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Abstract: Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease characterized by het-
erotopic ossification (HO). It is caused by mutations in the Activin receptor type 1 (ACVR1) gene,
resulting in enhanced responsiveness to ligands, specifically to Activin-A. Though it has been shown
that capturing Activin-A protects against heterotopic ossification in animal models, the exact under-
lying mechanisms at the gene expression level causing ACVR1 R206H-mediated ossifications and
progression are thus far unknown. We investigated the early transcriptomic changes induced by
Activin-A of healthy control and patient-derived periodontal ligament fibroblasts (PLF) isolated from
extracted teeth by RNA sequencing analysis. To study early differences in response to Activin-A, pe-
riodontal ligament fibroblasts from six control teeth and from six FOP patient teeth were cultured for
24 h without and with 50 ng/mL Activin-A and analyzed with RNA sequencing. Pathway analysis
on genes upregulated by Activin-A in FOP cells showed an association with pathways involved in,
among others, Activin, TGFβ, and BMP signaling. Differential gene expression induced by Activin-A
was exclusively seen in the FOP cells. Median centered supervised gene expression analysis showed
distinct clusters of up- and downregulated genes in the FOP cultures after stimulation with Activin-A.
The upregulated genes with high fold changes like SHOC2, TTC1, PAPSS2, DOCK7, and LOX are
all associated with bone metabolism. Our open-ended approach to investigating the early effect of
Activin-A on gene expression in control and FOP PLF shows that the molecule exclusively induces
differential gene expression in FOP cells and not in control cells.

Keywords: fibrodysplasia ossificans progressiva; Activin-A; periodontal ligament fibroblasts; RNA
sequencing; heterotopic ossification

1. Introduction

Fibrodysplasia ossificans progressiva (FOP) is a rare, one-in-two-million-occurring, auto-
somal dominant genetic disease characterized by progressive heterotopic bone formation
(HO) where especially muscles, tendons, and ligaments are converted into bone [1–3]. The
clinical manifestation of the heterotopic ossification is rather diverse. HO can occur after a
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flare up, during inflammation, after injury, or even spontaneously. In some patients, HO is
more progressive than in others, and episodes exist with complete absence of HO forma-
tion [4]. Because of these differences in clinical manifestations, cell biological approaches
that can shed light on the biochemical events that precede heterotopic ossification are of
great importance as a prelude to therapy. Over the past decade, our understanding of the
pathogenesis of the disease has improved considerably. The causative mutation in the gene
encoding the Activin Receptor Type I receptor (ACVR1) was identified by the group of
Shore et al. [5]. The most frequent R206H mutation changes an arginine to a histidine in the
glycine–serine rich cytoplasmic domain of this bone morphogenetic protein (BMP) type I
receptor [2,5]. This amino acid change makes the receptor more sensitive to BMP signaling
and simultaneously results in decreased binding of the receptor’s natural inhibitor, FKBP12,
likely resulting in leaky signaling of the receptor through SMADs, the main signal trans-
ducers of the transforming growth factor-beta (TGF-β) family [6–10]. More recently, the
discovery by two independent groups that Activin-A can also function as an activator of the
mutated ACVR1 [11,12] has given great impulse to the FOP research community, since now
it is conceivable to specifically prevent heterotopic bone formation by inhibiting Activin-A.
Under normal circumstances, Activin-A signals mainly via ACVR1B receptor complexes
through SMAD 2/3 phosphorylation [13–15]. Upon binding to ACVR1, it normally inhibits
SMAD 1/5/9 signaling and subsequent osteogenic differentiation [16], but, as mentioned
before, when Activin-A binds to the mutated ACVR1, it activates SMAD1/5/9 phosphory-
lation and subsequent osteogenic differentiation [11,12]. This was demonstrated by Hatsell
et al. in their FOP mouse model, but also in the currently conducted LUMINA-I trial investi-
gating the Activin-A blocking antibody Garetosmab, which has revealed promising results
in the prevention of newly formed HO [17,18]. Even though it has by now been clearly
shown that capturing Activin-A protects against heterotopic ossification, this knowledge is
mainly limited to mouse models for FOP. Moreover, the exact underlying mechanism at
the gene expression level causing ACVR1 R206H-mediated ossification and progression of
the disease is unknown. Thus, knowledge of the downstream transcriptomic changes after
Activin-A-ACVR1 R206H binding using open-ended approaches such as RNA sequencing
is warranted.

