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processes beyond homeostatic levels. In agreement with this 

hypothesis, studies in gnotobiotic mice have demonstrated 

that transgenic mouse models of colitis require a microbial 

community to develop colitis.4,5 In addition, administration of 

antibiotic therapy in IBD patients has been shown to induce 

remission further demonstrating that gut microbes promote 

disease.6 Together, these studies point to the importance of gut 

flora in the pathogenesis of IBD.

The gut microbiota consists of bacteria, viruses, archaea and 

eukaryotic microbes. Bacteria constitute by far the largest com-

ponent and both beneficial bacteria “commensals” and oppor-

tunistic pathogenic bacteria “pathobionts” are found within 

the GI tract. Gut bacterial numbers roughly equal the number 

of intestinal epithelial cells (IECs) and represent a large reser-

voir of gene expression that can affect host processes essential 

to GI function.7 Indeed, the co-evolution of host and microbio-

ta supports the notion that gene expression of the latter can 

affect the host.8 The most prominent populations of gut flora 
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INTRODUCTION

Inflammatory bowel diseases (IBD), such as CD and UC, are 

complex, multifactorial disorders characterized by chronic in-

flammation of the GI tract. In the United States alone, it is esti-

mated that IBD affects up to 1.3% of the population (3 million 

individuals) and a further 2.2 million individuals in Europe, 

with incidence rising in newly industrialized countries (www.

cdc.gov/ibd/data-statistics.htm).1-3 Our current understanding 

suggests IBD manifests largely in genetically susceptible indi-

viduals following some perturbation of mucosal homeostasis 

which permits commensal gut flora to activate inflammatory 
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are present in the large intestine, where bacteria play a critical 

role in the digestion and absorption of urea, bile acids, sterols, 

xenobiotics, essential vitamins, plant-based polysaccharides, 

and certain amino acids. The resulting metabolites are capable 

of altering IEC signaling and gene expression. In addition to 

their digestive function, bacteria within the gut are also impor-

tant for maturation of the immune system and can modulate 

the immune response by both promoting certain functions 

and triggering anti-inflammatory responses.9-12 

The composition of the microbiota is fluid as alterations in 

diet and the presence of non-infectious disease have been shown 

to shift certain subpopulations within the gut microbiota.13,14 

These resulting communities can also induce phenotypic traits 

when administered to gnotobiotic mice.13 Additionally, vari-

ous changes in the features of the intestinal epithelium during 

IBD pathogenesis promote the proliferation and dominance 

of pathobionts such as adherent-invasive Escherichia coli (AI

EC). However, whether changes in microbial populations pre-

cede disease development onset is still under investigation. 

Several studies have attempted to understand the role(s) of 

the microflora in disease pathogenesis by investigating specif-

ic bacterial shifts associated with IBD (specifically the preva-

lence of Enterobacteriaceae and Proteobacteria in IBD patient 

intestinal tissues) and the effect of IBD candidate genes on the 

interaction between IECs and the microflora.

In this review, we will summarize the present understand-

ing of how the interaction of IECs and gut microbiota can ei-

ther maintain healthy homeostasis or lead to dysbiosis by high-

lighting specific examples of commensals and pathobionts. 

We focused attention on the interactions of IECs with luminal 

bacteria as the interplay of the gut microbiota and mucosal 

immune cells has been comprehensively described previous-

ly.10,15,16 

 

MICROBIAL INTERACTIONS WITH THE  
INTESTINAL BARRIER

In order to understand the impact of the gut microbiota in in-

testinal diseases we must first consider the major site of inter-

action: the intestinal barrier. The broader interpretation of the 

intestinal barrier requires the interplay of multiple components: 

IECs, the gut microbiota, and mucosal and submucosal im-

mune cells. More specific barrier functions such as permeabil-

ity to electrolytes and luminal contents are controlled directly 

by epithelial cells and their key structural components that 

regulate paracellular permeability, the apical tight junctions. 

For clarity, we will discriminate between permeability–refer-

ring to specific tight junction modifications–and the broader 

concept of barrier function in the following sections.

