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Abstract: Background: OncotypeDX Recurrence Score© (RS) is a commercially available 21-gene
expression assay which estimates prognosis and guides chemoendocrine prescription in early-stage
estrogen-receptor positive, human epidermal growth factor receptor-2-negative (ER+/HER2−) breast
cancer. Limitations of RS testing include the cost and turnaround time of several weeks. Aim: Our aim
is to develop a user-friendly surrogate nomogram capable of predicting RS. Methods: Multivariable
linear regression analyses were performed to determine predictors of RS and RS > 25. Receiver
operating characteristic analysis produced an area under the curve (AUC) for each model, with
training and test sets were composed of 70.3% (n = 315) and 29.7% (n = 133). A dynamic, user-
friendly nomogram was built to predict RS using R (version 4.0.3). Results: 448 consecutive patients
who underwent RS testing were included (median age: 58 years). Using multivariable regression
analyses, postmenopausal status (β-Coefficient: 0.25, 95% confidence intervals (CIs): 0.03–0.48,
p = 0.028), grade 3 disease (β-Coefficient: 0.28, 95% CIs: 0.03–0.52, p = 0.026), and estrogen receptor
(ER) score (β-Coefficient: −0.14, 95% CIs: −0.22–−0.06, p = 0.001) all independently predicted RS,
with AUC of 0.719. Using multivariable regression analyses, grade 3 disease (odds ratio (OR): 5.67,
95% CIs: 1.32–40.00, p = 0.037), decreased ER score (OR: 1.33, 95% CIs: 1.02–1.66, p = 0.050) and
decreased progesterone receptor score (OR: 1.16, 95% CIs: 1.06–1.25, p = 0.002) all independently
predicted RS > 25, with AUC of 0.740 for the static and dynamic online nomogram model. Conclusions:
This study designed and validated an online user-friendly nomogram from routinely available
clinicopathological parameters capable of predicting outcomes of the 21-gene RS expression assay.

Keywords: breast cancer; genomics; personalized medicine; surgical oncology

1. Introduction

OncotypeDX Recurrence Score© (RS) (Genomic Health Inc., Redwood City, CA, USA)
is a commercially available, clinically validated 21-gene expression assay which predicts
the risk of distant disease recurrence in early-stage estrogen receptor-positive, human epi-
dermal growth factor receptor-2-negative (ER+/HER2−) breast cancer [1–3]. The 21-gene
expression assay successfully substratifies patients who will derive the most benefit from
combined chemoendocrine therapy prescription, leading to the appropriate de-escalation
of chemotherapy prescription for a large proportion of these patients [4]. Accordingly, RS
testing has facilitated the personalization of cancer treatment for those with early-stage
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ER+/HER2− disease, leading to the endorsement of the 21-gene expression assay by sev-
eral expert panels and oncology societies in their recommended guidelines for early-stage
breast cancer, including the American Society for Clinical Oncology (ASCO), the National
Comprehensive Cancer Network (NCCN), and the European Society of Medical Oncology
(ESMO), among others [5–9].

There are several drawbacks to using RS testing in modern clinical practice: Analysis
of tumor specimens using the 21-gene expression assay is only conducted in the Genomic
Health Inc. headquarters in California, which incurs a local turnaround time of several
weeks in the Republic of Ireland. Although the initial aspiration for the assay was to provide
a cost-effective, personalized approach to chemoendocrine prescription in ER+/HER2−
early-stage breast cancer [10,11], novel data has emerged challenging this original percep-
tion, suggesting the true cost-effectiveness of the assay in clinical practice [12,13]. Moreover,
the local cost of each RS test is approximately €3000 [14]. Additionally, although RS testing
is publicly funded in the Republic of Ireland [14], this assay is not publicly funded in
many countries worldwide, which exacerbates the ongoing global healthcare inequity [15].
Orucevic et al. previously outlined that RS testing is performed on just one-third of po-
tentially eligible patients in the United States [16], while Albanell et al. reported that just
20% of eligible European citizens undergo RS testing [17]. Furthermore, the availability of
RS testing has been illustrated to be directly influenced by ethnic race and socioeconomic
class [18–20]. Therefore, there remains an unmet need to develop a surrogate biomarker which
rivals RS to aid therapeutic decisions making for those with early-stage ER+/HER2− disease.

It is well-described that a large component of RS testing can be determined through
the procurement and assessment of routine clinicopathological and immunohistochemical
(IHC) tumor characteristics [21–23]. Previous work from our group demonstrated that
certain clinicopathological parameters (such as steroid hormone receptor status and tumor
grade) can successfully predict RS [24], to guide and facilitate cost-effective therapeutic
decision making in poorly resourced healthcare economies, who have limited access to
multigene expression assays, such as RS. Similarly, the aim of this study was to develop a
user-friendly nomogram which could be used as a surrogate prediction model capable of
predicting the results of the 21-gene RS expression assay. The nomogram development is
based on consecutive patients diagnosed and treated with curative intent in a large, tertiary
referral center in the Republic of Ireland, using seven readily available clinicopathological
variables which correlate with RS in early-stage breast cancer.

