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SUMMARY

The concordance probability is a widely used measure to assess discrimination of prognostic models with
binary and survival endpoints. We formally define the concordance probability for a prognostic model of
the absolute risk of an event of interest in the presence of competing risks and relate it to recently proposed
time-dependent area under the receiver operating characteristic curve measures. For right-censored data,
we investigate inverse probability of censoring weighted (IPCW) estimates of a truncated concordance
index based on a working model for the censoring distribution. We demonstrate consistency and asymptotic
normality of the IPCW estimate if the working model is correctly specified and derive an explicit formula
for the asymptotic variance under independent censoring. The small sample properties of the estimator are
assessed in a simulation study also against misspecification of the working model. We further illustrate
the methods by computing the concordance probability for a prognostic model of coronary heart disease
(CHD) events in the presence of the competing risk of non-CHD death.
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1. INTRODUCTION

Clinical decision-making and cost-effectiveness analyses often rely on prognostic models that quantify a
subject’s absolute risk of a disease event of interest over time. However, study populations increasingly
consist of elderly individuals with varying degrees of co-morbidity who are likely to experience one of
several disease endpoints other than the endpoint of main interest (Koller, Raatz and others, 2012). As
an example, prediction of coronary heart disease (CHD) events in elderly subjects is complicated by
the fact that subjects may die from other causes prior to the observation of the disease event of interest
(Wolbers and others, 2009; Koller, Leening and others, 2012).

It is well known that the naive application of standard survival analysis leads to bias and
risk over-estimation if competing risks are present and that specialized methods are needed
(Grunkemeier and others, 2007; Putter and others, 2007). A key quantity for medical decision-making
in the presence of competing risks is the absolute risk of the event of interest over time as quantified by its
(covariate-dependent) cumulative incidence function (Gail and Pfeiffer, 2005; Wolbers and others, 2009).
Thus, regression models are particularly attractive when they provide subject-specific estimates of the
absolute risks based on a set of covariates (Fine and Gray, 1999; Gerds and others, 2012).

Several measures for quantifying the accuracy of prognostic models have been adapted from the
standard survival setting with only one failure cause to competing risks. Measures include predic-
tion error curves (Schoop and others, 2011), time-dependent sensitivity, specificity, and area under the
receiver operating characteristic (ROC) curve (AUC) (Saha and Heagerty, 2010), and reclassification
methods (Wolbers and others, 2009; Koller, Leening and others, 2012). For survival data, the concordance
index (Harrell and others, 1982) is a frequently reported measure of discrimination and we have pre-
viously presented a simple adaptation of Harrell’s concordance estimator to the competing risks setting
(Wolbers and others, 2009).

In the present paper, we motivate and formally define a cause-specific concordance index in the pres-
ence of competing risks. Notably, the proposed concordance index depends only on the cumulative inci-
dence function of the event of interest. We clarify the relation of the concordance to time-dependent AUC
measures and discuss a possible alternative definition. We then study estimation of a truncated concor-
dance index in the presence of right-censoring. We introduce an inverse probability of censoring weighted
(IPCW) estimator and demonstrate its consistency and asymptotic normality if the working model for the
censoring distribution is correctly specified. The empirical bias and mean-square error as well as coverage
of asymptotic and bootstrap confidence intervals are examined in a simulation study. Finally, we illustrate
the methods for an example of coronary risk prediction in older woman using data from the Rotterdam
Study (Hofman and others, 2011).

2. DEFINITION OF CONCORDANCE

2.1 Definition for a simple prognostic score without censoring

Competing risks data without censoring are given by pairs (T, D) of data where T is the time to the event
and D is the event type. For the purpose of discussing the definition and estimation of the cause-specific
concordance index it is sufficient to assume that there are only two competing events. Thus, for simplicity
of presentation we let D = 1 denote the event of interest and D = 2 the occurrence of any competing event.
In applications, it may be important to model all competing events separately.

The concordance index is defined for any prognostic score M̃(X) depending on baseline variables X
which can be used to order subjects with respect to the risk of an event of type 1. For example, M̃(X) could
be a single baseline marker or the linear predictor of a regression model for the event of interest derived
on a training data set. We assume that higher values of M̃(X) are associated with higher risks of the event
of interest.
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To motivate our definition with an example, assume that T is the time to death and that a specific
treatment were available which prevented death due to the event of interest (D = 1) but would not affect
death from other causes (D = 2). The immediate benefit from such a treatment would be greatest for
subject with a high risk of dying from the event of interest early, less for individuals dying from the event
of interest late, and negligible for subjects with a low risk of experiencing the event of interest at all
(i.e. those likely to die from competing causes). Consequently, for a random pair of subjects (Xi , Ti , Di )

and (X j , Tj , D j ), the first subject would be in greater need of treatment than the second subject if they
experienced the event of interest (Di = 1) and the second subject experienced the event of interest later
(Ti < Tj and D j = 1) or not at all (D j = 2). In these cases, the ranking of the risk marker for the pair of
subjects is concordant if M̃(Xi ) > M̃(X j ). Pairs of individuals where both experience the competing event
are not comparable as neither of them would be in need of treatment.

