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HbA1c is associated with altered expression in blood of cell cycle-
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Abstract
Aims/hypothesis Individuals with type 2 diabetes are hetero-
geneous in their glycaemic control as tracked by blood HbA1c

levels. Here, we investigated the extent to which gene expres-
sion levels in blood reflect current and future HbA1c levels.
Methods HbA1c levels at baseline and 1 and 2 year follow-up
were compared with gene expression levels in 391 individuals
with type 2 diabetes from the Hoorn Diabetes Care System
Cohort (15,564 genes, RNA sequencing). The functions of
associated baseline genes were investigated further using path-
way enrichment analysis. Using publicly available data, we
investigated whether the genes identified are also associated
with HbA1c in the target tissues, muscle and pancreas.

Results At baseline, 220 genes (1.4%) were associated with
baseline HbA1c. Identified genes were enriched for cell cycle
and complement system activation pathways. The association
of 15 genes extended to the target tissues, muscle (n = 113)
and pancreatic islets (n = 115). At follow-up, expression of 25
genes (0.16%) associated with 1 year HbA1c and nine genes
(0.06%) with 2 year HbA1c. Five genes overlapped across all
time points, and 18 additional genes between baseline and
1 year follow-up. After adjustment for baseline HbA1c, the
number of significant genes at 1 and 2 years markedly de-
creased, suggesting that gene expression levels in whole blood
reflect the current glycaemic state and but not necessarily the
future glycaemic state.
Conclusions/interpretation HbA1c levels in individuals with
type 2 diabetes are associated with expression levels of genes
that link to the cell cycle and complement system activation.
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Abbreviations
DCS Diabetes Care System
e(GFR) Estimated (GFR)
FDR False-discovery rate
GEO Gene Expression Omnibus
PBMC Peripheral blood mononuclear cell

Introduction

Individuals with type 2 diabetes are heterogeneous in their
disease trajectory, glycaemic control over time [1], response to
therapy and in the disease-related complications they develop,
including micro- and macrovascular complications [2]. Poor
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glycaemic control has been associated with a higher incidence
of developing microvascular complications [1, 3]. Therefore,
individuals with type 2 diabetes would benefit from new
markers for future glycaemic control, especially when in an
early stage of the disease.

Much effort has been spent identifying common gene
variants that mark disease risk and progression, but genetic
variants contribute little in addition to classic risk factors,
especially in people below 50 years of age [4]. In addition,
genetic risk scores explain only 10–15% of the heritability of
type 2 diabetes [5]. Accelerated by recent technological
advances, other molecular variables, such as epigenetic modi-
fications and gene expression, are increasingly being investi-
gated in relation to blood glucose and type 2 diabetes and its
progression. For example, DNA methylation near known type
2 diabetes loci (for example, KLF14, ZNF518B, INS) is asso-
ciated with measures of glucose homeostasis (HbA1c, 2 h in-
sulin) in healthy individuals [6, 7].

At the transcriptional level, early studies have foundmultiple
genes to be differentially expressed between the control group
and individuals with (pre)diabetes in target tissues [8–11], and
also in blood [12–15]. Using a genome-wide approach in
peripheral blood mononuclear cells (PBMCs), genes from the
c-Jun N-terminal kinase (JNK) and oxidative phosphorylation
pathways were differentially expressed in individuals with and
without type 2 diabetes [12]. In addition to case–control
designs, a limited number of studies have also investigated links
between gene expression in blood and target tissues and
glycaemic control and disease-related complications. In
PBMCs, the expression of genes encoding TNF-α and IL-6
was elevated in individuals with type 2 diabetes with micro-
(n = 29) and macroalbuminuria (n = 31) compared with the
control group (n = 22) and individuals with type 2 diabetes
and normoalbuminuria (n = 18) [13]. In the same study, TNF
expression correlated with HbA1c levels [13].

While there are indications that measures of glycaemic
control are reflected in molecular measures and blood is an
interesting tissue from an etiological perspective, the number
of studies that have investigated the relationship between gene
expression in blood and disease progression is limited. Those
that have been conducted have tended to be small cross-
sectional case–control studies. We have investigated the rela-
tionship between blood gene expression levels and HbA1c

levels in almost 400 individuals with type 2 diabetes selected
from the Hoorn Diabetes Care System (DCS) cohort [16].

