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The perinatal period represents a time of great vulnerability for the developing brain.
A variety of injuries can result in death or devastating injury causing profound
neurocognitive deficits. Hypoxic-ischemic neonatal encephalopathy (HIE) remains the
leading cause of brain injury in term infants during the perinatal period with limited
options available to aid in recovery. It can result in long-term devastating consequences
with neurologic complications varying from mild behavioral deficits to severe seizure,
intellectual disability, and/or cerebral palsy in the newborn. Despite medical advances,
the only viable option is therapeutic hypothermia which is classified as the gold
standard but is not used, or may not be as effective in preterm cases, infection-
associated cases or low resource settings. Therefore, alternatives or adjunct therapies
are urgently needed. Ongoing research continues to advance our understanding of
the mechanisms contributing to perinatal brain injury and identify new targets and
treatments. Drugs used for the treatment of patients with type 2 diabetes mellitus
(T2DM) have demonstrated neuroprotective properties and therapeutic efficacy from
neurological sequelae following HIE insults in preclinical models, both alone, or in
combination with induced hypothermia. In this short review, we have focused on recent
findings on the use of diabetes drugs that provide a neuroprotective effect using
in vitro and in vivo models of HIE that could be considered for clinical translation as
a promising treatment.

Keywords: hypoxic-ischemic encephalopathy, perinatal brain injury, cerebral palsy, neuroprotection,
hypothermia, diabetes
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INTRODUCTION

Hypoxic-ischemic encephalopathy (HIE) is the most common
neonatal encephalopathy accounting for up to 85% of cases
(Volpe, 2012). It is caused by of an inadequate oxygen supply
and blood flow resulting in a variety of clinical manifestations
(Ferriero, 2004; Allen and Brandon, 2011; Hagberg et al., 2015).
These include developmental delays, epilepsy, cerebral palsy, and
death (Dilenge et al., 2001; Shankaran, 2012; Hagberg et al., 2016).
One to six babies per 1,000 live births in high-income countries
and approximately 20 infants per 1,000 live births in low-
and middle-income countries die or develop a life-long brain
condition. This accounts for approximately one million deaths
annually (Lee et al., 2013; Pauliah et al., 2013; Wu et al., 2014).

Currently, the standard care for neonates with HIE is
therapeutic hypothermia (TH), which is able to reduce overall
neurodevelopmental disability and mortality (Jacobs et al., 2013;
Azzopardi et al., 2014; Silveira and Procianoy, 2015; Rao et al.,
2017). However, while TH is very promising, up to 55% of
treated neonates are not protected and still develop life-long
neurodisabilities, including cerebral palsy (Jacobs et al., 2013;
Davidson et al., 2015). Therefore, there is a need to develop
therapies that are either more effective than hypothermia,
can be used in combination with hypothermia to enhance
its therapeutic efficacy, or which can be used alone in lower
resource environments.

Over the past decade, a growing number of pre-clinical and
now clinical studies have provided evidence of drugs licensed for
the treatment of diabetes as having protective effects on the brain
(Athauda et al., 2017; Rotermund et al., 2018; Mousa and Ayoub,
2019). These effects have been proven in different neurological
conditions such as Alzheimer’s disease (AD) and Parkinson’s
Disease (PD), traumatic brain injury (TBI), stroke and epilepsy
(Figure 1). Given the need to develop effective treatments for
neonatal HIE, researchers have investigated these diabetes drugs
to assess their therapeutic efficacy for this indication.

In this short review, we first describe the experimental and
animal models of HIE that are used in preclinical studies to assess
the therapeutic efficacy of candidate drugs (Table 1). We then
highlight the studies that support the potential of commonly used
diabetes medicines to ameliorate neurological damage from HIE.
This includes recent data demonstrating that diabetes drugs can
enhance the therapeutic effect of TH.