One of the challenges that FOP research faces is the lack of primary cells from patients,
since surgical removal of the heterotopic bone, as a potential source of bone-forming
osteoblasts, often results in the appearance of new heterotopic bone formation. Several
alternative sources for bone-forming cells are currently being investigated as a tool for
the unraveling of the FOP HO mechanism. Dermal fibroblasts have been demonstrated
by Micha et al. to be a source of cells with osteoblastic properties. They showed that the
FOP-derived fibroblasts have a high osteogenic potential [19]. Another source of human
primary cells are cells isolated from extracted teeth. Many FOP patients develop a locked
jaw, making oral care extremely difficult. In some cases, tooth extraction is the only dental
treatment possible. Additionally, teeth are sometimes extracted to provide extra space in
the mouth. There have been no reports of HO in the sockets at the extraction sites. Some
groups have made use of the cells from the discarded primary teeth (SHED cells) [7,20],
showing higher osteogenic differentiation in the FOP cells compared to control cells. Our
group has recently shown that periodontal ligament cells obtained from FOP patients after
tooth extraction show both osteogenic- as well as osteoclastogenic-inducing capacities,
as do PLF from healthy individuals [21–24]. Here, we used these cells to investigate the
Activin-A-induced transcriptome differences between controls and FOP patients. This
study explored for the first time RNA sequencing as an open-ended approach for non-
biased identification of potential new differences in early gene expression between control
and FOP fibroblasts, directly following Activin-A binding. Given the unique signaling
by Activin-A via the mutated ACVR-1, as described in mouse models [11] and iPS cell
approaches [12], we hypothesize that Activin-A will induce early transcriptomic differences
specifically in primary cells from FOP patients.
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2. Materials and Methods
2.1. Periodontal Ligament Fibroblasts

Periodontal ligament cells were retrieved from 6 extracted teeth from 5 FOP patients
(3 female patients age 26, 28, and 46 years and 2 male patients, age 21 and 69 years) and
6 healthy control donors (4 females age 19–26 years, 2 males, age 23–27 years). All FOP
patients carried the classical R206H mutation. Written informed consent was obtained from
each participant, and researchers were not able to trace the origin of the material to any
individual, as required by Dutch law. Extractions were performed at the Department of
Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Location VUmc.
No differences in bone healing between the FOP patients and the control group following
tooth removal were reported. Periodontal ligament cells were isolated, as previously
described [21,25,26]. Shortly, the periodontal ligament was scraped off the middle one
third of the root, and cells were allowed to grow out of the tissue by culturing them in
culture medium, which consisted of Dulbecco’s modified eagle medium (DMEM, Gibco
BRL, Paisley, Scotland) supplemented with 10% FCS (HyClone, Logan, UT, USA) and 1%
antibiotics: 100 U/mL penicillin, 100 µg/mL streptomycin, and 250 ng/mL amphotericin
B (Sigma, St. Louis, MO, USA). Cells were propagated, and 3rd passage cells were frozen
and stored in liquid nitrogen. All experiments were performed with 4th passage cells.

2.2. Cell Culturing and RNA Isolation

Cells were first allowed to attach by overnight culturing in 6-well plates at a density
of 3.2 × 104 cells/cm2 (3 × 105 cells/well) in DMEM + 10% FCS + 1% antibiotics. The
following day media were replaced with media without or with 50 ng/mL Activin-A
(Sigma, St Louis, MO, USA). After 24 h, RNA was isolated using the RNeasy Mini kit
(Qiagen, Hilden, Germany) following the manufacturer’s instructions. RNA yield and
quality were measured with the Synergy multi-mode reader (Biotek, Winooski, VT, USA).

2.3. RNA Sequencing

Sample and library preparation was performed using the NEXTflex Rapid Directional
mRNA-Seq kit (Bioo Scientific, Austin, TX, USA). Single-end 75 bp RNA sequencing was
performed on the Illumina NextSeq500 (Illumina, San Diego, CA, USA) at the Wilhelmina
Children’s Hospital in Utrecht. Reads were aligned to the human reference genome GRCh37
using STAR version 2.4.2a. Picard’s AddOrReplaceReadGroups (v1.98) was used to add
read groups to the BAM files, which were sorted with Sambamba v0.4.5, and transcript
abundances were quantified with HTSeq-count version 0.6.1p1 using the union mode.
Subsequently, reads per kilobase million reads sequenced (RPKMs) were calculated with
edgeR’s RPKM function. Differentially expressed genes were identified using the DESeq2
package with standard settings. In the first analysis, the genes with a non-false discovery
rate corrected p value of <0.01 were used for the pathway and GO analysis. To finally assess
on the single gene level which genes were statistically significant differentially expressed,
we performed a false discovery correction of 10%, generating p adjusted (p(adj)) values.
For these p(adj) values, we used a cutoff of 0.1 (p(adj) < 0.1) to determine significance.