Methods

Study population Individuals who participated in this study
are part of the Hoorn DCS cohort, a prospective cohort of over
12,000 individuals with type 2 diabetes [16]. People visit the
DCS annually for routine care and data collection, including

anthropometric, fasting glucose, HbA1c, blood lipid and blood
pressure measurement and information on medication use. A
subset of the individuals in the Hoorn DCS cohort are part of a
biobank in which biological material is stored for research pur-
poses. Blood RNAwas collected in 2013 and 2014 from 1033
individuals who had participated in the biobank previously,
without any specific selection criteria; this group were repre-
sentative of the individuals who visited DCS in 2013 (ESM
Table 1). From this group of 1033, we selected 400 individuals
(ESM Table 1) based on the following criteria: age at onset
between 40 and 75 years; European descent; diabetes duration
less than 10 years; and estimated (e)GFR > 30 ml/min.
Untreated individuals were excluded. Each participant gave
informed consent and the study was conducted in line with
the Declaration of Helsinki.

RNA sequencing Blood for RNA was collected in Tempus
tubes (ThermoFisher Scientific, Waltham, MA USA), and
RNA was isolated from whole blood using the Direct-zol
RNA MiniPrep (Zymo Research, Irvine, CA USA). RNA
concentrations were determined using Nanodrop (Nanodrop,
Wilmington, DE USA) and, in a subset, RNA integrity was
examined using lab-on-a-chip (Agilent, Santa Clara, CA,
USA). Whole-genome transcriptome data were generated at
the human genotyping facility (HugeF) of the Erasmus
Medical Center (the Netherlands, www.glimdna.org). RNA
sequencing libraries were generated using the Illumina
Truseq v2 library preparation kit (Illumina, San Diego, CA,
USA). Libraries were paired-end sequenced (50 bp) using the
Illumina Hiseq2000.

Samples (n = 44) with a library size smaller than 30 million
reads were re-sequenced and the libraries of the first and
second run were combined. Reads passing the chastity filter
were combined in sets with Illumina’s CASAVA. Raw read
quality was assessed using FastQC (v0.10.1) [17]. The adap-
tors identified by FastQC were clipped using Cutadapt (v1.1)
using default settings [18]. To trim low-quality ends of the
reads, Sickle (v1.2) was used (minimum length 25, minimum
quality 20) [19]. Reads were aligned to the genome using
STAR (v2.3.0) [20].

To avoid reference mapping bias, SNPs in the Dutch popula-
tion (Genome of the Netherlands [GoNL]) with minor allele
frequency (MAF) > 0.01 in the reference genomewere excluded.
Read pairs with eight mismatches at most, mapping to five
positions at most, were used. Mapping statistics from the binary
alignment map files were acquired through Samtools flagstat
(v0.1.19-44428cd). The 5′ and 3′ coverage bias, duplication rate
and insert sizes were assessed using Picard tools (v1.86). Gene
expression, as read count per gene, was calculated using htseq
(v0.6.1p1) with default settings based on Ensembl v71 annota-
tion (corresponding to GENCODE v16) [21]. Gene counts were
normalised for GC content and gene length using the R package
cqn [22]. To exclude samplemix-ups, genotypes of 50 frequently
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occurring SNPs were called and compared with available geno-
type data. Sex was confirmed using gene expression of XIST
(chromosome X) and UTY (chromosome Y). Genes with ≤5
reads in ≥75% of the samples were discarded, as were genes
on the sex chromosomes. The final dataset comprised gene
expression levels of 391 individuals comprising 15,564 autoso-
mal genes.

Models with blood HbA1c HbA1c was measured using a
turbidimetric inhibition immunoassay (Cobas c501, Roche
Diagnostics, Mannheim, Germany). All analyses between
gene expression and HbA1c at baseline, and 1 or 2 year
follow-up were performed using generalised linear models,
implemented in the R package edgeR [23]. HbA1c levels were
log transformed as they were not normally distributed. The
model was adjusted for sex, age, BMI, blood cell composition,
metformin dose, sulfonylurea and/or insulin use and technical
covariates, as these are factors known to influence gene
expression levels and/or HbA1c levels.