EXPERIMENTAL AND ANIMAL MODELS
OF HIE

Hypoxic-ischemic encephalopathy is an evolving process that
involves distinct phases leading to a delayed cell death, including
primary injury, latent phase, secondary phase, and tertiary phase
(Wyatt et al., 1989; Fleiss and Gressens, 2012; Davidson et al.,
2015). Understanding the characteristics observed during the
different phases leading to neonatal encephalopathy are key to
the development of new therapeutics, when they can be used
to ameliorate HIE and the multiple possible subsequent sequela.
The timing of the events following hypoxia-ischemia (HI) and

the therapeutic window in rodent models is well defined at ∼6 h
correlating with initiation of the secondary phase of brain injury
(Nair and Kumar, 2018). Therefore, there is a narrow window
within the first few hours of birth during which a therapy should
be initiated for optimal outcomes (Silveira and Procianoy, 2015;
Martinello et al., 2017). Furthermore, if the drug is administered
systemically, then it should be able to reach the brain quickly and
cross the blood brain barrier (BBB).

The neuroprotective properties of diabetes drugs were first
recognized by positive neurological effects in type 2 diabetes
mellitus (T2DM) patients under treatment (Grant et al., 2011)
and now in various studies for the treatment of different
neurological conditions (Hussien et al., 2018; Rotermund et al.,
2018; Erbil et al., 2019). A number of studies have demonstrated
that diabetes drugs are indeed capable of entering the brain
following systemic administrations and mediating a physiological
response, e.g., metformin (Lv et al., 2012), sulfonylurea (SUR)
(Simard et al., 2012), thiazolidine (Grommes et al., 2013),
dipeptidyl peptidase-4 (DPP-4) inhibitors (Mousa and Ayoub,
2019), and glucagon-like peptide-1 receptor (GLP1-R) agonists
(Hunter and Hölscher, 2012).

Accurate and reliable in vitro and in vivo models of HIE
are of utmost importance in determining the mechanisms of
damage and also evaluating the efficacy of potential treatments.
The development of a variety of in vitro and in vivo models of
HIE have facilitated this process.

Oxygen Glucose Deprivation
Oxygen glucose deprivation is widely used as a relatively
convenient in vitro model for ischemia, stroke or HIE, showing
similarities with the in vivo models of brain ischemia (Tasca
et al., 2015). This primary neural cell or immortalized cell
culture model has been used extensively to examine the cellular
mechanisms mediating ischemia–reperfusion injury (Rousset
et al., 2015; Gao et al., 2019). The OGD model is a simple
process that firstly involves changes to the cell culture medium to
exclude glucose. The cells are incubated in a hypoxic incubator
with decreased O2 and increased N2 levels with a saturated
humidity atmosphere at 37◦C over a specific period of time. Thus,
cultured cells subjected to hypoxia, fuel deprivation and then
reoxygenation mimic the scenario of ischemia–reperfusion.

Hypoxia-Ischemia Surgery
The rodent model of neonatal HIE was first validated by
Rice et al. (1981) and has since been extensively used to
identify mechanisms of brain injury resulting from perinatal
HI (Vannucci and Vannucci, 2005). It is also used to test
potential therapeutic interventions. The HIE model is a two-
step process and involves the ligation of one common carotid
artery followed by exposure to a hypoxic environment before
restoration to normal atmospheric conditions. Traditional
models of HIE have utilized rodents at postnatal day 7–10 as
being roughly equivalent to a near-term or term human infant
based on electrophysiological, neurochemical, cardiovascular,
and metabolic criteria of brain development (Hagberg et al., 1997;
Semple et al., 2013). There are a wide variety of HI animal models
used to investigate different aspects of HIE. Examples of this
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FIGURE 1 | Effects of diabetes drugs on various neurological diseases. The applied color code indicates whether the effect on the target disease has been observed
in preclinical studies (red boxes) or in clinical studies (green boxes). Each class of drugs corresponds to a symbol which is indicated in neurological diseases for
which clinical and/or preclinical studies has been performed. Brain image taken from the SMART Servier Medical Art Library (https://smart.servier.com).

