2020) may be
more appropriate.

Self-Feedback: Decelerated and
Accelerated Change
Based on the relation between Equations 4 and 5, the researcher
in our example can now interpret the self-feedback parameter as
a rate of change, which determines how fast the level of reading
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performance grows or decays with respect to the asymptote. For
any initial level (i.e., at t = 0) and asymptote, larger negative (or
positive) self-feedbacks will result in trajectories that approach
(or move away from) the asymptote more quickly.

For example, suppose that the researcher is interested in
the differences in reading performance among children from
low, medium, and high socio-economical backgrounds (SEB).
In particular, she hypothesizes that children with low SEB will
experience a slower growth in, say, reading comprehension, and
a slower decrease of reading mistakes compared to children with
higher SEB. After fitting a LCS model to each group of children,
she estimates the parameters and plots the latent trajectories.
Figure 4 depicts the group-mean implied trajectories of reading
comprehension (left panel) and reading mistakes (right panel) for
each group of SEB.

In reading comprehension, the self-feedback parameters are
−0.2, −0.5, and −1, for the groups with low, medium, and
high SEB, respectively (left-panel of Figure 4). In its short-
term interpretation, negative self-feedbacks mean that, across all
groups, children with higher reading performance at t − 1 will
experience smaller changes at time t compared to children with
lower reading performance. If this pattern is consistent over time,
all children will experience smaller subsequent changes as more
time passes. This leads to long-term developmental trajectories
in which rapid improvements during the early years are followed
by a progressive deceleration. In this context, a less negative
self-feedback for the low-SEB group (β = −0.2) is interpreted
as a slower growth in reading comprehension with respect to
the medium- and high-SEB groups (with β = −0.5 and β = −1,
respectively), as the researcher hypothesized.

In reading mistakes, our researcher obtained self-feedbacks
of 1, 0.5, and 0.2, for the groups with high, medium, and low
SEB, respectively (right panel of Figure 4). In its short-term
interpretation, positive self-feedbacks mean that individuals with
few reading mistakes at time t − 1 will make even fewer mistakes
at time t. If this pattern is maintained over time, all individuals
will commit fewer subsequent mistakes as more time passes. This
leads to trajectories in which reading mistakes become more rare
with the passage of time, and more positive self-feedbacks will be
interpreted as faster decays. In this context, a more positive self-
feedback for the high-SEB group (β = 1) is interpreted as a faster
reduction in reading mistakes with respect to the medium- and
low-SEB groups (with β = 0.5 and β = 0.2, respectively).

Note that the researcher specified the self-feedback as a single
fixed parameter, and therefore all the cases in each sample are
assumed to have the same rate of change. In other words,
all the children’s trajectories are assumed to move toward (or
away from) their respective asymptotes at the same speed. This
assumption may not be realistic in some scenarios, and some
recent approaches allow including random effects in the self-
feedback parameter (see Driver and Voelkle, 2018).

In empirical applications of the LCS model it is also possible
to obtain self-feedback values of 0 (bottom panels of Figure 3),
meaning that scores at time t are not affected by the previous
scores at time t − 1. In this scenario, all the changes are explained
by the additive component, which is interpreted as a slope,
leading to linear trajectories where change is constant over time.
This pattern of change has been found when measuring age-
related declines in lifestyle activities (Small et al., 2012) and well-
being (Gerstorf et al., 2007), cortical thickness from childhood to
early adulthood (Estrada et al., 2019), or decreases in pulmonary
function in aging (Finkel et al., 2013). Although non-linearities
are frequent in dynamical systems, linear patterns of change are
also possible. However, self-feedback parameters with values of 0
may also be obtained when the intervals between measurement
occasions are too large to capture the short-term dynamics of the
phenomenon under study (see Voelkle et al., 2012), or when the
sampled time range is too short to capture the nonlinearities in
the long-term trajectories.

The Additive Component: A Source of
Asymptotic Variance
Based on the mathematical equivalence between Equations 4 and
5, the additive component in the univariate LCS model can be
expressed as:

ya,i = yAs,i · (−β) (6)

This relation reveals that the additive component contains
information about the asymptotes of the individual trajectories.
In fact, the variance σya

2 captures between-individual variability
in the asymptote (or maximum level) of these trajectories.