In an extended model, additional factors were added
including systolic blood pressure, education level (low, mid,
high) and smoking status (non-smoker, former, current).
Blood cell counts were determined with a UniCel DxH 800
Coulter Cellular Analysis System (Beckman Coulter) and the
FC 500 Series system (Beckman Coulter, Brea, CA, USA).
Blood cell fractions were also estimated using the R package
wbccPredictor [24]. The imputed cell fractions showed a
strong correlation with the measured counts (ESM Fig. 1).
Blood cell fractions are strongly correlated with each other;
therefore, five principal components were included in the
model to adjust for the effect of blood cell composition. To
investigate the effect of baseline HbA1c on the association at
follow-up, we also added baseline HbA1c to the model for the
1 and 2 follow-up in addition to all the other covariates
described above. The effect of medication was assessed by
performing the model on metformin users only (n = 252),
excluding individuals with other forms of (mono/dual) thera-
py. In the case of missing data or loss at follow-up, the models
were performed only with individuals with complete data. The
p values for all generalised linear models of the 15,564 genes
(15,564 tests) were false-discovery rate (FDR) adjusted using
the Benjamini–Hochberg procedure as implemented in the
p.adjust function in R. A FDR-adjusted p value below 0.05
was considered significant.

Co-expression networks Co-expressed genes (with expres-
sion profiles showing a high correlation, suggesting a func-
tional relationship between the genes) were identified using
mixed-model co-expression on log-transformed reads per ki-
lobase million (RPKM) values [25]. Mixed-model co-expres-
sion is an R-implemented method that uses Pearson correla-
tion while adjusting for confounding, thereby excluding spu-
rious correlations. The method is described in more detail in

Furlotte et al. [25]. Genes were considered co-expressed when
the absolute correlation was higher than 0.3 with a p
value ≤ 0.001. Clusters within the gene co-expression network
(i.e. those with a high number of correlated genes) were iden-
tified using Cytoscape v3.4.0. Co-expression of genes was
plotted using the R package edgebundleR [26]. Graphs were
produced using the R package ggplot2 [27].

Gene set enrichment Genes within the three co-expressed
clusters were tested for over-representation in gene sets using
the default settings of REACTOME (V61) [28]. Pathways
with pFDR < 0.05 were considered significant.

eQTLs A public expression Quantitative Trait Locus (eQTL)
database was used (www.genenetwork.nl/biosqtlbrowser/,
accessed July 2017) to identify SNPs that influence gene
expression [29]. Genes were mapped to associating SNP
based on the Ensembl gene ID. Diabetes-related traits were
obtained from the genome-wide association study (GWAS)
catalogue and the MAGIC GWAS [30]. The Venn diagram
was created using jVenn.

External data Genes identified at baseline were investigated
in the target tissues muscle and pancreas, from two external
datasets. The first external dataset consisted of gene expres-
sion levels in pancreatic islets measured with the Affymetrix
Human Gene 1.0 ST Array (Gene Expression Omnibus
[GEO] accession number GSE54279), comprising 113 indi-
viduals with HbA1c in the range 23.5–85.8 mmol/mol (4.3–
10%) and median 39.9 mmol/mol (5.8%) [31].

The second external dataset consisted of gene expression
levels in muscle, accessed with the Affymetrix GeneChip
Human Genome U133 Plus 2.0 Array (GEO accession num-
ber GSE18732), comprising 115 individuals with HbA1c

range 33.3–136.1 mmol/mol (5.2–14.6%) and median
39.9 mmol/mol (5.8%) with and without type 2 diabetes [32].

Both datasets included expression at the transcript level
rather than the gene level. To make the datasets comparable,
the average expression of all transcripts of a gene was calcu-
lated for 99 genes that could be retrieved in both datasets (out
of the 220 genes, 45%) that were present in both datasets.
HbA1c levels were converted to International Federation of
Clinical Chemistry and Laboratory Medicine (IFCC) HbA1c

levels and log transformed. The associations between HbA1c

levels and gene expression in muscle and pancreatic islets
were determined using Pearson correlation.