To formally define the concordance probability for the event of interest, we assume an independent test
set of i.i.d. realizations of (Xi , Ti , Di ) from the joint distribution of the marker and the competing risks
outcome and define

C̃1 = P(M̃(Xi ) > M̃(X j ) | Di = 1 and (Ti < Tj or D j = 2)), (2.1)

for any randomly chosen pair of subjects i, j from this distribution. The concordance probability for the
competing event, C̃2, is defined analogously.

Define the cumulative incidence function for the event of interest as F1(t | X) = P(T � t, D = 1 | X)

and the improper random variable T ∗ as T ∗ = I (D = 1) · T + I (D �= 1) · ∞. T ∗ has a distribution func-
tion equal to F1(t | X) for t < ∞ and a point mass of 1 − F1(∞ | X) at ∞ (Fine and Gray, 1999). As an
associate editor pointed out, C̃1 can be written in terms of T ∗ leading essentially to the standard definition
of concordance for survival data: C̃1 = P(M̃(Xi ) > M̃(X j ) | T ∗

1 < T ∗
j ).

We also note that I ({s < Tj or D j = 2}) = 1 − I ({Tj � s, D j = 1}). Thus,

P{Di = 1 and (Ti < Tj or D j = 2)} = EXi ,X j

∫ ∞

0
(1 − F1(s | X j )) dF1(s | Xi ),

and we can rewrite C̃1 as

C̃1 = EXi ,X j (I (M̃(Xi ) > M̃(X j ))
∫ ∞

0 (1 − F1(s | X j )) dF1(s | Xi ))

EXi ,X j (
∫ ∞

0 (1 − F1(s | X j )) dF1(s | Xi ))
. (2.2)

According to (2.2), the cause-specific concordance for event 1 depends on F1 and the marginal distribution
of the marker but not on the cumulative incidence function F2 of the competing event. This feature is not
obvious in formula (2.1) but desirable when the aim is to assess the discriminative ability of a marker for F1.

In Appendix B of supplementary material available at Biostatistics online, we illustrate the properties
of the concordance probability for a single marker and competing risks outcomes simulated according to
cause-specific proportional hazards models with constant baseline hazards. The illustrations suggest that
to achieve a high concordance, the marker needs to be strongly associated with an increased cause-specific
hazard of the event of interest but only weakly or, even better, reversely associated with the cause-specific
hazard of the competing event. This can be explained by the fact that the overall effect of a covariate on
the cumulative incidence function of the event of interest depends on both cause-specific baseline hazards
and both cause-specific hazard ratios (Beyersmann and others, 2007; Koller, Raatz and others, 2012).

Finally, it is important to discuss modifications of definition (2.1) for tied data (Yan and Greene, 2008).
For example, it may happen that Xi = X j . Depending on the application, it may then be sensible to count

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt059
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such pairs with a weight of 1
2 :

C̃1 = P(M̃(Xi ) > M̃(X j ) | Di = 1 and (Ti < Tj or D j = 2))

+ 1
2 P(M̃(Xi ) = M̃(X j ) | Di = 1 and (Ti < Tj or D j = 2)).

To simplify notation, we use definition (2.1) as the basis for our further developments.

2.2 An alternative definition of concordance and relation to time-dependent AUC measures

We motivated our definition of concordance with a specific treatment for the event of interest which does
not affect the competing event. In this situation, a case subject (Ti , Di ) with Di = 1 has a larger immediate
benefit from treatment than a control subject (Tj , D j ) with Tj > Ti or D j = 2 as subjects experiencing
a competing event have no benefit from treatment at all. However, in other situations, the treatment may
affect both event types and then subjects (Ti , Di ) with Di = 1 and (Tj , D j ) with Tj � Ti and D j = 2 would
not be comparable. Here, it would be more relevant to distinguish cases (Ti , Di ) with Di = 1 from those
who haven not had any event up to that time point, i.e. those with Tj > Ti . This leads to an alternative
definition of concordance:

C̃∗
1 = P(M̃(Xi ) > M̃(X j ) | Di = 1 and Ti < Tj )

= EXi ,X j (I (M̃(Xi ) > M̃(X j ))
∫ ∞

0 (1 − F1(s | X j ) − F2(s | X j )) dF1(s | Xi ))

EXi ,X j (
∫ ∞

0 (1 − F1(s | X j ) − F2(s | X j )) dF1(s | Xi ))
.