include; rodents (Recker et al., 2009), rabbits (Derrick et al.,
2004), term piglet (Rocha-Ferreira et al., 2016, 2017), preterm
sheep (Nitsos et al., 2014), and non-human primates (Juul et al.,
2007). To date, existing preclinical data using diabetes drugs
as a treatment for HIE have only been performed on rodent
models. Furthermore, rodents have limitations in simulating
the range, accuracy, and physiology of clinical HI and the
relevant systems neuropathology that contribute to the human
brain injury pattern. Large animal models of perinatal HI can
better replicate the conditions of human HIE (Koehler et al.,
2018).Therefore, the availability of these larger animal models of
HIE are an invaluable tool to evaluate the therapeutic efficacy of
these candidate diabetes drugs prior to any clinical trials.

DIABETES DRUGS AND
NEUROLOGICAL DISEASES

Pharmacologic therapy of T2DM has changed dramatically
in the last 10 years, with new drugs and drug classes
becoming available. Among the different categories of therapies
for T2DM, metformin serves as the first line drug whereas
other hypoglycaemic agents (SUR, thiazolidine, DPP4 inhibitor,
incretin) are used as second line therapies, or in combination
with metformin. Over the past three decades, numerous
epidemiological studies have shown a clear association between
T2DM and an increased risk of developing neurological disorders
(NDs) such as AD (Li et al., 2015), PD (Khan et al.,
2014), epilepsy/seizure (Yun and Xuefeng, 2013), and stroke
(Putaala et al., 2011).

Various studies suggest a comorbid association between NDs
and T2DM indicating that there could be shared underlying
pathophysiological mechanisms. Using comparative analysis,
several putative “shared pathways” have been indentified
and demonstrated how the insulin signaling pathway is
related to other significant ND pathways. These include
the signaling pathways for neurotrophin (Tong et al., 2009;
Karki et al., 2017), PI3K/AKT (Gabbouj et al., 2019), mTOR
(Bryan and Bowman, 2017; Sun et al., 2019), and mitogen-
activated protein kinase (MAPK) (Santiago and Potashkin, 2013;

Karki et al., 2017) and how these pathways cross-talk with
each other. Consequently, studies started to investigate T2DM
treatments as neuroprotective strategies for different types of ND,
including perinatal HIE.

Metformin
Metformin is a biguanide drug widely used since the 1960s for the
treatment of patients with T2DM. It enhances insulin sensitivity,
induces glycolysis, and suppresses gluconeogenesis in the liver
(Martin-Montalvo et al., 2013). Pre-clinical studies have also
reported the promising therapeutic effect of metformin against
neurodegeneration in conditions such as PD (Patil et al., 2014),
epilepsy (Yimer et al., 2019), and cerebral ischaemia/reperfusion
injury (Ge et al., 2017; Leech et al., 2019). In addition to
its neuroprotective effects, metformin has been shown to
promote neurogenesis by enhancing neural precursor self-
renewal, proliferation, and differentiation (Potts and Lim, 2012;
Wang J. et al., 2012). Increased neurogenesis upon metformin
treatment resulted in improved memory formation in multiple
experimental models of brain injury (Jin et al., 2014; Liu et al.,
2014; Dadwal et al., 2015; Ge et al., 2017; Qi et al., 2017). In vitro
studies using the OGD model demonstrated that metformin
improves neuronal viability and regulates programmed cell
death in a caspase-independent manner, thereby reducing
ischemic reperfusion injuries (Mielke et al., 2006; Meng et al.,
2016; Gabryel and Liber, 2018; Mohammad Alizadeh et al.,
2018). Metformin treatment remarkably attenuated brain infarct
volumes, brain oedema and restored behavior deficits in a
neonatal rat model of HI (Qi et al., 2017). It also induced
activation of endogenous neural precursor cells (NPCs) (Dadwal
et al., 2015). A rodent model of neonatal HI injury showed better
neuroprotection induced by metformin in females following
early injury relative to males. Indeed, metformin treatment
in mice increased the NPC pool in both sexes in neonates
but only in females at the adult stage. Consequently, long-
term metformin treatment leads to cognitive improvements in
females, but not males following early HI injury (Ruddy et al.,
2019). The mechanism could be linked to the sex hormones
(Ruddy et al., 2019) but further exploration of the mechanism
underlying this effect is required. Of note, females have an
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TABLE 1 | Evidence supporting the neuroprotective properties of diabetes drugs use in the context of treatments for hypoxia-ischemia encephalopathy.