Results

Individual characteristics at baseline and follow-up are given
in Table 1. Individuals selected for RNA sequencing were a
representative subset of all individuals with blood RNA, the
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entire cohort and the biobank subset, as their characteristics
were very similar (ESM Table 1). Diabetes duration was one
of the selection criteria and this was shorter in the group of
individuals with RNA sequencing compared with the entire
cohort and the biobank subset (ESM Table 1).

Gene expression levels were tested for an association with
HbA1c, a measure of glucose levels over the preceding weeks,
at baseline and 1 and 2 year follow-up (Fig. 1a). Of the 15,564
genes that passed quality control, 220 genes (1.4%) were as-
sociated (pFDR ≤ 0.05) with HbA1c levels at baseline with
adjustment for covariates. Of these, the majority (183 genes)
were upregulated (fold change, 1.05–4.80; ESM Table 2) and
37 genes were downregulated (fold change, 1.05–3.34).
Blood cell fractions were both measured and estimated based
on the gene expression data, but there was no difference in the
magnitude of the effect with measurements vs estimates (ESM
Fig. 2a). In addition, the observed associations were not
driven by differences in medication usage as: (1) all genes
showed the same direction of effect in a stratified analysis with
metformin users only (n = 252, ESM Fig. 2b); and (2) the
effect sizes (log fold change) of the models with and without
adjustment for medicine usage were highly correlated (ESM
Fig. 2c). To investigate the effect of other factors, such as
lifestyle, we extended our model to include systolic blood
pressure, education and smoking, but found no difference in
the direction or magnitude of effect (r = 0.98, p < 0.00001).

The number of genes associated with HbA1c at baseline was
considerably higher than at 1 and 2 year follow-up, with 25
genes at 1 year (23 genes upregulated, fold change = 1.17–
3.10; two genes downregulated, fold change = 2.33–2.90;

ESM Table 2) and nine genes at 2 year follow-up (six genes
upregulated, fold change = 1.86–2.69; three genes downregu-
lated, fold change = 1.39–3.88). To identify genes that showed
a consistent association with HbA1c over time, the overlap
between the three gene sets was determined (baseline and 1
and 2 years; Fig. 1b). Five genes (2.3%) were found to overlap
at baseline and both follow-up time points (Fig. 1b,d); 18 addi-
tional genes were identified as overlapping at baseline and
1 year follow-up, with no genes overlapping between 1 and
2 year follow-up (Fig. 1b).

As HbA1c levels across years are correlated, particularly
between successive years (baseline against 1 year, r = 0.76,
and 1 year vs 2 year, r = 0.74; ESM Fig. 3), we next ran the
model while adjusting for baseline HbA1c. Of the 25 genes
identified, only one remained significantly associated after
1 year follow-up (NDN, fold change = −2.11, pFDR = 0.02)
and two genes after 2 year follow-up (FAM132B [also known
asERFE], fold change = −1.90, pFDR = 0.03, andMTND1P23,
fold change = −3.55, pFDR = 0.04). Moreover, the fold change
in the association of genes identified at baseline was largely
the same over time without adjustment for baseline HbA1c,
but strongly decreased when baseline HbA1c was included in
the model (Fig. 1c).

HbA1c-associated genes are involved in the cell cycle and
immune response Next, we explored the genes associated
with HbA1c at baseline in more detail. First, we investigated
whether HbA1c levels causally influence gene expression
using Mendelian randomisation. For this, we selected 188
SNPs associated with HbA1c in healthy control individuals

Table 1 Individual characteris-
tics of the sample of the DCS
cohort

Characteristic Baseline
(n = 391)

1 year follow-up
(n = 372)

2 year follow-up
(n = 362)

Sex (% female) 41.2 41.7 41.2

Metformin use (%) 89.5 87.9 89.2

SU use (%) 11.8 15.9 20.4

Insulin use (%) 12.0 12.6 14.9

Age (years) 64.0 (57.3, 70.0) 64.9 (58.3, 71.0) 66.4 (59.4, 72.0)

Diabetes duration (years) 3.7 (2.1, 5.5) 4.6 (3.1, 6.5) 5.6 (4.2, 7.7)