2.4. Pathway and Gene Enrichment Analysis

Pathway analysis and functional enrichment analysis were performed on the differen-
tially expressed genes with p < 0.01, using the GeneMania application version 2017-03-14
at www.genemania.org [27–29] using standard settings. The program builds a network
based on the interactions between the input genes (e.g., genes upregulated by Avtivin-A
in the FOP cells) and adds genes that are relevant to that network. The pathway maps
shown in Figure 2 are an adjustment to the enrichment map consolidated pathways de-
scribed by Merico et al. [30]. Boxed genes are genes from the input list; the other genes
are relevant genes added by GeneMania. Size of the nodes is dependent on the number
of interactions that gene has with the network. The gene enrichment analysis was per-

www.genemania.org
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formed with the ToppGene suite application ToppFun version September 2020 [31,32] using
standard settings.

3. Results
3.1. Different Donors Cluster Together

To compare the transcription profiles of the different donors, we first performed
non-supervised Principal Component Analysis (PCA) of all samples that passed the QC
filters. Two control libraries and one FOP (Control 2 + Activin-A, Control 5–Activin-
A and FOP 5–Activin-A) library did not pass the Quality Control filter, and therefore
these samples were excluded from further statistical analysis. Figure 1A depicts the inter-
donor variability between the samples. Figure 1B depicts the variability induced by the
experimental conditions (e.g., without or with Activin-A). This analysis shows that the
two culture conditions of one donor tend to cluster together, indicating that the variability
between donors is higher than the variability induced by the Activin-A treatment.

3.2. Activin-A Activates Distinct Pathways in FOP Cells

We next investigated which genes were influenced by Activin-A in the PLF cells.
Using the non-FDR corrected gene expression data with p < 0.01, we found that 131 genes
were differentially expressed in FOP cells (69 upregulated and 62 downregulated genes) as
compared to 46 genes in the control cells (18 upregulated and 28 downregulated genes),
see supplementary Tables S1 and S2. Network analysis using the GeneMania application
showed that the genes upregulated by Activin-A in the FOP cells show an association
with different pathways involved in, among others, TGF-beta signaling (MSigDB M2642)
(Figure 2A), BMP receptor signaling (MsigDB M181) (Figure 2B), and signaling by Ac-
tivin (Mysid M26965) (Figure 2C) showing Activin-A indeed induces its known signaling
pathways also in this primary cell system. Additionally, functional enrichment analysis
performed in GeneMania showed gene ontology terms enriched among the upregulated
genes. These GO terms are involved in Activin, TGF-beta, and BMP signaling; the top 10 of
the associated GO terms are listed in Table 1. None of these pathways or GO terms were
found to be associated to Activin-A stimulation in the control cells (data not shown),
indicating that Activin-A signals distinctly differently in the FOP cells as compared to
in the control cells. Gene enrichment analysis on the FOP cells using ToppGene Suite
showed that the differentially expressed genes in biological domain molecular functio, are
mainly associated with gene ontology (GO) terms linked to cytoskeletal and actin binding
(Table 2). In the biological domain biological process, the GO terms are linked to cell–cell
and cell–substrate junctions and responses to injury and endogenous stimuli (Table 3). In
the cellular component domain, the genes are associated with focal adhesions and cell–cell
and cell–substrate junctions (Table 4). The observed association with the collagen gene
family is possibly also related to bone metabolism (Table 5). None of these associations
were found in the control cells.
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Figure 1. Donors group together. (A) PCA plot depicting inter-donor variability; (B) PCA plot depicting inter-experimental
variability. Non-supervised principal component analysis shows that donors tend to group together, indicating that the
variation between the control and FOP samples is larger than the comparison between control and experimental conditions.
Inter-donor variability is shown in Figure 1A; each control and each FOP sample is represented by two same-colored
dots, one indicating the control condition and one indicating the experimental condition (+Activin-A). Inter-experimental
variability is shown in Figure 1B, each experimental condition is depicted by dots of the same color. Act:C = Control
samples with Activin-A, ACT:F = FOP samples with Activin-A, Con: C = Control samples without Activin-A, Con:F = FOP
samples without Activin-A. Samples Control 2 with Activin-A, Control 5 without Activin-A, and FOP 5 without Activin-A
did not pass the QC filters and were not used in these and subsequent analysis.
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performed with GeneMania (genemania.org, accessed on 21 September 2020). 