Of note, C̃∗
1 also depends on the cumulative incidence function of the competing event F2. Thus, it might

be less suitable if the main goal is to assess the relevance of a marker or a prognostic model for predicting
the absolute risk of the event of interest alone, and we will not pursue it further. However, C̃∗

1 could be
valuable for assessing joint models for the cumulative incidence of both competing events.

The proposed concordance measures are closely related to measures of the time-dependent AUC
which have been proposed to assess discrimination for competing risks data at a fixed time point s
(Saha and Heagerty, 2010; Zheng and others, 2012; Blanche and others, 2013). We review these measures
in Appendix C of supplementary material available at Biostatistics online, and show that C̃1 can be written
as a weighted average of one proposed time-dependent AUC measure over time. This is in analogy with a
similar result for survival analysis without competing risks (Heagerty and Zheng, 2005) and supports the
use of C̃1 as a global summary measure of performance.

2.3 Assessing prediction models in right-censored data

We now generalize the concordance index defined in Section 2.1 in two ways. First, we replace the simple
prognostic score M̃(X) by a more general prediction model M(t, X) for the risk of event 1 until time t , i.e.
estimates of F1(t | X) = P(T � t, D = 1 | X), which can be obtained by combining cause-specific hazards
models, by fitting a Fine and Gray regression model or by direct binomial regression (Fine and Gray, 1999;
Scheike and others, 2008). Secondly, to include the typical application where individuals have a limited
duration of follow-up we define a truncated version of the concordance index. Following Uno and others
(2011) and Gerds and others (2013), we define

C1(t) := P(M(t, Xi ) > M(t, X j ) | Di = 1 and Ti � t and (Ti < Tj or D j = 2)). (2.3)

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt059
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The parameter C1(t) quantifies the ability of the model to correctly rank events of interest up to time t
and to discriminate them from competing events. The truncation is necessary to enable estimation of C1(t)
from right-censored data with a limited follow-up duration.

As before, we can write the truncated concordance (2.2) as a functional of F1 and of the marginal
distribution of the predictor values of a pair of individuals (Xi , X j ): If we introduce notation for the order
of the predicted risks at time t for a pair of individuals,

Qi j (t) = I {M(t, Xi ) > M(t, X j )},
then

C1(t) = EXi ,X j (Qi j (t)
∫ t

0 (1 − F1(s | X j )) dF1(s | Xi ))

EXi ,X j (
∫ t

0 (1 − F1(s | X j )) dF1(s | Xi ))
. (2.4)

3. ESTIMATION OF CONCORDANCE IN THE PRESENCE OF RIGHT-CENSORING

3.1 Right-censored data

To indicate the end of follow-up for subject i, we introduce a subject-specific censoring time Ci . Thus,
we observe only (Xi , T̃i , D̃i ,�i ) (i = 1 · · · n) where T̃i = min(Ti , Ci ), �i = I {Ti � Ci } and D̃i = �i Di .
We also use the following notation:

Ñ 1
i (t) = I {T̃i � t, D̃i = 1}, N 1

i (t) = I {Ti � t, Di = 1},
Ñ 2

i (t) = I {T̃i � t, D̃i = 2}, N 2
i (t) = I {Ti � t, Di = 2},

Ãi j = I {T̃i < T̃ j }, Ai j = I {Ti < Tj },
B̃i j = I {T̃i � T̃ j and D̃ j = 2}, Bi j = I {Ti � Tj and D j = 2}.

The event-free survival probability conditional on the covariate Xi is then given by

S(t | Xi ) = 1 − E(N 1
i (t) | Xi ) − E(N 2

i (t) | Xi ) = 1 − F1(t | Xi ) − F2(t | Xi ).