2. Methods

Local hospital ethical approval was granted from the Galway University Hospitals
Clinic Research Ethics Committee (C.A.2377). Patient care was provided in a large tertiary
referral center providing services supporting breast cancer diagnosis and treatment at
Galway University Hospital (GUH) in the Republic of Ireland. GUH has Organisation
of European Cancer Institute (OECI) accreditation for the provision of cancer care to the
population living in the west of Ireland.

2.1. Study Design

A single-center, retrospective cohort study was undertaken, which included consecu-
tive patients diagnosed with ER+/HER2− early-stage breast cancer who underwent RS test-
ing on their resected tumor specimen during a 9-year period (January 2007–December 2015).
Patients who had metastatic disease in the axillary lymph nodes were excluded, as were
patients presenting with metastatic disease at presentation (M1). Detailed information with
respect to demographics, clinicopathological data, and RS testing results were collected using
electronic patient records. Included patients were identified from a prospectively maintained
database at the Department of Surgery at the National University of Ireland, Galway.
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2.2. Diagnosis and Staging

Included patients underwent comprehensive triple assessment to facilitate accurate
diagnosis in our tertiary referral center. This involved the following: (1) clinical breast ex-
amination performed by a consultant breast surgeon; (2) radiological assessment performed
via mammography and/or ultrasound, with magnetic resonance imaging used in select
cases. All imaging was then analyzed by a consultant radiologist with specialist training in
breast pathology; and (3) diagnostic core biopsies were performed under image guidance
by the consultant radiologist, before diagnosis was confirmed via histological analysis of
tumor specimens using a standardized reporting template. Specimens were analyzed in an
accredited pathology laboratory, with formal validation by a specialist consultant breast
pathologist. Staging was performed in accordance with the American Joint Committee on
Cancer (AJCC), version 8 Guidelines [25].

2.3. Histopathology Tumor Assessment

Evaluation of estrogen (ER) and progesterone receptor (PgR) statuses was performed
in accordance with the Allred scoring system [26]. Assessment of human epidermal growth
factor receptor-2 (HER2) status was determined using IHC, with tumors scoring 2+ then sub-
mitted for fluorescence in-situ hybridization (FISH) to confirm HER2 tumor status [27–29].
Tumor grading was evaluated using the Elston Ellis modification of the Scarff–Bloom–
Richardson grading system (in accordance with the World Health Organization Classifica-
tion of Tumors Guidelines) [30,31]. RS testing was performed through reverse-transcription
polymerase chain reaction at the Genomic Health laboratory (Redwood City, CA, USA),
using paraffin-embedded tumor tissue samples, as previously outlined in the seminal work of
Paik et al. [1]. RS is a composite score of 16 cancer-related and 5 reference genes which are
incorporated into an algorithm which generates a recurrence score of 0–100, which represents
the patient’s individual risk of distant disease recurrence at 9 years following treatment.

2.4. Statistical Analysis

Descriptive statistics were used to record clinicopathological and RS data from 448 patients
who underwent RS testing for ER+/HER2− breast cancers in our center. The dataset is randomly
divided into a training set, which is used to train a model for predicting the RS, and an
independent test set to evaluate the model performance. The training set comprised 70.3%
of the total cohort (n = 315) and the test set comprised 29.7% (n = 133). Multivariable
linear regression analyses were performed to determine predictors of RS, with results
expressed as β-Coefficient with associated 95% confidence intervals (CIs). p-values with
p < 0.050 were determined to be statistically significant. Various graphical and numerical
performance outcome summaries were used to demonstrate the discrimination ability
of the model. Receiver operating characteristic (ROC) curves were used to demonstrate
graphically how best the model predict would predict RS [32]. ROC analysis produces an
area under the curve (AUC) for each model by plotting the sensitivity and specificity of the
model at each of its risk thresholds. The AUC value, in addition to the accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative predictive value (NPV), are utilized
to evaluate the model performance numerically [33]. For the initial analysis, RS was
expressed as a continuous variable, however, it is also classified as ≤25 or >25 in accordance
with the clinically relevant cut-offs established by Sparano et al. in the TAILORx [2]. Finally,
a dynamic nomogram (https://mattdavey93.shinyapps.io/RSsurrogate/) (accessed on 13
December 2021) [34] was designed and built to predict RS with the relevant uncertainty
for any given user information [35]. This web application aims to convey the result of
the RS surrogate risk calculator in the most translated way for oncologists faced with
decisions with respect to chemoendocrine therapy prescription in the absence of RS. Data
analysis is performed in R (version 4.0.3) using ‘plyr’, ‘caret’, ‘car’, ‘boot’, ‘pROC’, ‘rms,’
and ‘DynNom’ packages.