Figures are adjustments of the enrichment map of consolidated pathways TGF-beta 
signaling (MSigDB M2642) (Figure 2A), BMP receptor signaling (MSigDB M181) (Figure 
2B), and signaling by Activin (MSigDB M26965) (Figure 2C), Boxed genes are genes from 
the input list; the other genes are relevant genes added by GeneMania. Size of the nodes 
is dependent on the number of interactions that gene has with the network. 

Table 1. GO terms associated with upregulated genes by Activin-A in FOP cells. 

ID Function FDR B&H Coverage 
GO:0032924 Activin receptor signaling pathway 8.03 × 10−17 12/31 
GO:0007178 transmembrane receptor protein/threonine kinase signaling pathway 4.06 × 10−14 18/218 
GO:0005072* transforming growth factor beta receptor, cytoplasmic mediator activity 2.25 × 10−11 7/10 

GO:0090092 
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GO:0030509 BMP signaling pathway 2.19 × 10−10 11/79 
GO:0032925 regulation of activin receptor signaling pathway 2.90 × 10−9 7/18 

Figure 2. TGF-beta, BMP, and Activin signaling pathways are associated with upregulated genes by Activin-A. (A) Association
with TGF-beta signaling pathway; (B) Association with BMP receptor signaling pathway. (C) Association with Activin signaling
pathway. Pathway analysis on non-FDR-corrected differentially expressed genes with p < 0.01 performed with GeneMania
(genemania.org, accessed on 21 September 2020). Figures are adjustments of the enrichment map of consolidated pathways
TGF-beta signaling (MSigDB M2642) (A), BMP receptor signaling (MSigDB M181) (B), and signaling by Activin (MSigDB M26965)
(C), Boxed genes are genes from the input list; the other genes are relevant genes added by GeneMania. Size of the nodes is
dependent on the number of interactions that gene has with the network.

Table 1. GO terms associated with upregulated genes by Activin-A in FOP cells.

ID Function FDR B&H Coverage

GO:0032924 Activin receptor signaling pathway 8.03 × 10−17 12/31
GO:0007178 transmembrane receptor protein/threonine kinase signaling pathway 4.06 × 10−14 18/218

GO:0005072 * transforming growth factor beta receptor, cytoplasmic mediator activity 2.25 × 10−11 7/10

GO:0090092 regulation of transmembrane receptor protein/threonine kinase
signaling pathway 1.25 × 10−10 13/132

GO:0030509 BMP signaling pathway 2.19 × 10−10 11/79
GO:0032925 regulation of activin receptor signaling pathway 2.90 × 10−9 7/18
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Table 1. Cont.

ID Function FDR B&H Coverage

GO:0090100 positive regulation of transmembrane receptor protein/threonine
kinase signaling pathway 2.53 × 10−7 8/53

GO:0060393 regulation of pathway-restricted SMAD protein phosphorylation 4.32 × 10−7 7/35
GO:0048185 Activin binding 7.92 × 10−7 5/10
GO:0060389 pathway-restricted SMAD protein phosphorylation 7.92 × 10−7 7/39

Top 10 GO terms enriched among the upregulated genes. Non-supervised functional enrichment analysis of GO terms associated with
differentially upregulated genes by Activin-A in the FOP cells with p < 0.01 using GeneMania with default Benjamini and Hochberg’s False
Discovery Rate (FDR B&H) settings. * GO:0005072 is replaced by GO:0000981.

Table 2. Molecular functions regulated by Activin-A in FOP cells.

ID Name FDR B&H Genes from Input Genes in Annotation

GO:0044877 protein-containing complex binding 3.60 × 10−3 23 1356
GO:0008092 cytoskeletal protein binding 4.73 × 10−2 17 1061

actin filament binding
GO:0051015 cell adhesion molecule binding 4.73 × 10−2 7 215

actin binding
GO:0050839 protein-containing complex binding 4.73 × 10−2 11 525
GO:0003779 cytoskeletal protein binding 4.73 × 10−2 10 451

actin filament binding

Non-supervised gene enrichment analysis of molecular function associated differentially expressed genes in the FOP cells with p < 0.01
using ToppGene suite using a Benjamini and Hochberg’s False Discovery Rate (FDR B&H) of 5%.

Table 3. Biological processes regulated by Activin-A in FOP cells.