We allow the censoring distribution to depend on the covariates Xi but assume throughout that Ci is con-
ditionally independent of (Ti , Di ) given Xi . This implies

P(T̃i > t | Xi ) = G(t | Xi )S(t | Xi ), (3.1)

where G(t | Xi ) = P(Ci > t | Xi ) is the conditional probability of being uncensored at time t . Noting
G(t − |Xi ) = P(Ci � t | Xi ) we also have for k = 1, 2:

E(Ñ k
i (t) | Xi ) = E(�i N k

i (t) | Xi ) =
∫ t

0
E(Ci � s | Xi ) E(dN k

i (s) | Xi ) =
∫ t

0
G(s − |Xi ) dFk(s | Xi ).

(3.2)

3.2 Ignoring non-evaluable pairs

An asymptotically biased estimate of C1(t) is given by

Ĉ1,naive(t) =
∑n

i=1

∑n
j=1( Ãi j + B̃i j )Qi j (t)Ñ 1

i (t)∑n
i=1

∑n
j=1( Ãi j + B̃i j )Ñ 1

i (t)
,
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where Qi j (t) = I {M(t, Xi ) > M(t, X j )} is an indicator for the order of predicted risks at time t . This can
be interpreted as the proportion of definitely concordant pairs amongst evaluable pairs, i.e. pairs for which
one individual experiences the event of interest and concordance can be decided based on the observed
(potentially censored) data.

This estimate evaluated at the time t corresponding to the maximum follow-up duration is a direct
adaptation of Harrel’s C for survival data (Harrell and others, 1982) to the competing risks context and has
been previously defined in Wolbers and others (2009). While simple, a major problem of this estimator is
that by ignoring non-evaluable pairs without any correction, bias is introduced. It is well known that Harrel’s
C depends on the censoring distribution (Uno and others, 2011; Gerds and others, 2013) and Ĉ1,naive(t)
shares this limitation.

3.3 IPCW estimate

We derive an IPCW estimate for C1(t) based on a working model G for G. Let τ be a time point where
inf x G(τ | x) > ε > 0. We assume that the model G is correctly specified and that for all t < τ there
exists a uniformly consistent, weakly asymptotically linear estimator sequence Ĝ with influence function
IFG(t, x; T̃i , D̃i , Xi ). This implies (Bickel and others, 1993):

√
n{Ĝ(t | x) − G(t | x)} = 1√

n

n∑
i=1

IFG(t, x; T̃i , D̃i , Xi ) + op(1). (3.3)

For example, we can specify a Cox regression model and use the estimate

Ĝ(t | Xi ) = exp

{
−

∫ t

0
exp(γ̂ T Xi )�̂0(s) ds

}
,

where �̂0 is the Breslow estimator of the baseline hazard function and γ̂ the maximum partial likelihood
estimator of the regression coefficients. If the censoring is conditionally independent of the competing
risks outcome given the predictors and the Cox model correctly specified, then condition (3.3) is satisfied
(see, e.g. Cheng and others, 1998). As an alternative, we could assume that the censoring is independent
of the competing risks outcome and the predictors. If this assumption is correct, then the Kaplan–Meier
estimate for the censoring distribution satisfies (3.3).

Based on Ĝ, we construct the weights

Ŵi j,1 = Ĝ(T̃i − |Xi )Ĝ(T̃i |X j ) and Ŵi j,2 = Ĝ(T̃i − |Xi )Ĝ(T̃ j − |X j ),

and define an IPCW estimate of C1(t):

Ĉ1(t) =
∑n

i=1

∑n
j=1( Ãi j Ŵ

−1
i j,1 + B̃i j Ŵ

−1
i j,2)Qi j (t)Ñ 1

i (t)∑n
i=1

∑n
j=1( Ãi j Ŵ

−1
i j,1 + B̃i j Ŵ

−1
i j,2)Ñ 1

i (t)
. (3.4)

LEMMA 3.1 If the working model is correctly specified and Ĝ is a consistent estimator of G, then Ĉ1(t) is
a consistent estimator of C1(t) for all t < τ . Furthermore, if (3.3) is satisfied, then Ĉ1(t) is asymptotically
linear and

√
n{Ĉ1(t) − C1(t)} converges in distribution to a normal random variable with mean 0.

A proof of the lemma is given in Appendix D of supplementary material available at Biostatistics
online. For the case of independent censoring, supplementary material available at Biostatistics online also

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt059
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt059
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt059
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presents an explicit formula for the influence function and a consistent estimator of the asymptotic vari-
ance. The proposed concordance estimator has been implemented with the function cindex of the R
package pec (Mogensen and others, 2012). Example code is provided in Appendix A of supplementary
material available at Biostatistics online.

4. SIMULATION STUDY

A simulation study was performed to assess bias and root mean square error (RMSE) of the proposed
IPCW estimator and coverage of asymptotic and bootstrap confidence intervals. Simulations were for a
single prognostic marker X and a parameter-free time-independent model M(X, t) = X . The covariate X
was simulated to follow a standard normal distribution.