1. Proliferation and Epithelial Turnover 
The intestinal epithelium is a continuous monolayer of spe-

cialized cells generated by intestinal stem cells at the base of 

the crypt. IEC differentiation from the crypt to the villus tip 

(small intestine), or surface epithelium (large intestine), and 

their subsequent turnover is critical for the chemical and phys-

ical functions of the barrier. IEC apoptosis and shedding into 

the lumen is tightly regulated to promote continuous turnover 

of the epithelium and maintain barrier integrity.17-19 In a healthy 

gut, only 1% to 2% of the epithelia are undergoing apoptosis at 

any one time, and neighboring IECs act to seal gaps arising 

from apoptosis or cell “shedding events” in order to prevent 

unregulated access across the epithelium by luminal contents 

or microbes. Indeed, the pro-inflammatory cytokine TNF-α 

increases the number of shedding events however, this is not 

associated with a barrier defect due to the “gap-sealing” actions 

of adjacent epithelial cells.18,19 The life cycle of an IEC is driven 

by changes in enterocyte function and epithelial differentia-

tion. Villus or surface enterocytes display an absorptive phe-

notype while IECs at the crypt base secrete Cl– ions and water 

that aid in hydrating the mucus layer and flushing bacteria out 

of the crypt.20 These functions are critical for the principal roles 

of the intestine (digestion, nutrient absorption, and waste ex-

cretion) and maintaining balanced interactions with luminal 

bacteria.

2. Differentiation and Epithelial Functions 
In addition to their absorptive and secretory functions, IECs 

also differentiate into specialized cells that contribute to intes-

tinal barrier homeostasis. Paneth cells that are situated in the 

crypt base of the small intestine secrete anti-microbial factors 

such as α-defensins (or cryptidins in mice), RegIIIγ, lysozyme, 

and phospholipase A2 in response to microbial components.21 

These secreted factors aid in preventing pathogenic bacterial 

attachment and promote growth of beneficial bacteria. Posi-

tioned along the length of crypts, goblet cells secrete mucin 

proteins to establish a protective mucus layer overlying the in-

testinal epithelium that also functions as a diffusive medium 

for metabolites and nutrients. The composition and physical 

properties of the mucus layer differ by location in the GI tract. 

The small intestine has a loose, non-adherent mucus layer 

which facilitates nutrient absorption. In the colon, the mucus 
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layer is composed of 2 sublayers–an outer layer much like that 