ID Name FDR B&H Genes from Input Genes in Annotation

GO:0034330 cell junction organization 2.48 × 10−2 10 309
GO:0034329 cell junction assembly 2.48 × 10−2 9 245
GO:0007044 cell-substrate junction assembly 2.48 × 10−2 6 103
GO:0009611 response to wounding 2.48 × 10−2 15 756
GO:0009719 response to endogenous stimulus 2.80 × 10−2 25 1834
GO:0071495 cellular response to endogenous stimulus 3.54 × 10−2 22 1541

GO:0045196 establishment or maintenance of
neuroblast polarity 3.54 × 10−2 2 3

GO:0045200 establishment of neuroblast polarity 3.54 × 10−2 2 3

Non-supervised gene enrichment analysis of biological processes associated differentially expressed genes in the FOP cells with p < 0.01
using ToppGene suite using a Benjamini and Hochberg’s False Discovery Rate (FDR B&H) of 5%.

Table 4. Cellular components regulated by Activin-A in FOP cells.

ID Name FDR B&H Genes from Input Genes in Annotation

GO:0005925 focal adhesion 6.75 × 10−8 17 411
GO:0030055 cell–substrate junction 6.75 × 10−8 17 421
GO:0005912 adherens junction 4.90 × 10−7 18 560
GO:0070161 anchoring junction 5.55 × 10−7 18 575
GO:0030054 cell junction 5.46 × 10−7 24 1352
GO:0030424 axon 1.88 × 10−7 14 817
GO:0030426 growth cone 2.16 × 10−2 7 226
GO:0030427 site of polarized growth 2.16 × 10−2 7 231
GO:0030496 midbody 2.82 × 10−2 6 177
GO:0005911 cell–cell junction 3.08 × 10−2 10 506
GO:0150034 distal axon 3.62 × 10−2 9 432

Non-supervised gene enrichment analysis of differentially expressed genes in the FOP cells with p < 0.01 using ToppGene suite using a
Benjamini and Hochberg’s False Discovery Rate (FDR B&H) of 5%.
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Table 5. Gene families regulated by Activin-A in FOP cells.

ID Name FDR B&H Genes from Input Genes in Annotation

939 Plakins 2.73 × 10−2 2 8
490 Collagens 2.73 × 10−2 3 46
634 Low density lipoprotein receptors 2.73 × 10−2 2 13

1149 NADH:ubiquinone oxidoreductase core subunits 2.73 × 10−2 2 14
596 Armadillo repeat containing|Importins 3.63 × 10−2 2 18

Non-supervised gene enrichment analysis of differentially expressed genes in the FOP cells with p < 0.01 using ToppGene suite using a
Benjamini and Hochberg’s False Discovery Rate (FDR B&H) of 5%.

3.3. Activin-A Induces Differential Gene Expression in FOP Cells

Subsequent analysis on individual gene expression level was performed only on
samples with both libraries, without and with Activin-A, per donor and corrected for donor
variances in the final model. A false discovery correction of 10% was performed generating
p(adj) values. Under these criteria, the final analyses were performed on 4 control samples
and 5 FOP samples. To graphically display the differential gene expression induced by
Activin-A, MA plots were generated where the Log2 fold change (M) was plotted against
the average expression across the samples (A) using a p-adjusted cut-off value of 0.1. No
differentially expressed genes were observed in control samples (Figure 3A). Interestingly,
using these same settings, differential gene expression was observed in the FOP samples,
shown in the MA plot as red dots (Figure 3B).

3.4. Differential Gene Expression Is Induced by Activin-A in FOP Cells

Having demonstrated that Activin-A alters gene expression only in FOP cells, we
next investigated which specific genes were differentially expressed under the influence
of Activin-A in these cells. Median-centered supervised gene expression analysis showed
distinct clusters of up- and downregulated genes in the untreated (−ActA) and Activin-
A treated (+ActA) groups (Figure 3C). From this analysis, using a false detection rate
(FDR) of 10%, a list of the highest up- and downregulated genes was constructed as
shown in Table 6. The genes that are more than two-fold upregulated by Activin-A in the
FOP cells are somehow involved in bone metabolism. For instance, SHOC2 is a positive
regulator of the MAP/ERK pathway, possibly involved in pathologies with bone and
skeletal defects [33,34]. TTC1 activates RAS signaling, which regulates osteoprogenitor
cell proliferation [35,36]. PAPSS2 is needed for sulfation of extracellular matrix molecules
during bone development; deficiencies result in osteochondrodysplasias [37,38]. DOCK7 is
a guanidine nucleotide exchange factor. Misty mice, with a loss of function mutation in
this gene, show uncoupled bone remodeling and reduced bone formation probably linked
to reduced brown fat production [39,40]. LOX is involved in the crosslinking of collagen
and elastin and knock-out mice show decreased osteoblast differentiation [41,42]. A link to
more direct Activin-A signaling can be found in RAB27B, which is involved in pituitary
hormone secretion like FSH, the secretion of which is stimulated by Activin-A [43,44].
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Figure 3. Activin-A induces differential gene expression only in FOP cells. Graphic display of differential gene expression
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Differentially expressed genes (p(adj) < 0.1) depicted as red dots. (A) MA plot of control samples shows no differentially
expressed genes. (B) MA plot of FOP shows some differential gene expression induced by Activin-A, n = 4 for control and
n = 5 for FOP samples. (C) Gene expression heatmap from median centered supervised gene expression analysis of the
differentially expressed genes in the FOP cells. (p(adj) < 0.1, Z score is Log2 scale), n = 5.