Glucose (mmol/l) 7.9 (7.2, 9.1) 8.0 (7.0, 9.2) 8.1 (7.2, 9.5)

HbA1c (%) 6.4 (6.0, 7.0) 6.5 (6.1, 7.2) 6.6 (6.2, 7.3)

HbA1c (mmol/mol) 47 (42, 53) 48 (44, 55) 49 (44, 56)

BMI (kg/m2) 29.5 (26.4, 33.0) 29.3 (26.4, 32.7) 29.2 (26.4, 33.0)

LDL-cholesterol (mmol/l) 2.3 (1.8, 2.9) 2.2 (1.8, 2.8) 2.2 (1.7, 2.9)

HDL-cholesterol (mmol/l) 1.2 (1.0, 1.5) 1.2 (1.0, 1.5) 1.2 (1.0, 1.4)

Triacylglycerol (mmol/l) 1.6 (1.1, 2.2) 1.5 (1.1, 2.2) 1.6 (1.1, 2.2)

Systolic BP (mmHg) 134 (124, 152) 138 (126, 151) 136 (126, 151)

Diastolic BP (mmHg) 80 (75, 85) 80 (74, 85) 79 (74, 85)

eGFR (ml/min) 85.8 (73.4, 98.5) 84.4 (71.3, 95.9) 83.7 (70.8, 95.2)

Data are presented as median (first quartile, third quartile) unless otherwise indicated

SU, sulfonylurea
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from the MAGIC GWAS to serve as genetic instruments [30].
However, when we tested the validity of these genetic instru-
ments in our own data, they did not pass the quality threshold
(F value > 10), excluding the possibility of Mendelian
randomisation.

Next, we investigatedwhether identified genes were causally
related to the development of type 2 diabetes. Using a public
blood eQTL database [29], we identified the 230 strongest as-
sociating SNPs near 124 genes (out of the 220). We compared
these SNPs to known diabetes-related traits, but found no over-
lap (ESMFig. 4). This suggests that there is no relation between
known variants involved in type 2 diabetes development and
the genes found in this study.

However, several of the 220 genes were found to have a
known link to diabetes, including CD38, INSR and PC. CD38
(fold change = 1.44) is a surface marker associated with insu-
lin resistance in diabetes via the release of inflammatory
cytokines [33]. INSR (fold change = −1.13, pFDR = 0.03)
encodes the insulin receptor important for insulin action. PC
(fold change = 1.30, pFDR = 5.1 × 10−3) encodes pyruvate
carboxylase, which is involved in gluconeogenesis. To more
systematically explore the relation between the genes identi-
fied, we determined whether they are co-expressed, i.e.
whether they are correlated, suggesting a functional link
(mixed-model co-expression, |r| ≥ 0.3, p ≤ 0.001). Co-
expression was found for 99 genes (Fig. 2a), among which

three clusters could be distinguished: the largest comprising
55 genes; a second smaller cluster comprising 42 genes; and
the third consisting of two genes. The largest cluster showed
strong over-representation in cell cycle (checkpoint) pathways
(33 genes [15.0%], pFDR = 1.33 × 10−14; Fig. 2 and Table 2).
The second cluster showed over-representation for comple-
ment system activation and B cell signalling pathway (29
genes [13.2%], pFDR = 1.11 × 10−16; Fig. 2 and Table 2), in
line with the large number of genes identified that encode
immunoglobulin constituents. The third cluster comprised
KLF10 and KLF11, which both link to cell cycle regulation.

Expression of a subset of genes in muscle and pancreas
also associates with HbA1c To investigate whether the asso-
ciation with HbA1c extends to target tissues, we expanded the
analysis to two external datasets of muscle (n = 115,
GSE18732) and pancreatic islets (n = 113, GSE54279) [31,
32]. Of the 220 genes identified at baseline, 99 (45%) were
identified in both microarray-based datasets. Of the 37 genes
downregulated in blood, several showed a correlation with
HbA1c in the same direction (r < −0.2, p ≤ 0.05; Fig. 3a,b)
and PAQR7 in both target tissues (rmuscle = −0.31,
rpancreas = −0.30, p < 0.002; Fig. 3a,b,i–k). Among the 220
upregulated genes in blood, five genes were also found to be
upregulated in target tissues: IGHG1, TMEM181 and RNF19A
in the muscle and SMC4 andMCM7 in the pancreas (Fig. 3a,b).
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Fig. 1 Association between gene expression levels and HbA1c levels in
whole blood. (a) Experimental setup. (b) Overlap between genes identi-
fied as associated with HbA1c at baseline, and at 1 and 2 year follow-up.
(c, d) Density of fold change at baseline (pink), 1 year (light blue) and
2 year (dark blue) follow-up of genes associated with baseline HbA1c