Importantly, when the reading researcher includes the
variances of the initial level and additive component in her model
(see Figure 1 and Equation 2), she is allowing individuals to
have different baselines and tend toward different asymptotes.
Also, she is assuming that y0 and ya follow a bivariate normal

FIGURE 4 | Grand-mean implied trajectories of decelerated growth and accelerated decay. Note: Values of self-feedback β = −0.2, −0.5, −1 (left) and β = 0.2, 0.5,
1 (right) are represented by solid, dashed, and dotted lines, respectively.
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distribution. Therefore, the scores in reading performance are
expected to follow a normal distribution at the initial time point,
at the asymptote, and at any time point in between. Figure 5
depicts four sets of individual trajectories representing four
different measures of reading performance with σy0

2 = 10, fixed
value for β, and varying values for the variances of the additive
components. Let us suppose that these measures represent
reading comprehension (panel A), fluency (panel B), phonetic
coding (panel C), and reading decoding (panel D).

When the change is decelerated, the variance of y is
reduced over time as it is repeatedly multiplied by the
negative self-feedback parameter. In reading comprehension
(Figure 5A), the additive component does not have a variance
to compensate for this reduction (σya

2 = 0), meaning that
individual trajectories will converge toward the same point.
At the beginning of the study (i.e., t = 0), the level of
reading comprehension differs substantially between children
(σy0

2 = 10), but eventually all will reach the same level.
In fluency (Figure 5B) the observed trajectories are defined
by a large variance in the additive component (σya

2 = 12),
implying greater dispersion of the asymptotes. On the other
hand, the change in phonetic coding and reading decoding
is accelerated (β > 0), implying that the variance of both
processes is amplified over time, leading to trajectories that
will spread indefinitely without bounds (Figures 5C,D). In this
scenario, a larger variance in the additive component, such
as σya

2 = 12 in reading decoding, will amplify even more
this dispersion.

The additive component also contains within-person
information about the relative position of the asymptotes.

For a fixed initial level and self-feedback, individuals
with larger scores in the additive component will present
asymptotes farther away from their initial level, implying
larger growth or decline. It is often believed that positive
(or negative) additive components lead to increasing (or
decreasing) trajectories. However, this is not necessarily
true. For example, both decelerated trajectories depicted
in Figure 2 share the same asymptote yAs and rate of
change r ( = −β), and therefore the value of the additive
component ( = yAs/−β) is the same whether the trajectory
grows or decays. The same is true with both accelerated
trajectories. In the univariate LCS model, growth or decay
patterns depend on the relative position of the initial level
and the asymptote. If the asymptote is above the initial level,
negative (or positive) self-feedback parameters will lead to
decelerated growths (or accelerated decays). Conversely, when
the asymptote is below the initial level, negative (or positive)
self-feedback parameters will lead to decelerated decays (or
accelerated growths).

Note that Equation 6 illustrates a dependency between
the additive component and self-feedback parameters,
which explains the strong correlations between these
components found in previous studies (see Jacobucci et al.,
2019). This dependency implies that, if our researcher
had misspecified one of the model parameters (e.g., she
used a time-invariant self-feedback that is actually time-
varying in the population), the misspecification would
be compensated by the other parameter to reproduce
the observed data, resulting in biased estimates (see
Clark et al., 2018).

FIGURE 5 | Individual implied trajectories of decelerated (A,B) and accelerated (C,D) change with values of 0 (A,C) and 12 (B,D) for the variance of the additive
components. The variance in the initial latent state is 10 across all sets, and the value of β is constant between the cases in each set.
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BIVARIATE LATENT CHANGE SCORE
MODEL: INTERRELATIONS BETWEEN
LATENT PROCESSES

Most psychological theories represent developmental
phenomena as the dynamic interaction between multiple
processes over time. Aware of this, the researcher in our running
example decides to examine the relations between reading and
other cognitive variables. Based on previous literature (e.g.,
Ferrer et al., 2010), she hypothesizes that changes in children’s
reading performance will be determined to some extent by
cognitive ability level. For such purpose, she decides to use a
bivariate dual LCS (BLCS) model, which allows examining the
interrelations between two variables as they unfold over time.
The specification of changes in this BLCS model (McArdle, 2001)
can be represented as a bivariate extension of the dual LCS model
from Equation 2 for reading performance (x) and cognitive
function (y):

1xi[t] = xa,i + βx · xi[t−1] + γx · yi[t−1] (7)

1yi[t] = ya,i + βy · yi[t−1] + γy · xi[t−1]

In Equation 7, an additional determinant of change is included
for each variable with respect to Equation 2: the parameters γx
and γy are couplings that represent the cross-lagged influences
from the level in each variable at time t − 1 to the change in
the other variable at time t. Similar to self-feedbacks, positive (or
negative) couplings mean that larger scores in one variable lead
to larger (or smaller) subsequent changes in the other variable.