Table 6. (A) Upregulated genes by Activin-A in FOP cells. (B) Downregulated genes by Activin-A in
FOP cells.

A

ENSEMBL ID Gene Name Fold Change p(adj)-Value

ENSG00000041353 RAB27B 2.50 0.032
ENSG00000253626 EIF5AL1 2.50 0.098
ENSG00000108061 SHOC2 2.49 0.052
ENSG00000113312 TTC1 2.40 0.099
ENSG00000198682 PAPSS2 2.28 0.032
ENSG00000116641 DOCK7 2.23 0.098
ENSG00000134108 ARL8B 1.88 0.098
ENSG00000089693 MLF2 1.66 0.050
ENSG00000113083 LOX 1.47 0.060
ENSG00000198899 MT-ATP6 1.31 0.032
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Table 6. Cont.

B

ENSEMBL ID Gene Name Fold Change p(adj)-Value

ENSG00000163359 COL6A3 −1.25 0.074
ENSG00000178209 PLEC −1.50 0.009
ENSG00000010278 CD9 −1.80 0.100
ENSG00000140264 SERF2 −1.85 0.089
ENSG00000160007 ARHGAP35 −1.90 0.032
ENSG00000117713 ARID1A −2.42 0.098
ENSG00000117408 IPO13 −3.19 0.060
ENSG00000135966 TGFBRAP1 −3.90 0.021

Top 18 up and downregulated genes using supervised gene expression analysis. p(adj)-value are the p-values
adjusted for an FDR of 10%.

Except for COL6A3, the 1.3- to 3.9-fold downregulated genes seem to be less clearly
associated with muscle and bone metabolism. COL6A3, which encodes for the alpha3
chain of collagen typeVI, is associated with the extracellular matrix of skeletal muscle, skin,
and cartilage [45,46]. PLEC is an important molecule in muscle fibers [47]. CD9 is involved
in cell fusion processes, as seen in osteoclast formation and muscle cell fusion [48,49].
TGFBRAP1, finally, is a Smad4 chaperone that associates with inactive TGFβ and Activin
receptor complexes [50].

4. Discussion

The discovery of the causative mutation in the ACVR1 gene resulting in the altered
responsiveness of this BMP receptor [5] has paved the way to investigating the exact
mechanism that underlies the heterotopic ossification seen in FOP. Especially during the
last decade, great progress has been made, and the discovery of Activin-A as an activator
of the mutated ACVR1 receptor [11,12] has stimulated the scientific FOP community to
explore new therapeutic avenues. Here, we investigated the effect on early transcriptome
differences induced by Activin-A in our recently established human primary FOP cell
culturing system using periodontal ligament fibroblasts [21].