Conditional on X , uncensored competing risks data (T, D) was assumed to follow cause-specific
Cox-exponential models (Bender and others, 2006):

Event 1: λ1(t | X) = λ01 exp(β1 X),

Event 2: λ2(t | X) = λ02 exp(β2 X).
(4.1)

This was implemented by simulating latent exponentially distributed event times T1 and T2 and then set-
ting T = min(T1, T2) and D = 1 for T1 < T2 and D = 2 for T1 � T2. We consider two competing risks
scenarios. In scenario CR1, we set λ01(t) = 1, λ02(t) = 2, and β1 = β2 = 1. In scenario CR2, we set
λ01(t) = 1, λ02(t) = 0.5, and β1 = 2, β2 = −1. As truncation time points, we used the median and the 75%
quantile q75 of the marginal distribution of T . The truncation time points and corresponding true values
of C1(t) were determined by simulation based on a large uncensored data set of size 100 000.

Censoring times C were drawn under a third Cox-exponential model:

λcens(t | X) = λ0,cens · exp(γ1 X).

The observed time T̃ was obtained as the minimum of T and C and considered as right-censored if
C < T . We repeated the simulations for independent censoring (γ1 = 0) and covariate-dependent censor-
ing (γ1 = 1). For each truncation time point t, the values of λ0,cens were found by simulation such that
the expected proportion of right-censored event times amongst observations with T̃ < t was 25%, 50%,
or 75%, respectively. For each of the scenarios, we report results for sample sizes 250 and 1000 averaged
across 1000 simulated data sets.

In each simulated data set, we computed three different estimators of C1(t): the naive estimator
Ĉ1,naive(t), the IPCW estimator based on the marginal Kaplan–Meier estimate of the censoring distribution
Ĉ1,KM(t) and the IPCW estimator based on a Cox regression model for the censoring distribution Ĉ1,Cox(t).

Bias and root mean squared errors for t chosen as the 75%-quantile of T are shown in Table 1. Table 2
shows the associated coverage of percentile bootstrap (all estimators) and asymptotic Wald-type confi-
dence intervals (Ĉ1,KM(t) only) and contrasts empirical standard errors with average bootstrap and asymp-
totic standard errors for the estimate Ĉ1,KM(t). Corresponding results for t chosen as the median are shown
in Appendix E of supplementary material available at Biostatistics online.

Based on Tables 1 and 2, we draw the following conclusions.

(1) The naive estimator Ĉ1,naive(t) can be biased and this can lead to insufficient coverage.
(2) The ICPW estimator Ĉ1,KM(t) can also be biased if the censoring depends on the covariate. In some

cases, Ĉ1,Cox(t) has a smaller bias but for high rates of censoring it can do worse than Ĉ1,KM(t) even
though the censoring depends on the covariate.

http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt059
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt059
http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxt059
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Table 1. Average bias and RMSE for 3 different estimators of C1(t) averaged over 1000 data sets simu-
lated under the 2 scenarios CR1 and CR2 for varying sample size N , independent (γ1 = 0), or covariate-

dependent censoring (γ1 = 1), respectively, and varying censoring rates

N γ1 Censored before t (%) Ĉ1,naive(t) Ĉ1,KM(t) Ĉ1,Cox(t)

CR1: C1(t) = 62.1%, β1 = 1, β2 = 1, λ01 = 1, λ02 = 2, t = q75

250 0 25 1.5 (4.0) 0.1 (3.7) 0.1 (3.7)
250 0 50 3.9 (5.9) 0.3 (4.8) 0.3 (4.8)
250 0 75 8.1 (10.0) 2.6 (10.1) 2.8 (9.5)
250 1 25 1.0 (4.0) −0.1 (3.9) 0.1 (3.9)
250 1 50 2.6 (5.4) −0.3 (4.9) −0.2 (5.8)
250 1 75 5.1 (8.4) 0.2 (8.2) −1.9 (10.3)
1000 0 25 1.4 (2.3) 0.0 (1.9) 0.0 (1.9)
1000 0 50 3.8 (4.3) 0.0 (2.3) 0.0 (2.3)
1000 0 75 7.9 (8.4) 1.0 (6.4) 1.2 (6.0)
1000 1 25 0.9 (2.1) −0.3 (1.9) 0.0 (2.0)
1000 1 50 2.5 (3.3) −0.5 (2.3) −0.1 (3.4)
1000 1 75 5.0 (5.9) −0.4 (3.8) −1.8 (7.5)