of the small intestine and a thick inner adherent layer that is 

impermeable to bacteria in the distal colon and somewhat 

permeable in the proximal colon.22 Commensal microbes aid 

in maintaining this mucus layer through stimulation of mucin 

secretion. This observation has also been supported by analy-

sis of the mucus layer in germ-free mice where the colonic in-

ner layer was less developed.23 Finally, the mucus binding ca-

pacity of probiotic bacteria is correlated with their coloniza-

tion capacity, providing a selective advantage over pathogenic 

bacteria.24 Studies on cystic fibrosis transmembrane conduc-

tance regulator knockout mice, which display accumulations 

of mucus, have shown an increase in IEC inflammatory gene 

expression and bacterial overgrowth, suggesting an abnormal 

mucus layer can promote dysbiosis.25,26

3. Mucosal Immune Functions of Intestinal Epithelium 
A primary function of IECs is their ability to act as mediators 

of innate immunity. Similar to other cell types, IECs express 

cell-surface and intracellular pattern recognition receptors 

such as Toll-like receptors (TLRs) and NOD-like receptors, re-

spectively. TLRs expressed by IECs function to respond pri-

marily to commensal bacteria and different regions of the in-

testinal tract exhibit distinct patterns of TLR expression.27 Ac-

cordingly, TLR expression is highest in the colon where their 

activation promotes expression of host defense genes.27 In ad-

dition, the presence of gut flora or inflammation can also alter 

the expression profile of IEC TLRs. Activation of TLRs by com-

mensal bacteria promotes tight junction protein expression to 

fortify the barrier and increases secretion of anti-microbial pep-

tides.28-30

Immune cells located in the mucosa and submucosa also 

function in shaping the microbial environment and hamper-

ing colonization by pathogenic bacteria. Lymphoid follicles 

called Peyer’s patches are located at various intervals in the il-

eum and consist of macrophages, lymphocytes, and M or mi-

cro-fold cells. These sites function in maintaining immune tol-

erance of commensal bacteria. In addition, secretion of IgA 

and components of the complement system aid in inhibiting 

pathogenic bacterial growth. Finally, certain bacteria are also 

necessary for immune maturation, such as segmented fila-

mentous bacteria which promote Th17 cell development and 

Bacteroides fragilis which influences regulatory T cell develop-

ment, and Th2 and Th1 cell balance.31-38

Secretory IgA is a mucosal Ig produced by intestinal lamina 

propria B cells that captures microbial pathogens and their 

toxins to prevent adherence and invasion. Induction of IgA se-

cretion occurs at Peyer’s patches and isolated lymphoid folli-

cles within the GI wall where signals from T cells, dendritic 

cells, and IECs cause class switching of B cells to IgA-produc-

ing plasma cells.39 Importantly, IgA is able to protect the barri-

er from bacteria without increasing inflammation. Commen-

sal bacteria can promote IgA production directly through bac-

terial proteins binding host receptors on IECs, and indirectly 

through microbial metabolites such as short-chain fatty acids 

(SCFAs) binding the GPR43 receptor.40,41 In turn, IgA binding 

to commensals can promote their colonization and stability 

within their colonization niche.42-44 A continuing question in 

the field is how host responses differentiate between commen-

sal and pathogenic microorganisms. It is thought that IgA bind-

ing to commensals is low-affinity whereas increased coating 

of bacteria by IgA indicates the increased pathogenic potential 

of the bacterium. This has been supported by transfer of highly 

IgA-coated bacteria isolated from IBD patients to germ-free 

mice which led to increased susceptibility to dextran sulfate 

sodium (DSS) colitis.45 Thus, IgA is an important discriminator 

of commensal and pathogenic bacteria and promotes muco-

sal homeostasis through increased colonization of healthy 

commensals.

4. IBD Candidate Genes and Epithelial Function 
Normal antigen-sampling of the GI luminal contents by IECs 

and submucosal immune cells elicits a tolerogenic immune 

response essential for shaping GI microbial composition. The 

role of IECs as mediators of innate immunity is underscored 

by studies of single-nucleotide polymorphisms (SNPs) associ-

ated with IBD, in which genes critical for antigen recognition 

and bacterial destruction have been identified, such as nucle-

otide-binding oligomerization domain 2 (NOD2) and autoph-

agy-related protein 16-like 1 (ATG16L1).46-50 Deficiency of these 

genes impairs normal maintenance of commensal populations 

and restriction of pathobionts, leading to dysbiosis.51-55 The in-

fluence of IBD candidate genes on epithelial barrier function 

and bacterial sensing are discussed in greater detail in several 

comprehensive review articles.56,57

 

COMMENSAL BACTERIA THAT REGULATE  
EPITHELIAL FUNCTION

Commensal microbes are those normally present in a healthy 

gut and who contribute to host mucosal homeostasis. In addi-

tion to their critical roles in digestion for the host, they also 
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serve to support the intestinal barrier by promoting tolerogen-

ic immune responses, as alluded to earlier. In particular there 

are a number of commensals that have been well-studied for 

their ability to improve barrier function and promote intesti-

nal health. In this section, we review a number of these com-

mensal organisms in an effort to understand how microbes 

contribute to maintenance of the intestinal epithelial barrier.

1. Muciniphilic Commensals 
The mucus layer is composed of mucins with oligosaccharide 

chains whose terminal ends cannot be metabolized by the 

majority of gut bacteria.58 However, certain bacteria termed 

mucin specialists have evolved specific enzymes that allow 

degradation of mucin oligosaccharide chains for sugar and 

protein, thereby facilitating their own colonization as well as 

growth of other commensals by increasing nutrient availabili-

ty.59-62 In fact, commensals such as Faecalibacterium prausnit-

zii rely on these mucin specialists to facilitate their coloniza-

tion to the mucus layer.63-68 Akkermansia muciniphila is a wide-

ly studied mucin specialist capable of tolerating the hypoxic 

environment near the epithelial surface and that utilizes host-

derived proteins for survival.69-71 A. muciniphila colonization 

increases mucin production and mucus thickness, and impro

ves barrier function.70,72-74 Butyrate production by A. muciniph-

ila is also beneficial to the host by upregulating energetic path-

ways, such as increased β-oxidation and intestinal gluconeo-

genesis in colonocytes that maintain a commensal-dominat-

ed microenvironment and protect from metabolic impair-

ment.75-78 Finally, increased abundance of A. muciniphila at 

sites of intestinal injury where oxygen is depleted, allows ex-

panded colonization by anaerobic bacteria. In this setting, A. 