Diabetes drug Model Species Treatment Effects References

Biguanide OGD bEND.3 cells Metformin Inhibition of inflammatory signaling pathways Liu et al., 2014

Biguanide OGD Rat cortical neurons Metformin Pre-treatment of neurons alleviated OGD/R-induced injury Meng et al., 2016

Biguanide OGD Primary rat fetal-derived
astrocytes

Metformin Improve cell viability via reduction of apoptosis mechanisms Gabryel and Liber, 2018

Biguanide OGD PC-12 cells Metformin Reduce cell death under OGD/R condition and attenuation of ROS generation Mohammad Alizadeh et al., 2018

Biguanide OGD Primary cortical and
hippocampal neurons

Metformin Moderate improvement of cell viability Mielke et al., 2006

TZD OGD Rat hippocampal slices NP00111
Rosiglitazone

Protection against OGD by a mechanism related to phosphorylation of ERK1/2 via
activation of PPARγ

Rosa et al., 2008

TZD OGD Primary cultured astrocytes Pioglitazone Protective effects with inhibition of pyroptosis mechanism induced by the OGD Xia et al., 2018

DPP4 OGD HBMVECs Alogliptin Protection against OGD and increasing of permeability in human brain vascular cells Hao et al., 2019

Incretin GLP1-R
agonist

OGD Rat cortical neurons Exendin-4 Protects neurons through PKA pathway Wang M.-D. et al., 2012

Incretin GLP1-R
agonist

OGD Rat cortical neurons Liraglutide Neuroprotective action with reduction of apoptosis and ROS via activation of the
PI3K/AKT and MAPK pathways

Zhu et al., 2016

Incretin GLP1-R
agonist

OGD Mouse cortical neurons DMB Neuroprotection with anti-apoptotic effects, mediated by activation of the GLP-1R
through the cAMP-PKA-CREB signaling pathway

Zhang et al., 2016

Sulfonylurea HI P10 Rat Glibenclamide No effects on severe HI model
Improvement neurological functions in moderate HI model

Zhou et al., 2009

TZD HI 8W Ob/Ob mouse Darglitazone Reduction of the infarct size and neuroinflammation response Kumari et al., 2010

Biguanide HI P8 Mouse Metformin Activation of endogenous NPCs, promoting their migration and differentiation in the
injured brain
Restoration of sensory-motor function

Dadwal et al., 2015

Biguanide HI P3 Rat Metformin Attenuation of cognitive impairments Induction of OPCs proliferation reducing
myelination damage

Qi et al., 2017

Biguanide HI P7 Rat Metformin Attenuation brain infarct and oedema
Inhibition of neuronal apoptosis, and neuroinflammation + amelioration of the blood
brain barrier breakdown

Fang et al., 2017

Biguanide HI P8 Mouse Metformin Sex-dependent effects on proliferation but increases neurogenesis in both sexes;
rescues cognitive deficits in adult females

Ruddy et al., 2019

Incretin GLP1-R
agonist

HI P7/P10 Mouse Exendin-4** Neuroprotective effect alone or in combination with therapeutic hypothermia Rocha-Ferreira et al., 2018

Incretin GLP1-R
agonist

HI P7 Rat Liraglutide Inhibited apoptosis and promoted neuronal survival; PI3K/Akt pathway involved Zeng et al., 2020

In vitro model with OGD on different cell types and in vivo models with HI at different stage of age. **Only study using combination with hypothermia.
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advantage following neonatal hypoxia ischemia; larger cognitive
deficits and less functional recovery have been observed in
males despite a comparable neuropathology across sexes (Smith
et al., 2014). The neuroprotective properties of metformin were
associated with inhibition of neuronal apoptosis, suppression of
neuroinflammation and amelioration of the blood-brain barrier
breakdown via downregulation of the NFκB signaling pathway
(Fang et al., 2017). Overall, these studies have highlighted
this drug as a promising potential treatment in childhood
brain injury models.