This specification of couplings leads to three possible types of
developmental relations: (1) reading performance and cognitive
ability are mutually interrelated over time (i.e., γx 6= 0 and
γy 6= 0); (2) one process having a (positive or negative) impact
on the changes in the other process, but not vice versa (e.g.,
γx 6= 0 and γy = 0); and (3) both processes following dynamically
independent courses over time (i.e., γx = γy = 0). This flexibility
allows testing hypotheses about the directional effects between
processes that develop differently across groups of individuals.
For example, Ferrer et al. (2010) found positive and asymmetric
couplings between reading and IQ in normative readers, meaning
that both processes influenced each other over time, but also that
IQ was a stronger predictor of changes in reading achievement
than the other way around. These mutual interrelations, however,
did not appear in dyslexic readers (as indicated by couplings not
significantly different from zero), suggesting that reading and
cognition develop more independently in these individuals.

Although couplings provide information on the temporal
sequences between processes, they should not be interpreted
as causal effects. Consider, for example, that our researcher
finds a significant coupling indicating that higher levels of
cognitive ability lead to higher levels of reading performance,
but not vice versa (i.e., γx > 0 and γy = 0). This effect means
that cognition temporally precedes, yet not necessarily causes,
changes in reading performance. At best, one could argue that
changes in cognition are not caused by previous reading levels,

because the coupling is zero in that direction. Further causal
claims, however, would require ruling out potential confounders
and previous differences. Although significant couplings do not
necessarily mean causation, if causation exists, it should be
captured by significant couplings. Furthermore, coupling effects
represent developmental sequences in which the predictions
follow a temporal order. In regard to our researcher’s hypothesis,
it would be reasonable to conclude that enhanced cognition
predicts better reading performance, suggesting (but not proving)
that improving cognitive abilities in children may lead to better
reading performance with the passage of time.

BLCS Models and Long-Term
Developmental Changes
The short-term interpretation of additive components and self-
feedbacks in the BLCS model is identical to that of the univariate
LCS. However, when the couplings are non-zero, the non-linear
behavior of the system is defined by the combinatorial effects of
self-feedbacks and couplings over time, and the resulting long-
term trajectories may not lead to a definite exponential form as
in Equation 3. Consequently, the asymptote of the trajectories is
determined by the interaction of the additive component, self-
feedback, and coupling, implying that the relation yAs = ya/(−β)
does not necessarily hold in bivariate systems. In other words,
the rate at which variables x and y move with respect to the
asymptote4 is now determined by the continuous interaction
between self-feedbacks and couplings, and the variance in the
asymptotes (or maximum level) of the trajectories depends on the
variances of both additive components.

Figure 6 illustrates the type of non-linear trajectories that
BLCS models can reproduce, defined by different values for
the coupling parameters: (1) decelerated growth or decline (A,
B, and C); (2) accelerated growth or decline (D); and (3)
oscillatory behavior (E and F). Table 1 contains the time-lagged
parameters leading to each of the six bivariate trajectories in
Figure 6. Although not included in Figure 6, linear change
patterns are also possible in BLCS models when the self-feedbacks
and couplings are zero, meaning that both processes follow
dynamically independent courses. Interested readers can enter
the values from Table 1 in the supplementary Shiny App
at https://marjfollero.shinyapps.io/BLCS_means/ to gain deeper
understanding of how individual trajectories behave when the
mechanism of change is defined by different coupling parameters.

Some phenomena consistent with trajectories in Figure 6
are the evolution of fluid reasoning and crystallized intelligence
during the lifespan (A; e.g., McArdle et al., 2002), reading and
verbal abilities during childhood (B; e.g., Ferrer et al., 2007),
perceptual speed and depressive symptoms in older adulthood
(C; e.g., Bielak et al., 2011), or memory and spatial abilities in
aging (D; e.g., Finkel et al., 2007). The BLCS model can also
describe more oscillatory behaviors through the combination
of large self-feedbacks and couplings over time, as depicted in
panels E and F. Importantly, these are mean trajectories, not

4In a BLCS model, the implied trajectories do not necessarily have an asymptote.
For example, a trajectory that accelerates when t→−∞, can also accelerate when
t→∞ if it receives a nonzero coupling effect from another accelerated process.
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FIGURE 6 | (A–F) Implied mean trajectories from a bivariate LCS model under various parameter values.

equivalent to individual fluctuations around a stationary mean.
In other words, they represent increases and decreases in the
mean structure affecting all individuals in the sample at the same
time, in contrast to other specification such as linear oscillators
(Boker, 2001; Boker and Nesselroade, 2002; Boker et al., 2004;
Chow et al., 2005).