levels without adjustment for baseline HbA1c (c) or with adjustment for

baseline HbA1c (d). (e–i) Scatterplot of gene expression levels against
baseline HbA1c for the five genes identified at each of the follow-up time
points: MTND1P23 (e), IGHV4–59 (f), IGHGP (g), IGHG4 (h) and
IGHG1 (i). Data presented are unadjusted for covariates in the model.
To convert values for HbA1c in mmol/mol into %,multiply by 0.0915 and
add 2.15. GPR125 is also known as ADGRA3
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Seven genes showed a correlation in the opposite direction
(r < −0.2, p ≤ 0.02): ATAD2, CCNF, NUF2, KIF2C, LMAN1,
GLDC and RACGAP1 (Fig. 3a,b). Plots for the five genes
showing the strongest correlations in muscle or pancreas are
shown in Fig. 3c–q. For muscle, we combined data for individ-
uals with normal glucose tolerance, impaired glucose tolerance
and type 2 diabetes. However, when the analysis was per-
formed on individuals with type 2 diabetes only (n = 44,
39%), similar correlations were observed compared with the
analysis in all individuals (r = 0.54, p = 4.9 × 10−9).

Discussion

In the current study, we investigated the relationship between
gene expression levels in whole blood and HbA1c in 391 in-
dividuals. The highest number of genes were associated with
baseline HbA1c; much lower numbers were associated with
HbA1c level at follow-up. The direction of the effect was very
similar across the different time points, although a decrease in
effect size was observed with time. After adjustment for base-
line HbA1c, most correlations of genes with follow-up HbA1c

Table 2 Enrichment of co-
expressed gene clusters in
REACTOME pathways

Cluster Pathway
identifier

Pathway name No.
genes

No.
total

PFDR

1 R-HSA-173623 Classic antibody-mediated complement
activation

29 98 1.11 × 10−16

R-HSA-2029481 FCGR activation 29 104 1.11 × 10−16

R-HSA-5690714 CD22-mediated BCR regulation 22 73 1.11 × 10−16

R-HSA-2029485 Role of phospholipids in phagocytosis 29 130 1.11 × 10−16

R-HSA-983695 Antigen activates BCR leading to generation
of second messengers

22 110 1.11 × 10−16

2 R-HSA-69278 Cell cycle, mitotic 33 533 1.33 × 10−14

R-HSA-1640170 Cell cycle 36 645 1.33 × 10−14

R-HSA-453279 Mitotic G1–G1/S phases 14 147 7.13 × 10−13

R-HSA-69620 Cell cycle checkpoints 15 188 7.13 × 10−13

R-HSA-69206 G1/S transition 13 123 1.22 × 10−12

R-HSA-68877 Mitotic prometaphase 13 136 3.57 × 10−12

FCGR, Fc-gamma receptors; BCR, B cell receptor; no. number; Cluster 1 corresponds to blue genes in Fig. 2;
Cluster 2 corresponds to green genes in Fig. 2
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lost significance. Genes identified at baseline were enriched
for cell cycle and immune pathways.

Baseline HbA1c was associated with 220 genes, but the
number of genes strongly decreased over time, with only nine
genes associated with HbA1c at 2 years follow-up. This sug-
gests that some genes reflect the HbA1c levels at baseline, but
not necessarily future HbA1c. The diminishing relationship was
also seen when the genes associated at baseline with HbA1c

were followed across time, as fold change of association de-
creased with time. Moreover, the association with follow-up
HbA1c was driven largely by the correlation between HbA1c

levels across time; when adjusted for baseline HbA1c, the num-
ber of genes associated with follow-up HbA1c further declined.