Sulfonylurea
Sulfonylurea agents are the second oral hypoglycaemic drugs
after metformin and they remain an imperative tool for
glucose control (Thulé and Umpierrez, 2014). Recent studies
demonstrated that sulfonylurea receptor 1 (SUR1) is involved in
brain injury in rodent models of stroke (Hussien et al., 2018). The
SUR drugs glibenclamide and glimepiride have neuroprotective
effects (Ortega et al., 2013; Wang et al., 2019) and ameliorate
cerebral stroke, spinal cord injury, premature encephalopathy,
and TBI (Tosun et al., 2013). The neuroprotective effect of
SUR agents is not fully understood but glibenclamide blocks
SUR1, a regulatory subunit of the microglial KATP channel.
This channel is overexpressed in rodent models of stroke and
the effect of blocking SUR1 could inhibit microglia activation
which release inflammatory cytokines and initiate downstream
signaling pathways, resulting in neuronal cell loss and necrosis
(Ortega et al., 2013). Glibenclamide is clinically effective in
preventing oedema and improving outcome after focal ischemia
(Sheth et al., 2014); clinical studies are being conducted to
evaluate its efficacy in acute cerebral embolism and severe
cerebral edema (NCT03284463, NCT02864953). In a rat model
of HI injury, glibenclamide improved several neurological
parameters but failed to attenuate brain edema, infarct volume
or brain tissue loss (Zhou et al., 2009). This may be attributed
to the significant reduction in blood glucose induced by the
dose of glibenclamide used, which may exacerbate the ischemic
brain injury. More investigations need to be performed around
the dose and its full potential as a treatment for childhood
brain injury models.

Thiazolidine
Thiazolidinedione [also called glitazone or peroxisome
proliferator activated receptor-γ (PPARγ) agonists] are a
group of oral anti-diabetic drugs designed to treat patients with
T2DM. They enhance insulin sensitivity and reduce serum
glucose in diabetic patients, without significant alterations in
serum glucose of non-diabetic animals or humans (Plutzky,
2003). Rosiglitazone, troglitazone, and pioglitazone suppressed
the activation and infiltration of macrophages and reduced the
infarct size after cerebral ischemia in a middle cerebral artery
occlusion (MCAO) model by reducing levels of proinflammatory
cytokines (Sundararajan et al., 2005; Culman et al., 2007; Xia
et al., 2018). Moreover, PPARγ agonists such as NP00111,
rosiglitazone and pioglitazone treatments could relieve OGD-
induced hypoxia injury in vitro and exert neuroprotective effects
(Rosa et al., 2008; Xia et al., 2018). The neuroprotective effect

of TZD requires further investigation. However, data suggests
activation of PPARγ mediates suppression of NF-κB signaling
pathway, inhibiting apoptosis and reducing neuronal loss (Zhang
et al., 2011). In the context of adult HI injury, TZD has shown
therapeutic efficacy in Ob/Ob mice, a model for T2DM and
obesity. This model was chosen for its high risk factor of stroke
and increased risk of brain damage. Darglitazone treatment in
this adult diabetic mouse resulted in significant neuroprotection
associated with a complete restoration of the initial microglial
response and reduction of the infarct brain size at 24 h of recovery
(Kumari et al., 2010). No studies have yet been conducted in a
neonatal HI model but the proven neuroprotective properties
and potent anti-ischemic effects of this class of diabetes drug
could be a promising option.