muciniphila also promotes intestinal epithelial formyl peptide 

receptor 1 (FPR1) signaling and NADPH oxidase (NOX1) ac-

tivity to increase enterocyte migration and proliferation to fa-

cilitate mucosal healing.79

In addition, A. muciniphila has been inversely associated 

with intestinal inflammation.62,80-84 Recent evidence has also 

shown that A. muciniphila-secreted extracellular vesicles pro-

tect the epithelium from colitis and diet-induced barrier dys-

function.85 Another muciniphile Peptostreptococcus russellii, is 

also protective against DSS-induced chemical injury colitis 

model in mice. In addition to its mucin-degrading activity, P. 

russellii expresses aromatic amino acid metabolic enzymes 

that utilize tryptophan to produce indoleacrylic acids, which 

have anti-inflammatory effects and promote goblet cell func-

tion.86 The phenyllactate dehydratase gene cluster responsible 

for expression of these enzymes was decreased in IBD patients 

compared to healthy controls.86 Collectively, these findings in-

dicate both host and commensal act synergistically to encour-

age mucosal homeostasis and repress inflammation.

2. Faecalibacterium prausnitzii 
Another commensal microbe that is consistently decreased in 

UC patients is F. prausnitzii.87-89 F. prausnitzii is a highly abun-

dant butyrate-producer in the intestinal tract, encompassing 

5% of bacteria in feces.90,91 Since increased F. prausnitzii is cor-

related with improved outcomes following surgical resection, 

it was thought that this microbe could directly affect host im-

munity although its presence is not required for patient recov-

ery.92,93 In accordance with this, Quévrain et al.94 identified a 15 

kDa anti-inflammatory protein was secreted by F. prausnitzii. 

Subsequently, a study by Breyner et al.95 demonstrated F. praus-

nitzii secreted peptides termed “microbial anti-inflammatory 

molecules” can inhibit nuclear factor (NF)-κB promoter activi-

ty and interleukin (IL)-6 production, leading to protection from 

experimental colitis in mice through alteration of T cell immune 

responses. Interestingly, co-culture studies have demonstrated 

F. prausnitzii does not enhance barrier function but can induce 

activation of NF-κB signaling downstream of IL-1β in Caco-2 

cells.92,96 In contrast, Caco-2 cells treated with F. prausnitzii su-

pernatant decreases basal and IL-1β-induced NF-κB activity.92

3. Lactobacillus rhamnosus Gorbach-Goldin 
L. rhamnosus Gorbach-Goldin (LGG) has been well-studied 

as a probiotic used in the production of dairy yogurt. This com-

mensal microbe can indirectly and directly regulate epithelial 

function to repress inflammation and resist enteric infections. 

Administration of LGG culture supernatant to neonatal rats 

was associated with increased IEC proliferation, decreased 

paracellular barrier permeability, and increased expression of 

mucin-2, zonula occludens-1 (ZO-1), and IgA, together pro-

moting resistance to neonatal E. coli K1 infection.97 In addi-

tion, LGG enhances wound healing through enterocyte acti-

vation of FPR1 and NOX1, similar to A. muciniphila.98 Direct 

actions of LGG are performed p40, were found to inhibit pro-

inflammatory cytokine-induced IEC apoptosis.99 In addition, 

p40 can also modulate IgA production by increased expres-

sion of a proliferation-inducing ligand in IECs.41 More recently, 

p40 was found to exert its responses through the epidermal 

growth factor receptor  in neonatal mice, ultimately promot-

ing IgA production and T regulatory cell (Treg) differentiation 

in adult mice.100
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4. Bacteroides fragilis 
B. fragilis is a commensal found within the glycocalyx and in 

colonic crypts of mice that exhibits single-strain stability or the 

ability of a single strain of bacteria to persist in the microbial 

community for years.44 Its colonization of the mucosa is facili-

tated by IgA binding, which allows the bacteria to aggregate 

and contribute to colonization resistance against pathogenic 

bacteria.44 In addition, its expression of cytochrome bd oxi-

dase permits its growth in low concentrations of oxygen, such 

as those present in the colon.101 B. fragilis secretes an immu-

nomodulatory molecule, polysaccharide A (PSA) that regu-

lates immune cells such as induction of Foxp3+ Treg cell dif-

ferentiation to reduce intestinal inflammation and repression 

of IL-17 secretion.36-38 Furthermore, B. fragilis strains express-

ing PSA are able to prevent colonization by the pathobiont 

Helicobacter hepaticus and subsequent inflammation, indicat-

ing commensals can prevent pathobiont expansion.37 Intrigu-

ingly, B. fragilis also accounts for a majority of Bacteroides in-

fections in the body and the enterotoxigenic B. fragilis (ETBF) 