Our data show that indeed the mutated ACVR1 receptor has an altered responsiveness
to Activin-A as compared to the non-mutated receptor. Initial gene expression analysis
without false discovery rate correction showed that, when using a p-value cutoff of p < 0.01,
131 genes are differentially expressed in FOP cells as compared to 46 genes in the con-
trol cells. Pathway analysis of these genes using GeneMania shows an association with
pathways involved in Activin, BMP, and TGFβ signaling only in the FOP cells. FOP is an
autosomal dominant genetic disease, meaning that both the non-mutated as well as the
mutated gene is being expressed, which has been demonstrated in FOP derived SHED cells
and monocytes [22,51]. The association with the Activin and TGFβ signaling pathways
indicates signaling via the non-mutated receptor, whereas the BMP signaling via SMAD1,
5, and 9 shows that the altered responsiveness of the mutated receptor to Activin-A as
described by other groups [20,52] is also present in the periodontal ligament fibroblasts
from FOP patients. Additionally, the gene enrichment analysis on these genes show a
stronger reaction of the mutated receptor when exposed to Activin-A. There is an associa-
tion with different GO terms, whereas no such association could be found in the control
cells. HO in FOP often occurs after inflammation or injury [3], a process that is possibly
mediated by an increase in Activin-A [3,11]. The altered gene expression profile seen here
in the FOP cells after short exposure to Activin-A shows an association with GO terms
GO 0009611 (response to wounding), GO:0009719 (response to endogenous stimulus), and
GO:0071495 (cellular response to endogenous stimulus). This probably reflects the altered
reaction described in FOP after injury or infection [53–55]. Under normal circumstances
when Activin-A binds to the non-mutated ACVR1 receptor, it acts as an inhibitor of the
canonical BMP-mediated signaling via ACVR1 and subsequent osteogenic differentiation.
In FOP, however, the mutation results in activation of the mutated ACVR1 upon Activin-A
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binding, resulting in enhanced osteogenic differentiation. The association with the Activin-
A-induced upregulated genes in the FOP cells with the collagen gene family observed
in this study probably reflects the osteogenesis process taking place as a response to this
altered signaling of the mutated ACVR1.

The inter-donor variability has a higher impact on the difference in overall expression
compared to the experimental condition (e.g., without or with Activin-A), as described in
Figure 1, suggesting that differences on the single-gene-expression level induced by Activin-
A treatment could be difficult to detect above the “noise” induced by the above-mentioned
inter-donor variability. Surprisingly, despite this fact, supervised gene expression analysis
using a false discovery rate of 10% showed that differential expression was seen, but only
in the FOP cells. Some of the genes that showed a higher than two-fold upregulation in the
FOP cells under the influence of Activin-A can be related to bone metabolism or heterotopic
ossification and can thus be regarded as potential targets to inhibit HO in FOP. These genes
will be discussed next in the context of the process of endochondral bone formation.

Heterotopic ossification, as seen in FOP, is believed to be formed via endochondral
bone formation where chondrogenic differentiation of stem cells results in cartilage forma-
tion that is subsequently converted to bone. We find an increase in DOCK7 expression in
the FOP cells, possibly resulting in increased chondrogenesis and osteogenesis, ultimately
resulting in enhanced HO. The mutated ACVR1 has been shown to play an important role
in enhanced chondrogenic differentiation in a gain-of-function mouse model [56]. In mouse
models of HO, one of the early steps in the formation of HO is the biogenesis of brown adi-
pose tissue (BAT) [57]. This BAT creates a hypoxic environment that is suggested to induce
chondrogenic differentiation of mesenchymal stem cells [58] and subsequent endochondral
bone formation. Misty mice lack BAT and show decreased osteogenesis and increased
osteoclast activity [40]. This uncoupling of bone formation and bone resorption is the
result of a loss of function mutation in the DOCK7 gene [39,59]. Additionally, the 2.3-fold
upregulation of PAPPS2 observed in the FOP cells here may relate to the increased early
stage endochondral ossification. The cartilage matrix that is produced during the early
stages of endochondral ossification contains high concentrations of sulfate groups bound
to several extracellular matrix proteins. PAPPS2 is a phosphosulphate phosphatase that
catalyzes the sulfation of these extracellular matrix proteins [38]. Expression of PAPPS2 is
partly regulated by TGFβ [60]. Mutations in PAPPS2 result in different types of osteochon-
drodysplasias, examples of which are described by Wang et al. [37]. The upregulation of
TTC1 expression suggests that the RAS signaling pathway, which belongs to the osteogenic
differentiation program, is activated. Osteogenic differentiation may take place via different
pathways. One of the signaling pathways involved in osteogenic differentiation is the RAS
signaling [61,62]. TTC1 is an adaptor protein that binds to Gα proteins, resulting in an
interaction with small GTPase RAS that activates the RAS signaling pathway [35,36]. Simi-
larly, the higher expression of SHOC2 seen here is an implication of increased RAS-MAPK
signaling. SHOC2 is a leucine-rich repeat scaffolding protein that is involved in the RAS-
MAPK signaling [33,34]. Mutations in this gene are linked to RASopathies like Mazzaniti
syndrome and Noonan syndrome [63,64], both of which result in reduced postnatal growth.
At a later stage of endochondral bone formation, the formation of collagen cross links is an
important step that determines the integrity and strength of the bone. One of the enzymes
involved in the formation of these crosslinks is Lysil Oxidase (LOX), a copper-dependent
enzyme that catalyzes the deamination of lysine and hydroxylisine residues, thereby initi-
ating the crosslinking of collagen molecules [41,42,65,66]. LOX-deficient mice show lower
osteoblast differentiation and activity [42], and lower numbers of crosslinks are related
to bone fragility in, for instance, aging and osteoporosis [65]. Interestingly, expression of
LOX is partly regulated by the hypoxia-induced transcription factor HIF1 [67,68]. HIF1
is, together with Activin-A, upregulated during injury [20,53], providing potential links
between hypoxia, FOP, and LOX expression.