Incretin / GLP1-Receptor Agonists
Glucagon-like peptide-1-receptor agonists are used in
combination with diet and exercise in the therapy of T2DM,
either alone or in combination with other antidiabetic agents.
GLP1-R agonists have been found to enter the brain following
systemic administration (Hunter and Hölscher, 2012; Athauda
et al., 2017) and have neuroprotective properties when assessed
in various rodent models of neurological disease and damage
such as AD (Xu et al., 2015; Cai et al., 2018), PD (Yun et al.,
2018), epilepsy (Wen et al., 2019), TBI (Glotfelty et al., 2019),
and stroke. As a result, a number of clinical trials are already
underway for some of these molecules such as exendin-4
(NCT03456687, NCT02829502, NCT03287076), liraglutide
(NCT02953665, NCT01469351, NCT01843075, NCT03948347)
or semaglutide (NCT03659682) to assess benefits to AD,
PD, or stroke patients. A PD trial is already completed and
has reported that patients on exendin-4 show a statistically
significant improvement in clinical motor and cognitive
measures compared to the control group (Athauda et al.,
2017). Numerous experimental studies also demonstrated the
potential of glucagon-like peptide-1 (GLP1) and analog, such as
liraglutide or semaglutide, to reduce acute ischaemic damage in
the brain (Wang M.-D. et al., 2012; Zhu et al., 2016; Basalay et al.,
2019; Yang et al., 2019). Exendin-4, liraglutide and quinoxaline
6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline
(DMB, an agonist and allosteric modulator of the GLP-1R)
have been shown to increase neuron survival under OGD
in vitro by reducing reactive oxygen species (ROS), apoptotic
and necrotic mechanisms (Wang M.-D. et al., 2012; Zhang
et al., 2016; Zhu et al., 2016). The potential that GLP1-R
agonists have for treating perinatal HIE has been further
strengthened in two recent studies demonstrating: (1) that
exendin-4 has significant therapeutic efficacy in the mouse
model of neonatal HIE (Rocha-Ferreira et al., 2018), (2) and
that liraglutide exerts neuroprotection via the PI3k/Akt pathway
(Zeng et al., 2020). The study by Rocha-Ferreira and colleagues
demonstrated that systemic administration either directly after
HI injury, or even 2 h later significantly reduced the size of
the brain infarct, the inflammatory response and the oxidative
stress. Exendin-4 treatment was able to work synergistically
with hypothermia to further enhance therapeutic efficacy
(Rocha-Ferreira et al., 2018).
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DPP-4 Inhibitor
Also called gliptins, DPP-4 inhibitors are a class of glucose-
lowering agents for the treatment of T2DM. Their actions are
mediated indirectly through preservation of GLP-1 incretins that
are mainly metabolized by the key enzyme DPP-4 (Andersen
et al., 2018). Preclinical studies have shown that DPP-4 inhibitors
have neuroprotective effects (Darsalia et al., 2019; Mousa and
Ayoub, 2019) but unlike GLP-1 receptor agonists (incretins), the
ability of DPP-4 inhibitors to cross the blood-brain barrier are
still unclear (Chen et al., 2015). However, they could indirectly
increase levels of active GLP-1 in the brain that crosses from
the blood (Yang et al., 2013). Several kinds of gliptins have
been shown to be effective in different experimental models of
neurological diseases such as AD (Wiciński et al., 2018; Dong
et al., 2019), PD, epilepsy and stroke (Darsalia et al., 2019;
Mousa and Ayoub, 2019). In the MCAO model mimicking
stroke, linagliptin and alogliptin reduced infarct volume and
neurological deficits (Chiazza et al., 2018; Hao et al., 2019).
In the same study, alogliptin protectsed against oxygen glucose
deprivation reperfusion (OGD/R) and has a neurovascular
protective effect increasing permeability in human brain vascular
cells (Hao et al., 2019). No data exists in an experimental neonatal
HIE model but DPP-4 enzyme activity is known to increase in
the blood serum of term and preterm neonates with cerebral
ischemia (Yakovleva et al., 2015). Because DPP-4 inhibitors
have shown neuroprotective properties and increase levels of
GLP-1 in the brain, this could suggest that they have potential
for treating HIE.