strain is a causative pathogen of diarrhea.102 Recently, Chan et 

al.103 demonstrated stable colonization of non-enterotoxigenic 

B. fragilis (NTBF) ameliorated disease severity following ETBF 

infection, in a PSA-independent manner. This study confirmed 

that B. fragilis predominance alone can be protective against 

mucosal inflammation. Whether increased virulence results 

from changes in the GI microenvironment and microbial ex-

change of genetic information is not well understood, although 

this is an emerging topic among research groups.102

 

DYSBIOSIS IN THE INFLAMMATORY GUT  
MICROENVIRONMENT

Inflammation in the GI tract is able to both alter the microbial 

community composition and promote expansion of patho-

genic bacteria, as described in extensive detail elsewhere.14-16 

Metagenomic studies of fecal matter, intestinal wash, and in-

testinal tissues have observed reduced diversity and temporal 

instability of the microflora in IBD patients compared to heal

thy controls despite an increased number of microflora at in-

volved tissue sites in IBD patients.104 Bacterial communities 

can be influenced by inflammation-induced alterations of nu-

trient sources, luminal pH, and growth of other bacterial spe-

cies such as those producing SCFAs which can also affect lu-

minal pH due to their acidic profile. In some cases, inflamma-

tion can support the virulent activity of commensals known as 

pathobionts.105-107 For example, Chassaing and Gewirtz108 dem-

onstrated that expansion of AIEC in mice lacking TLR5 re-

quired a pro-inflammatory niche. Here we summarize how 

inflammation-induced changes in mucosal homeostasis, par-

ticularly the mucosal microenvironment, promotes dysbiosis 

(Table 1).78,79,109-118

Table 1. Factors Influencing Microbial Colonization 

Factor Regulated by Effect

O2 concentration Butyrate producers decrease O2  
(antibiotic therapy)

Inflammation (ROS secretion and 
increased blood flow) increase O2

Decreased at sites of injury

Decreased numbers of commensal microbes and increased pathogenic bacteria109

Increased number of aerotolerant bacteria110

Akkermansia muciniphila increases mucosal healing wound sites79

Reactive oxygen/
nitrogen species

Inflammation Increase O2 concentration110

Promote alternative electron acceptors for microbial respiration, increasing 
pathogen number78,111

Inflammatory mediators Inflammation–ethanolamine
Inflammation–IL22RA1

Promotes expansion of pathogenic bacteria112

Increases intestinal fucosylation promoting diversity of anaerobic commensals 
and represses Enterococcus faecalis113

Dietary transition metals Inflammation–molybdenum
Inflammation–iron

Zinc

Utilized for microbial respiration to promote Enterobacteriaceae expansion114

Utilization by Escherichia coli Nissle 1917 restricts expansion of pathogenic 
bacteria115

Deficiency increases enteroaggregative E. coli virulence116

Dietary metabolites Host behavior and environment
Milk fats

 Increased sulfur promotes Bilophila wadsworthia expansion117

pH gradients Substrate fermentation Shifts in microbial communities118

O2, molecular oxygen; ROS, reactive oxygen species; IL22RA1, interleukin 22 receptor subunit α-1.
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1. Hypoxia and the Oxygen Gradient 
Under healthy conditions, an oxygen gradient in the colonic 