Our results give insight into the groups of genes that show
aberrant expression with different HbA1c levels. We identified
three gene clusters as being differentially expressed: one that
linked to cell cycle processes, one to immune response and the
third consisted of only KLF10 and KLF11. KLF11 has been
described in type 2 diabetes physiology, but has shown mixed
results in GWAS [34–36]. A role for the immune system in
type 2 diabetes and obesity is increasingly recognised [37, 38],
making blood—in addition to target tissues like pancreas and
muscle—a relevant tissue to investigate in diabetes. In healthy

individuals, exposure to an OGTT leads to changes in expres-
sion of immune-related genes over a 2 h period [39].
Moreover, several blood cell types have been suggested to
play a role in, for example, insulin resistance [37, 40, 41].
However, the link between the immune system and type 2
diabetes remains complex and controversial. For example, in
a Mendelian randomisation study no causal links were found
between IL-1 receptor antagonist (IL-1Ra) or C-reactive pro-
tein (CRP) and diabetes-related outcomes [42, 43], while IL-
1Ra is associated with 2 h glucose and insulin sensitivity [44].

In case–control studies, it has been shown that type 2 diabe-
tes is associated with altered expression of inflammatory and
cell cycle genes [12, 14]. Our study suggests that, in addition to
having diabetes, the level of glycaemic control is associated
with immune- and cell cycle-related alterations in gene expres-
sion. Changes in gene expression in other tissues, such as
lymph vessels, have also been identified and point to a role of
the immune system in diabetes [45]. We also identified genes
that were not only associated in blood with HbA1c but also in
themuscle and pancreas. Of the genes inversely associated with
HbA1c levels, PAQR7 was downregulated in all three tissues.
PAQR7 is a progesterone receptor that, when activated, pro-
motes glucose tolerance in the mouse GLUTag cell line [46].
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In addition to the immune-related genes, we identified
genes related to cell cycle and its checkpoints. Six of the cell
cycle genes were also confirmed to have a relationship with
HbA1c in the pancreas in the same (i.e. SMC4 andMCM7) or
opposite direction (ATAD2, CCNF, NUF2 and KIF2C).
Dysregulation of the cell cycle in pancreas and kidneys has
been described and linked to a higher risk of developing type 2
diabetes and complications in rodents [47–49]. In humans,
SNPs near the cell cycle genes CDC123 and CDKN2A have
been found to be associated with increased susceptibility to
type 2 diabetes. This suggests that high blood glucose is
associated with dysregulation of the cell cycle not only in
the pancreas, but also in other tissues.

A limitation of our study is the relatively heterogeneous
population of individuals with type 2 diabetes. Individuals have
different diabetes histories and use a variety of drugs, including
drugs to control their glucose levels. Yet the heterogeneity of
individuals is also part of the question, and a biomarker should
be independent of a confounding effect of treatment. As the
majority of individuals were taking metformin and this drug
is dose-dependently associated with HbA1c [50], we adjusted
for the metformin dosage and for use of sulfonylureas and
insulin (in addition to classic confounders such as sex, age
and BMI). However, while we did not observe an effect for
differences in, for example, glucose-lowering medication, edu-
cation, smoking, blood pressure or BMI, it remains a limitation
of our study that there may be other factors related to, for
instance, lifestyle and concurrent diseases that may have
affected HbA1c and gene expression. A second limitation is that
we did not replicate our results in an independent cohort; to
confirm the validity of our results, we replicated our findings
in two different target tissues (pancreatic islets and muscle).

In our study, we measured the gene expression profile of
whole blood.While this is the tissue one would want to identify
a biomarker in, it should not be confounded by the composition
of blood cell subtypes. To adjust for this confounding effect, we
estimated and measured the fraction of the five major cell types
in blood and adjusted for these cell fractions in the model.

Altogether, while gene expression levels are interesting
blood biomarkers for poor glycaemic control, our study sug-
gests that gene expression levels in whole blood reflect current
glycaemic state, but are not necessarily predictive of future
glycaemic state. The genes identified provide an important
insight into the link between poor glycaemic control and al-
tered expression of cell cycle and immune pathways in blood,
which, for some genes, also extends to the target tissues mus-
cle and pancreas.
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