Taken together, the upregulated genes described above play a role in either the early,
chondrogenic, stages of endochondral bone formation (DOCK7 and PAPPS2) or the later,
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more osteogenic, stages of this process (TTC1, SHOC2. and LOX). This indicates that the
altered responsiveness of the mutated ACVR1 gene to Activin-A could induce heterotopic
bone formation. Further studies to elucidate the exact role of athe bove-described genes in
HO in FOP cells need to be performed. In these studies, blocking experiments with, for
instance, follistatin will be included. We and other groups have previously shown that
follistatin indeed inhibits the effect of Activin-A on other FOP derived primary cells [20,22].
We did not include such blocking experiments in this RNA sequencing experiment, because
we first wanted to investigate which genes were influenced in the first place. Addition-
ally, the subsequent data and statistical analysis where we would compare four different
experimental conditions would become rather complex.

As discussed above, the up- and downregulated genes were identified only in FOP
patient-derived cells. Nevertheless, and strikingly, the fold-change was relatively small,
between 1.3- and 2.5-fold changes in the upregulated genes and 1.3- and 3.9-fold changes
in the downregulated group. This suggests that the advanced heterotopic ossification
in FOP could be the result of additive gene expression effects, rather than being caused
by one dominantly over- or under expressed gene. QPCR experiments did not confirm
the statistical differences, as seen in the RNAsequencing data analysis. This could be
due to the fact that, as stated in Figure 1, the inter-donor variability is even higher than
the differences induced by the experimental condition (e.g., addition of Activin-A), but
probably more importantly, the fact that the average expression differences induced by
Activin-A were below two-fold. In our experience, it is hard to reach statistical differences
in QPCR experiments on human material with a low n as used here. In this paper, we
use the periodontal ligament fibroblast as a cell biological tool to study early effects of
Activin-A on osteogenic differentiation. Different groups have previously shown the
osteoblast-like properties of these cells, making them a relatively accessible source of cells
to study osteogenic differentiation in, for instance, FOP research [69–72]. However, as
previously stated, following tooth extraction, no HO formation in the socket has been
reported. This may imply that the periodontal ligament fibroblasts exhibit HO formation
inhibiting properties, which may be the underlying reason for the relatively small fold
changes witnessed, though an alternative possibility is the short incubation time with
Activin-A. Longer exposure to the molecule might reveal more and possibly stronger
effects on the transcriptome, resulting, when using osteogenic medium, in Activin-A-
enhanced osteogenesis, as recently shown with tooth-associated cells by Wang et al. [20].
Gene enrichment and pathway analysis did not identify many or any new pathways
associated to Activin-A signaling through the mutated receptor. This may be due to
the relatively small number of differentially expressed genes, which does not allow for
extensive pathway analysis. Nevertheless, when applying supervised gene expression
analysis with a false discovery rate of 10%, our data show that Activin-A only induces
differential gene expression in the FOP cells bearing the R206H mutation. The highest
upregulated genes have all been linked to bone metabolism, and some even to heterotopic
ossification in general, but none of these genes have, to our knowledge, previously been
described to be linked to HO in FOP. The differential expression of genes somehow involved
in bone formation by Activin-A exclusively in cells carrying the FOP mutation is in strong
support of the therapeutic treatment rationale of inhibiting Activin-A. This study adds
evidence to the notion that when disarming Activin-A’s malevolent effect, heterotopic bone
formation can be tempered in the lives of people who suffer the daily anxiety of progressive
ectopic bone formation with all its disabling consequences.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9060629/s1, Table S1A: Non-FDR corrected Upregulated genes by Activin-A
in Control cells; Table S1B: Non-FDR corrected Downregulated genes by Activin-A in Control cells;
Table S2A: Non-FDR corrected Upregulated genes by Activin-A in FOP cells; Table S2B: Non-FDR
corrected Downregulated genes by Activin-A in FOP cells.
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