CR2: C1(t) = 85.0%, β1 = 2, β2 = −1, λ01 = 1, λ02 = 0.5, t = q75

250 0 25 0.7 (1.8) 0.1 (1.7) 0.1 (1.7)
250 0 50 1.5 (2.4) 0.2 (2.1) 0.2 (2.1)
250 0 75 2.8 (3.7) 0.7 (4.1) 0.8 (3.7)
250 1 25 0.6 (1.9) 0.0 (1.8) 0.1 (1.7)
250 1 50 1.3 (2.5) −0.1 (2.3) 0.1 (2.3)
250 1 75 2.2 (3.8) −0.2 (4.4) −0.3 (5.6)
1000 0 25 0.7 (1.1) 0.0 (0.8) 0.0 (0.8)
1000 0 50 1.4 (1.7) 0.0 (1.0) 0.0 (1.0)
1000 0 75 2.7 (3.0) 0.2 (2.8) 0.3 (2.5)
1000 1 25 0.6 (1.0) 0.0 (0.9) 0.1 (0.8)
1000 1 50 1.3 (1.6) −0.2 (1.2) 0.1 (1.1)
1000 1 75 2.1 (2.6) −0.7 (2.4) −0.7 (4.3)

t was chosen as the 75-quantile of the marginal time-to-event distribution. Column 3 shows the expected proportion of right-censored
event times amongst observations with T̃ < t . Columns 4–6 show average bias (RMSE) for the three estimators (multiplied by 100
for easier readability).

(3) Coverage of confidence intervals for Ĉ1,KM(t) and Ĉ1,Cox(t) was generally close to the nominal 95%
except for some scenarios with high censoring rates of 75%. Both average asymptotic and bootstrap
standard errors closely resembled the empirical standard errors of Ĉ1,KM(t).

5. APPLICATION TO CORONARY RISK PREDICTION

Specialist medical societies recommend initiation of preventive treatment for CHD based on a subjects’
predicted 10-year risk for CHD (NCEP, 2002). To accurately predict the absolute risk of CHD in
older people, prognostic models for CHD need to account for the competing risk of non-CHD death
(Koller, Leening and others, 2012). In this section, we revisit the example of Wolbers and others (2009)
on coronary risk prediction based on data of elderly women from the Rotterdam Study, a prospec-
tive, population-based cohort of elderly subjects living in a suburb area of Rotterdam, the Netherlands
(Hofman and others, 2011).
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Table 2. Coverage of confidence intervals for the same simulation scenarios as in Table 1

Standard error KM Coverage

Censored Average Average Asymptotic Bootstrap Bootstrap Bootstrap
N γ1 before t (%) Empirical asymptotic bootstrap KM naive KM Cox

CR1: C1(t) = 62.1%, β1 = 1, β2 = 1, λ01 = 1, λ02 = 2, t = q75

250 0 25 0.0372 0.0384 0.0384 94.5 91.6 94.2 94.3
250 0 50 0.048 0.0473 0.0478 93.4 83.6 93.6 93.2
250 0 75 0.0974 0.0707 0.077 77.8 67.3 81.2 82.1
250 1 25 0.0388 0.0392 0.0395 94.2 93.4 94.5 95.1
250 1 50 0.0486 0.0479 0.0486 93.8 90.1 94.1 93.5
250 1 75 0.0823 0.0696 0.0733 86.4 81.4 88.6 88.4
1000 0 25 0.0188 0.0192 0.019 95.4 88.9 95.1 95.2
1000 0 50 0.0234 0.0238 0.0238 95.1 59.6 95.3 95.1
1000 0 75 0.0635 0.0475 0.0499 80.7 23.2 81.9 82.6
1000 1 25 0.0193 0.0195 0.0195 94.9 91.6 94.6 94.3
1000 1 50 0.0229 0.0239 0.0239 95.4 81.6 95.5 93.4
1000 1 75 0.0376 0.0368 0.037 93.9 64.6 93.8 89.2

CR2: C1(t) = 85.0%, β1 = 2, β2 = −1, λ01 = 1, λ02 = 0.5, t = q75

250 0 25 0.0168 0.0173 0.0174 95.1 91.4 95.0 95.0
250 0 50 0.0207 0.0208 0.021 94.3 84.2 94.5 94.4
250 0 75 0.0404 0.0343 0.0359 85.4 72.5 88.2 87.9
250 1 25 0.0181 0.0183 0.0186 95.0 92.2 95.3 95.2
250 1 50 0.0232 0.0235 0.024 94.6 87.9 95.2 95.9
250 1 75 0.0439 0.0384 0.0399 87.4 81.2 88.8 93.3
1000 0 25 0.00831 0.00859 0.00856 95.3 86.7 95.5 95.6
1000 0 50 0.0101 0.0103 0.0103 95.6 66.7 95.4 95.7
1000 0 75 0.0277 0.0218 0.0224 87.4 41.4 88.8 89.8
1000 1 25 0.00878 0.00905 0.00914 95.2 88.7 95.4 95.9
1000 1 50 0.0116 0.0118 0.0119 95.8 76.5 95.9 95.3
1000 1 75 0.0234 0.022 0.0221 93.7 67.6 94.2 94.0