One limitation of standard BLCS models is that irregular
non-linear patterns and oscillatory behaviors can only be
described when the changes are strongly dependent on previous
states, as indicated by large couplings (see columns C, E,

TABLE 1 | Generating time-lagged parameters of the bivariate trajectories in
Figure 6.

A B C D E F

βx −0.3 −0.3 0.3 0.3 0.9 −0.8

βy −0.3 0.3 −0.7 0 −0.9 −0.3

γx (y→x) −0.2 0.2 0.6 0.2 1.1 −0.8

γy (x→y) 0 0 −0.5 0.2 −1.1 0.8

and F in Table 1). If this is not the case, BLCS models
will not be able to accurately describe the dynamics of
the system, and the implied trajectories will not reflect the
true behavior of the latent processes. To overcome this
limitation, Hamagami and McArdle (2018) proposed including
an additional additive component with curvilinear effects
for each process, allowing for irregularities in the non-
linear trajectories.

INTRODUCING UNCERTAINTIES AT THE
LATENT LEVEL: STOCHASTIC LCS
MODELS

Let us return to our example on children’s reading. In the
LCS models described in the previous sections, latent
changes were fully accounted for by the previous state
of the latent process (or processes) and the additive
component, without considering any prediction error.
This specification is based on the assumption that, once

Frontiers in Psychology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 696419

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-696419 July 23, 2021 Time: 17:39 # 10

Cáncer et al. Dynamical Properties of LCS Models

the general mechanism of change is known, it is possible
to predict perfectly the state of the system at any given
point in time. In other words, it assumes that change is
completely determined by the components of Equation 2 (i.e.,
deterministic change).

In empirical applications, however, individuals are often
exposed to unobserved events that were not present in the
initial state of the system, and whose influence can disrupt
their change patterns over time. Suppose that our researcher has
taken yearly measurements of children’s reading and academic
performance. Some individuals in the sample may experience
unpredictable events affecting (either positively or negatively)
their cognitive functioning, such as starting private tutoring, the
divorce of the parents, or a surgical operation leading to the
loss of academic activity. The deterministic LCS models from
previous sections do not account for the impact of such random
events and assume that all the deviations from the predicted

changes are measurement error. However, unlike measurement
errors, these unpredictable events have an effect on the latent
process. Moreover, their influence is not only limited to a specific
point in time. Instead, they persist in later states of the system,
potentially leading to deviations from the expected trajectories.

If our researcher believes that the developmental trajectories
of reading and academic performance may be affected by
unpredictable events or “random shocks”, she can account for
those by including prediction error terms at the latent level in
Equation 6:

1xi[t] = xa,i + βx · xi[t−1] + γx · yi[t−1] + dx,i (8)

1yi[t] = ya,i + βy · yi[t−1] + γy · xi[t−1] + dy,i

This expression describes a stochastic BLCS model. Here, dx
and dy are random variables with mean 0, variances σdx

2 and

FIGURE 7 | Path diagram of a stochastic BLCS model.
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σdy
2, and covariance σdx, dy. These three additional parameters

are usually fixed to be equal across time points (i.e., stationary
or time-invariant). Figure 7 illustrates a path diagram of the
stochastic BLCS model with 24 parameters.

Despite being specified as time-specific regression residuals,
the deviations produced by these prediction errors are carried
over through the self-feedback and coupling parameters to
later states of the system. Because their effect in the latent
process may be relevant, they are not considered merely “errors”.
Instead, they are often termed innovations, dynamic errors,
or dynamic fluctuations (Oud and Delsing, 2010; Schuurman
et al., 2015; Voelkle et al., 2018). Figure 8 depicts individual
latent trajectories from a deterministic (left) and a stochastic
(right) BLCS model. Conceptually, this additional source of
variance captures within-individual variability due to factors
affecting the latent trajectories that cannot be explicitly included
in the model as covariates, either because they are not known,
cannot be measured, or any other reason. Such external factors
act like random noise or random shocks and can affect each
individual differently.