mucosa exists as a result of the high oxygen consumption re-

quired to maintain the inward Na+ gradient driving fluid ab-

sorption. However, bacteria can also contribute to the colonic 

oxygen gradient. Butyrate-producing bacteria increase levels 

of CO2 and together these mechanisms promote a hypoxic 

environment in the colonic lumen. Decreased levels of O2 pro-

mote anaerobic growth of commensal bacteria such as B. fra-

gilis and F. prausnitzii closer to the surface of IECs.101,110 How-

ever, in a chronic inflammatory state, oxygen levels near IECs 

increase due to secretion of reactive oxygen species and in-

creased blood flow. This allows facultative anaerobic, or “aero-

tolerant,” bacteria to predominate near the intestinal epitheli-

um such as Actinobacteria and Proteobacteria, phyla that are 

also associated with IBD.119 For example, mice exposed to DSS 

had increased numbers of aerobic bacteria compared to heal

thy controls, a phenomenon that has also been observed in 

newly-diagnosed CD patients.109,120 Depletion of butyrate-pro-

ducers such as Clostridia by antibiotic therapy induces a sub-

sequent increase in luminal oxygen, allowing increased growth 

of Enterobacteriaceae such as Salmonella serovar typhimuri-

um.121 The concept of increased epithelial oxygenation acting 

as a driver of facultative anaerobe expansion at the expense of 

butyrate-producing obligate anaerobes is elegantly described 

in a recent review by Litvak et al.78

2. Nutrient Sources and Colonization Resistance 
A primary method of preventing pathobiont expansion is col-

onization resistance by homeostatic microbes. Efficient nutri-

ent assimilation provides a selective advantage to certain bac-

teria that can hinder growth of pathogens. In addition, metab-

olites in the GI lumen can also activate signaling processes 

within IECs that promote selective microbial growth in both 

the healthy and inflamed gut. During inflammation, secreted 

reactive nitrogen species such as nitric oxide degrade to ni-

trate in the lumen where they are utilized by microbial nitro-

gen respiration pathways. Similarly, production of reactive ox-

ygen species promotes alternative sources of electron accep-

tors that are then utilized in microbial respiration. For exam-

ple, hydrogen sulfide (H2S) produced by commensals is oxi-

dized to thionate during inflammation which is then utilized 

by S. typhimurium, although there has been some evidence 

indicating H2S is also anti-inflammatory and promotes muco-

sal healing.111,122 Another metabolite increased by intestinal in-

flammation includes ethanolamine (EA), which is produced 

from phosphatidylethanolamine. Enzymes that utilize EA as a 

nutrient source are found in the genomes of many enteric patho-

gens so it is unsurprising that EA promotes predominance of 

S. typhimurium and enterohemorrhagic E. coli in mice.112,123 

Similarly, the bacterial fermentation product 1,2-propanediol 

is exploited by S. typhimurium during inflammation with in-

creased expression of virulence factors.124 Finally, GPR43, a G-

protein coupled receptor bound by bacterial-produced SC-

FAs, is important for resolution of intestinal inflammation in 

mice, and thus indicates a link between gut microbiota and 

inflammation resolution.125

Availability of dietary transition metals can also restrict patho-

genic bacteria growth. In a recent study Zhu et al.114 confirmed 

that microbial molybdenum cofactor-dependent respiration 

is a metabolic signature of DSS-induced dysbiosis and pro-

motes Enterobacteriaceae expansion during colitis.126 Consis-

tently, pathobiont expansion was reversed by tungstate treat-

ment.114 Competition for iron by the E. coli strain Nissle 1917 

restricts S. typhimurium during colitis and infection.115 Inter-

estingly, the host protein lipocalin-2 is required for this effect, 

indicating an intricate interaction between host and commen-

sal bacteria that promotes a healthy gut environment. In addi-

tion to colonization resistance, dietary metals can also alter 

bacterial gene expression. Zinc deficiency elevates the risk of 

pediatric diarrhea and is associated with pathogenic E. coli.127 

Indeed, low zinc causes increased virulence of enteroaggrega-

tive E. coli, the pathogen responsible for traveler’s diarrhea.116 

3. Intestinal pH Gradients 
Another factor affecting the gut microbial community is lumi-

nal pH, which can range from 5.7 to 6.8 in human cecum and 

pH 6.1 to 7.5 in the colon.128 There are major shifts in the gut 

microbiota between luminal pH values of 5.5 and 6.5. In a heal

thy colon, a gradient from a mildly acidic to a neutral environ-

ment exists from the proximal to distal colon. The acidic pH in 

the proximal colon is maintained by substrate fermentation 

where acetate and other SCFAs are produced from the fermen-

tation of indigestible polysaccharides facilitating expansion of 

butyrate-producing species such as Roseburia.129,130 During 

spontaneous colitis, accumulation of lactate drives a decrease 

in luminal pH, potentially due to repressed growth of lactate-

utilizing bacteria.131,132

From these examples, it is clear that environmental changes 

of the microbial niche can alter composition of the gut micro-

biota, occurring as both small perturbations and large displace-

ment of commensal bacteria. Both diet and inflammatory sta-
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tus contribute to these effects. Apart from these shifts in popu-

lation, changes in pathogenicity of seemingly innocuous bac-

teria are also of great interest since chronic GI conditions are 

associated with increased numbers of more virulent bacteria 

including “pathobionts.”