Columns 8–10 display observed coverage of 95% percentile bootstrap confidence intervals for all three estimators, column 7 shows coverage of asymptotic Wald-type confidence
intervals for Ĉ1,KM(t). Columns 4–6 show the empirical standard error for the 1000 estimates and the average asymptotic and bootstrap standard errors of Ĉ1,KM(t).



Concordance for prognostic models with competing risks 535

Fig. 1. Left panel: IPCW estimates of C1(t) for the multiple Fine and Gray model (solid line) and the model with age
as the only covariate (dashed line) for a follow-up duration of 1–10 years in the validation data. Error bars at 2.5, 5,
7.5, and 10 years of follow-up correspond to bootstrap standard errors. Right panel: time-dependent receiver operating
characteristic curve at time t = 10 years for the multiple Fine and Gray model (solid line) and the model with age as
the only covariate (dashed line) in the validation data. Cases were defined as subjects with T � t and D = 1, controls
as subjects with T > t or D = 2.

We analyzed data from 10 years of follow-up of 4144 women aged between 55 and 90 years who
were free of CHD at baseline. During that follow-up period, 389 women experienced a CHD event and
921 women died without prior CHD event. Only 41 women of those event-free had less than 10 years of
follow-up. We randomly split the data set into a training data set (2763 women with 249 CHD events) and
a validation data set (1381 women with 140 CHD events).

Using the training set, we estimated the parameters of a Fine–Gray regression model which included the
“traditional” baseline risk factors for CHD: age, treatment for high blood pressure (yes versus no), systolic
blood pressure (separate slopes depending on whether the subject was on blood pressure treatment or not),
diabetes mellitus, log-transformed total cholesterol to HDL cholesterol ratio, and smoking status (current
versus never or former smoker). All these risk factors were associated with an increased CHD risk and,
except for diabetes, all reached conventional significance (p < 0.05). We also investigated the role of age,
the strongest predictor variable, as a simple marker for CHD.

Concordance estimates were obtained for these models in the validation set. The dependence of the
censoring distribution on the covariates was investigated with a Cox regression model which yielded no
trends and non-significant Wald tests for all variables. Thus, all IPCW estimates of concordance were
based on the marginal Kaplan–Meier estimator for the censoring distribution from the validation set.

The left panel of Figure 1 shows the discrimination ability of the two Fine–Gray models for varying
time horizons between 1 and 10 years. The model including all risk factors shows higher discriminative
ability compared with the model based on age alone. For both models, concordance estimates stabilize
after about 2.5 years of follow-up and remain fairly stable though slightly decreasing. The decrease may
occur because earlier events are easier to predict than later events.

The right panel of Figure 1 shows time-dependent ROC curves at time t =10 years for the two models.
For this graph, cases were defined as subjects with T � t and D = 1, controls as subjects with T > t
or D = 2. Estimation was also based on IPCW-weighting as implemented in the R package t imeROC
(Blanche and others, 2013).

Table 3 shows the estimated concordance for predicting CHD and non-CHD death, respectively, during
the 10 years follow-up in the validation data. The Fine and Gray model for non-CHD death used the
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Table 3. Estimated concordance and AUC measures in the validation data of the CHD study for both
competing risks (in %)

CHD Non-CHD death
C1(t) AUC(t)1,C1 AUC(t)1,C2 C2(t) AUC(t)2,C1 AUC(t)2,C2

Age only 63.7 72.3 64.3 75.7 80.8 78.0
Fine–Gray 71.6 79.4 72.4 76.2 81.3 78.6

Truncation point for concordance is t = 10 years. AUC measures are also reported at t = 10 years. Cumulative cases were defined
for both AUC measures as subjects with T � t and D = “event type studied” (CHD or non-CHD death, respectively), controls as
subjects with T > t for AUC(t)·,C1 and as subjects with T > t or D = “other event type” for AUC(t)·,C2.

same covariates as the model for CHD. Age alone is a strong predictor for non-CHD death in this elderly
population but the multiple Fine and Gray model did not substantially improve concordance. This is not
surprising as most additional covariates are established CHD-specific risk factors which would not be
expected to strongly affect non-CHD death (except for other deaths related to the cardiovascular system).