To date, the deterministic specification of the BLCS model has
been prevalent in the psychology literature, probably because the
simultaneous estimation of measurement errors and innovations
tends to produce improper solutions and convergence errors
under some conditions in other dynamic models, such as the RI-
CLPM (see Hamaker et al., 2015; Lüdtke et al., 2018). However,
a recent study has shown that, under appropriate sampling
conditions, the stochastic BLCS model is able to capture the
dynamics of the system and properly distinguish all sources
of variance (Cáncer and Estrada, 2021). When the impact of
innovations is expected at the latent level, the stochastic BLCS
model allows a more realistic and accurate representation of
dynamic systems.

CLOSING REMARKS: ADDITIONAL
SPECIFICATIONS OF LCS MODELS

In the previous sections, we described how a developmental
researcher reproduced a wide variety of change patterns using a
dual LCS model (McArdle, 2001). However, other specifications
are also possible—and may be more reasonable—depending
on one’s theory of change. For example, given a particular
hypothesis, the loadings of the additive components on the latent
changes can be freed (instead of fixed to 1) to account for
different amounts of baseline change at each repeated occasion
(see the “triple change score model,” in McArdle and Nesselroade,
2014). Similarly, if the processes under study are expected to
show quadratic curves in the long run, it would be possible to
include an additional additive component with rescaled loadings
representing quadratic change (see Hamagami and McArdle,
2018). These alternative specifications could potentially help the
reading researcher in our example to obtain accurate information
about change in phenomena describing more complex patterns
(e.g., Figures 6C,E,F).

In a similar vein, hypotheses about acceleration rates (changes
of changes) could be implemented by modeling the difference
between adjacent latent changes as an additional latent variable
(i.e., 1yi[t ] − 1yi[t−1] = 11yi[t ]). This new variable could
then be regressed on the previous state y[t−1] to represent a
rate of acceleration (see Malone et al., 2004; Ferrer et al., 2007,
for examples). In our example, the researcher could use this
model specification to examine acceleration or deceleration in
the developmental changes in reading, and test if these changes
in speed can be explained by other variables. Likewise, the
coupling effects in BLCS models can be re-specified to test
different hypotheses of change. For example, we may hypothesize
that changes in cognitive function temporally precede changes

FIGURE 8 | Individual implied trajectories from a deterministic (left) and stochastic (right) BLCS model.
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in reading performance, as indicated by significant change-to-
change couplings (e.g., 1yi[t−1] → 1xi[t ]; see Grimm et al.,
2012). It may also be theoretically relevant to consider the effect
of the state of reading performance at t − 2 on the latent changes
of the other variable at time t, as indicated by a significant 2-lag
coupling. Importantly, all these specifications can be extended to
include multiple indicators in the measurement structure of the
model. For example, reading performance could be, at each time
point, a composite of several measures, such as comprehension,
fluency, and decoding. Although including multiple indicators
does not provide additional information about the mechanisms
of change, it ensures a more accurate representation of the latent
constructs if they can be assumed to be invariant over time (for
details on multiple indicators and longitudinal invariance in LCS
models, see Ferrer et al., 2008).

In summary, LCS models are a general class of models that
can be flexibly adapted to express a wide variety of hypotheses
of change. The common feature of all these specifications is
the use of time-sequential dynamics between latent constructs
to simultaneously explain both the covariance structure and the
changes in the means over time. This distinctive property is
what differentiates LCS models from other frameworks, such
as cross-lagged panel models (CLPM), which do not focus
on growth or decline patterns, or latent growth curve models
(LGCM), which ignore the time-lagged dynamics. Despite these
differences, all these approaches are mathematically related,
and both CLPMs and LGCMs can be obtained through re-
specifications of the LCS model parameters (see Usami et al.,
2015, 2019; Serang et al., 2019).

CONCLUSION

Latent Change Score models are a flexible and powerful
framework for studying dynamics in developmental processes.

In this paper, we aimed to clarify the interpretation of the
model parameters and describe their dynamical properties.
In particular, we mapped these parameters onto theoretical
mechanisms of change and explained their meaning in terms
of both the short-term dynamics and the shape of the long-
term trajectories. We hope the explanations provided in this
paper, as well as the interactive Shiny Apps and R code included
in the supplementary website, will help researchers in future
applications of LCS models.
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