PATHOBIONT BACTERIA AND INTESTINAL 
FUNCTION IN IBD

Pathobionts are bacteria normally found in the intestines that 

exhibit pathogenic activity during a chronic disease state or in 

a genetically-susceptible host.133 Examples of pathobionts in-

clude Helicobacter species, virulent strains of E. coli, Campylo-

bacter concisus, Klebsiella species, and Vancomycin-resistant 

Enterococcus faecalis, among others. These bacteria promote 

inflammation by disruption of the intestinal barrier, invasion 

of the epithelium, and/or modulation of inflammatory respons-

es. Notably, in mouse models monoassociated with pathobi-

ont bacteria increased disease severity is dependent upon the 

presence of resident microbiota.134 In addition, activated im-

mune cell responses against both resident and pathogenic bac-

teria suggest that background inflammatory responses to resi-

dent commensals drives development of pathobiont pathoge-

nicity.135 These data suggest that expansion of pathobionts in 

the intestinal mucosa result from the complex interaction of 

commensals, IECs, and mucosal immune responses all of 

which contribute to the intestinal microenvironment. The ex-

tent of pathobiont-induced dysbiosis can vary as well. For ex-

ample, Helicobacter bilis does not alter microbial composition 

while adherent-invasive E. coli induces dysbiosis despite com-

mensal-directed immune responses.135,136 In this section we 

review the current understanding of various pathobionts in 

the GI tract.

1. Alterations of Intestinal Epithelial Integrity 
Pathobionts can interact with IECs to exert their effects both 

directly through adherence and translocation and indirectly 

through modulation of IEC functions (Fig. 1). Pathobionts 

such as Bilophila wadsworthia and Enterobacteriaceae faeca-

lis are able to adhere to and translocate through IEC monolay-

ers in vitro and in vivo.137-139 Adherence and invasion of patho-

bionts usually requires expression of specific genes such as 

proteases in E. faecalis and GipA (growth in Peyer’s patches) 

in AIEC.140-143 In addition to attachment and invasion, pathobi-

ont species also impair normal IEC functions for intestinal ho-

meostasis. C. concisus, a gram-negative microbe that is increased 

in pediatric and adult IBD patients, inhibits expression of the 

tight junction-associated proteins ZO-1 and occludin, as well 

as their association with tight junction complexes leading to a 

less regulated intestinal barrier.144-147 Pathobionts can also alter 

the life cycle of IECs. C. concisus increased apoptosis which 

left large gaps (apoptotic lesions) in the monolayer that per-

Fig. 1. Effect of bacteria on intestinal epithelial cells (IECs) leading to mucosal health or disease. Symbionts/commensal bacteria facilitate 
intestinal health by promoting tolerogenic immunity and barrier function. Expansion of pathobionts can lead to alteration of epithelial 
turnover, increased endoplasmic reticulum (ER) stress, pro-inflammatory signaling, and impaired barrier function. TJ, tight junction; Treg, 
T regulatory cell; AMP, antimicrobial peptide.

Homeostasis Disease

Promote barrier function
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Inhibit inflammation
Inhibit apoptosis
Increase Treg differentiation

Impair barrier function
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sisted longer than those in control HT-29/B6 IECs.148 In addi-

tion, colibactin-producing E. coli strains (which are also asso-

ciated with inflammation-associated colorectal cancer) acti-

vate senescent secretory intestinal cells to increase growth 

factor production, leading to increased local cell proliferation 

and tumor growth.149-151 Finally, expansion of Bacteroides vul-

gatus in Nod2-deficient mice was associated with goblet cell 

dysfunction and subsequently increased numbers of interferon-

γ-expressing lymphocytes.152 Together these studies demon-

strated the ability of pathobionts to hijack the proliferation-dif-

ferentiation process in the intestine in order to reduce impor-

tant mediators of host defense and promote bacterial invasion.