Table 3 also displays time-dependent AUC measures at t = 10 years in the validation data using two
different definitions of controls (Blanche and others, 2013). AUCs with controls defined as subjects with
T > t or D = “other event type” (consistently with our concordance definition) were slightly higher but
comparable with the concordance whereas AUCs using only subjects with T > t as controls were substan-
tially higher. This could be explained by the fact that age is a strong predictor of both CHD and non-CHD
death which hampers discrimination of CHD events from non-CHD deaths.

6. DISCUSSION

We have presented a formal definition of the concordance probability for prognostic models in the presence
of competing risks. Like the concordance probability for survival or binary data, it provides a simple over-
all numeric measure of discrimination. To deal with right-censored data, we derived an IPCW estimator of
the truncated concordance probability and established consistency and asymptotic normality under mild
assumptions. Asymptotic properties of the proposed estimator rely on the assumption that the censor-
ing distribution is correctly specified and conditionally independent of the competing risks process given
covariates. In many applications, it will be reasonable to assume that the censoring mechanism does not
depend on covariates and then the marginal Kaplan–Meier estimate of the censoring distribution can be
used. However, if for some reason the design or conduct of a clinical study introduced a dependence
between the follow-up duration and covariates which also affect the competing risks process (any compo-
nent, including the cause-specific hazards of competing events), then it is recommended to use a working
regression model for the censoring distribution in order to avoid biased conclusions.

The fact that we estimate a truncated version of concordance rather than the unconstrained concordance
probability should not be seen as a limitation of our approach. Indeed it is impossible to assess the per-
formance of prognostic models beyond the maximum follow-up duration without strong and untestable
assumptions. If we assume independent censoring, our estimator is defined if we truncate at any time
before or at the largest observed censoring or event time. As for the Kaplan–Meier estimator, the effect of
censoring on the variability of the IPCW estimator is increasing with increasing truncation time. However,
it is difficult to recommend a general purpose truncation time, in particular because the truncation time
point influences the interpretation of the concordance probability. To avoid unstable results in practical
applications, we recommend that the analyst develops an appropriate model for the censoring distribution,
e.g. the Kaplan–Meier estimator or a Cox model, and then investigates the predicted probabilities of being
uncensored at the candidate truncation times. Multiple truncation time points can be evaluated and it can
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be useful to compare discrimination ability at different truncation time points. A model which is good
at discriminating patients with an early failure time (e.g. after surgery) from others may not be good at
discriminating subsequent failure times amongst patients who survive a first high risk period.

As discussed in Appendix C of supplementary material available at Biostatistics online, our
approach is related to time-dependent sensitivity, specificity, and ROC curves for competing risks
(Saha and Heagerty, 2010) and the concordance can be written as a weighted average of the time-
dependent AUC(s) for incident cases (T = s, D = 1) and controls defined as observations with T > s or
D = 2. Thus, the concordance serves as an overall summary of discrimination whereas the time-dependent
AUC measures discrimination of the event status at one specific time point.

We assumed that the prognostic model was derived on an independent training data set and only in this
setting are asymptotic or bootstrap confidence intervals for the truncated concordance readily available.
Clearly, independent training data are not always available, and even if they are, a joint analysis of all
data will be more efficient. However, some form of internal cross-validation is needed to develop and
assess a prognostic model with a single data set (Efron and Tibshirani, 1997; Gerds and others, 2008;
Hastie and others, 2009).

It is important to emphasize that our definition of concordance assesses a prognostic model for
the absolute risk of the event of interest in the presence of competing risks. In line with earlier work
(Gail and Pfeiffer, 2005; Wolbers and others, 2009), we regard this risk as crucial for medical decision-
making in the competing risks setting. However, in many instances explicit consideration of competing
events will also be important and modeling the entire competing risks multi-state process will provide fur-
ther insights (Beyersmann and others, 2007). As an example, our illustration of concordance for a single
marker (presented in supplementary material available at Biostatistics online) shows that discrimination
of prognostic models for the event of interest is hampered if covariates affect both cause-specific hazards
with regression coefficients of the same sign, especially if there is a strong association with the competing
risk or if the baseline competing hazard is high. This indicates that to achieve high discrimination ability
one needs predictors which are only weakly or, even better, reversely associated with the cause-specific
hazard of the competing event. Moreover, in settings where all competing events are of similar importance,
joint accuracy criteria for the entire competing risks multi-state process are needed and their development
is an important area for future research.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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