SUMMARY

The neuroprotective properties of diabetes drugs were first
recognized by improvements in the neuropathic aspects in T2DM
patients under treatment (Grant et al., 2011). The role of insulin
as a pro-survival neurotrophic factor, where its receptor is widely
expressed in cognitive areas of the brain such as the hippocampus
and in the dopaminergic system also helped to consolidate this
hypothesis (Haas et al., 2016; Fiory et al., 2019). The emerging
evidence has suggested a beneficial effect of diabetes drugs in
the management of diabetic and non-diabetic NDs. Furthermore,
data supporting their neuroprotective effects are supported by
a growing number of preclinical studies in neurodegenerative
disorders such as AD (Cai et al., 2018; Dong et al., 2019) and PD
(Athauda and Foltynie, 2016; Ayoub et al., 2018). Importantly,
therapeutic efficacy had also been demonstrated in a clinical
trial in PD patients (Athauda et al., 2017). However, many
developmental, functional, and injury time course differences
exist between the neonatal and the adult brain (Ferriero, 2004).
Drug delivery properties, dosage and use can also be complex to
translate from a adult to neonatal setting.

Several proof-of-concept studies with different classes of
diabetes drugs as a treatment in neonatal HIE have been
identified with glibenclamide (Zhou et al., 2009), metformin
(Dadwal et al., 2015; Fang et al., 2017; Qi et al., 2017) and exendin-
4 (Rocha-Ferreira et al., 2018). These diabetes drugs act on a
plethora of biological pathways (Rosa et al., 2008; Wang M.-D.

et al., 2012; Zhang et al., 2016; Zhu et al., 2016) and the precise
mechanisms of action of diabetes drugs for neuroprotection are
still not fully understood. However, in the context of HIE several
studies have demonstrated neuroprotective actions of the GLP1-
R agonists (Kimura et al., 2009; Jiang et al., 2016; Zhao et al., 2018)
and metformin (Khallaghi et al., 2016) through the PI3K/Akt
signaling pathway. In cases of brain injury, diabetes drugs have
shown to be able to help repair the brain by modulating cell
death mechanisms (Mielke et al., 2006; Gabryel and Liber, 2018;
Xia et al., 2018), reducing neuronal oxidative stress (Mohammad
Alizadeh et al., 2018) and promoting growth of new neurons and
cells (Dadwal et al., 2015; Qi et al., 2017).

In adults, diabetes drugs are generally well tolerated with a
long track record in the clinic and demonstrable safety profiles.
However, this requires to be established in new born babies.
Therefore, the normal advantages of rapidly repurposing drugs
at a lower cost than the drug development process (Ayoub
et al., 2018; Mousa and Ayoub, 2019) may be diminished for
application to HIE. Potential safety risks could be reduced since
the administration of the drug would likely only be required
during a short acute period following the HI insult over a 48 h
period (Rocha-Ferreira et al., 2018). However, depending on the
diabetes drug in question, an important consideration is the
potential to induce a hypoglycaemic effects when perturbations
in glucose metabolism (hypoglycaemia and hyperglycemia) are
already common in newborn infants with HIE (Vannucci, 1992;
Salhab et al., 2004; Basu et al., 2009). This issue of hypoglycaemia
exacerbating brain injury has been highlighted in the previously
mentioned pre-clinical study using glibenclamide (Zhou et al.,
2009). Therefore, the evaluation of the safety of diabetes drugs
must be conducted in preclinical neonatal models, including
larger animals prior to clinical trials.

CONCLUSION

In conclusion, there is a growing body of evidence supporting
the neuroprotective and anti-neuroinflammatory properties of
specific diabetes drugs. Furthermore, the emerging proof of
concept studies supporting their potential use as a treatment for
HIE, either independently or in combination with hypothermia,
is highly encouraging and warrants further investigation.
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