2. Activation of Immune and Stress Responses 
Pathobiont expansion can also increase pro-inflammatory 

signaling in IECs leading to dysbiosis and colitis. As mentioned 

above, B. vulgatus also increased pro-inflammatory cytokine 

production in Nod2-deficient mice.153 The capacity of pathobi-

onts to drive a pro-inflammatory response does not appear to 

be uniformly dependent on the presence of a host defect in in-

nate immunity as E. faecalis activates NF-κB, p38 MAPK, and 

ERK1/2 pro-inflammatory signaling via TLR2 resulting in in-

duction of IL-6 and IP-10 secretion in wild-type murine IECs.154 

AIEC secretion of outer membrane vesicles leads to activation 

of the host ER stress response protein Gp96.155,156 In addition, 

AIEC infection in mice also increased Il6 and Lcn2 mRNA ex-

pression, fecal lipocalin-2 content, and spleen weight.108 Bretin 

and colleagues recently suggested that transient AIEC infec-

tion in mice can promote inflammatory signaling after clear-

ance of the pathobiont.136 These data demonstrate that patho-

bionts are able to induce stress responses and inflammatory 

signaling in IECs and may continue to promote inflammation 

long after infection. 

3. Expansion of Pathobionts 
While much work has focused on how pathobionts induce in-

flammation, we have only begun to understand how these ini-

tially innocuous microbes become virulent and expand. As 

chronic GI disease is prevalent in developed countries, it has 

been hypothesized that environmental and behavioral factors 

such as diet contribute to dysbiosis. In support of this, studies 

have demonstrated that individuals relocating to developed 

countries begin to exhibit a more Western-like microbiome 

composition, similar to that of non-human primates who are 

captured in the wild and transferred to captivity.157 B. wadswor-

thia is a gram-negative bacterium usually found at low abun-

dance and has sulfite-reducing activity. Mice that were fed a 

high milk fat diet with saturated fats developed expanded B. 

wadsworthia leading to colitis, however this did not occur in 

mice fed other types of saturated fats or polyunsaturated fats.117 

Milk fats have elevated levels of hydrophobic stearate that re-

quires higher concentrations of bile salts for emulsification. 

Milk fat feeding led to a higher ratio of the bile salt taurocho-

late, which is a more efficient emulsifier and a source of or-

ganic sulfur.117 The subsequent increase in luminal organic 

sulfur facilitated a bacterial bloom of B. wadsworthia in these 

mice.117 In addition to dietary components, inflammatory me-

diators can also promote pathobiont growth. For example, 

when IL-22RA1 KO mice were infected with Citrobacter ro-

dentium they developed sepsis and had increased mortality 

due to expansion and increased translocation of E. faecalis. IL-

22RA increases Fut2 expression and subsequently increases 

intestinal fucosylation. This promotes increased diversity of 

anaerobic commensal symbionts, restricting expansion of E. 

faecalis.113 Pathobionts can also promote their own survival by 

escaping or resisting host defense mechanisms. For example, 

E. faecalis can resist antimicrobials targeting its cell envelope 

through expression of IreK, which is a kinase important for 

long-term colonization, potentially through inhibition of an-

tagonistic enterococci proteins.158 Thus, it is clear that a variety 

of host and environmental factors can precipitate selective ex-

pansion of pathobionts and that inflammatory responses can 

not only alter populations of pathobionts but also modify their 

level of pathogenicity, in conjunction with increasing host epi-

thelial susceptibility to pathobionts.

 

CONCLUSIONS 

It is increasingly clear that the gut microbiota has a significant 

impact on human health. Recent literature has described how 

changes in the intestinal microbiota can affect neurological 

networks and behavior, host metabolism, cardiovascular health, 

and many other physiological systems. Commensal bacteria 

promote mucosal health by fortifying barrier integrity, increas-

ing mucin and IgA secretion, inhibiting pro-inflammatory re-

sponses and apoptosis, and promoting commensal coloniza-

tion. In contrast, pathobiont bacteria repress expression of 

tight junction proteins and promote mislocalization, cause 

dysregulation of apoptosis and proliferation, and increase ER 

stress and pro-inflammatory signaling (Fig. 1). These effects 

contribute to the development of dysbiosis and prolong in-

flammatory signaling following infection. While much work 
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has begun to unravel this intricate network of interactions be-

tween the gut microbiota, IECs, immune cells, and environ-

mental factors, many questions still remain due to limitations 

in technology and methods to adequately study the microbi-

ome. Future studies focusing on the causal roles of bacteria 

and inflammation in driving changes to the microbiome and 

the influence of these changes on the intestinal mucosa will 

not only increase our understanding of how these relation-

ships operate in different setting (i.e., health vs. disease) but 

has the potential to identify strategies through which we can 

harness the therapeutic potential of host-gut microbe interac-

tions. 
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