https://mattdavey93.shinyapps.io/RSsurrogate/
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3. Results
3.1. Clinicopathological Dataset

In total, 448 consecutive patients who underwent RS testing for ER+/HER2− breast
cancer were included. The median age at diagnosis was 58 years (interquartile range (IQR):
51–64 years). Overall, 69.0% of patients were postmenopausal at diagnosis (311/448) and
65.0% presented via the symptomatic referral pathway (289/448). The median tumor size
was 20.0 mm (IQR: 14.0–26.0 mm). In total, 97.5% of tumors were T-stage 1–2 (437/448),
76.1% had invasive ductal carcinoma (IDC) histology (341/448), and 70.5% had grade 2
disease (296/420). All patients had ER+ (100.0%, 448/448) and 86.1% had progesterone
receptor-positive (PgR+) disease (386/448). The median RS was 17 (IQR: 13–22, range:
0–44). All patients had node-negative disease in the axilla (100.0%, 448/448). Summary
data for the matched training cohort (70.3%, n = 315) and test cohort (29.7%, n = 133) are
outlined in Table 1.

Table 1. Characteristics of the entire cohort with matched training and test sets.

Overall (n = 448) Train Set (n = 315) Test Set (n = 133)

Age at Diagnosis 58 (51, 64) 59 (51, 64) 58 (51, 65)
Menopause Status
Premenopausal (0) 137 (31%) 91 (29%) 46 (35%)
Postmenopausal (1) 311 (69%) 224 (71%) 87 (65%)
Diagnostic pathway

Symptomatic (0) 289 (65%) 208 (66%) 81 (61%)
Screening Detected (1) 159 (35%) 107 (34%) 52 (39%)

Main Tumor Size 20 (14, 26) 20 (15, 26) 19 (13, 26)
Tumor Stage

T1 219 (49%) 148 (47%) 71 (53%)
T2 218 (49%) 159 (50%) 59 (44%)
T3 11 (2.5%) 8 (2.5%) 3 (2.3%)

Histological Subtype
IDC 341 (76%) 243 (77%) 98 (74%)
ILC 82 (18%) 52 (17%) 30 (23%)

Other 25 (5.6%) 20 (6.3%) 5 (3.8%)
Tumor Grade

Grade 1 44 (10%) 28 (9.5%) 16 (13%)
Grade 2 296 (70%) 206 (70%) 90 (71%)
Grade 3 82 (19%) 62 (21%) 20 (16%)
ER Score

2 2 (0.4%) 1 (0.3%) 1 (0.8%)
3 2 (0.4%) 1 (0.3%) 1 (0.8%)
4 2 (0.4%) 2 (0.6%) 0 (0%)
5 3 (0.7%) 1 (0.3%) 2 (1.5%)
6 16 (3.6%) 12 (3.8%) 4 (3.0%)
7 56 (12%) 43 (14%) 13 (9.8%)
8 367 (82%) 255 (81%) 112 (84%)

PgR Score
0 62 (14%) 46 (15%) 16 (12%)
2 6 (1.3%) 3 (1.0%) 3 (2.3%)
3 21 (4.7%) 12 (3.8%) 9 (6.8%)
4 26 (5.8%) 19 (6.1%) 7 (5.3%)
5 48 (11%) 36 (11%) 12 (9.1%)
6 62 (14%) 36 (11%) 26 (20%)
7 73 (16%) 55 (18%) 18 (14%)
8 148 (33%) 107 (34%) 41 (31%)

OncotypeDX© Recurrence
Score 17 (13, 22) 17 (13, 22) 17 (13, 22)

Legend: N; number, median (IQR); interquartile range, IDC; invasive ductal carcinoma, ILC; invasive lobular
carcinoma, T; tumor stage, ER; estrogen receptor, PgR; progesterone receptor.
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3.2. Nomogram Model Development

First, we attempted to create a surrogate nomogram model capable of predicting RS as
a continuous variable using our training dataset (n = 315, 70.3%). Using multivariable linear
regression analyses, being premenopausal (β-Coefficient: 0.25, 95% CIs: 0.03–0.48, p = 0.028),
having grade 3 disease (β-Coefficient: 0.28, 95% CIs: 0.03–0.52, p = 0.026), and ER score
(β-Coefficient:, −014, 95% CIs: −0.22– −0.06, p = 0.001) all independently predicted RS (Table 2).

Table 2. Multivariable linear regression analysis to predict clinicopathological data capable of
predicting continuous Recurrence Score.

Surrogate RS Model Beta 95% CI 1 p-Value

Age at Diagnosis −0.01 −0.02, 0.00 0.12
Menopause Status

Postmenopausal (0) - - -
Premenopausal (1) 0.25 0.03, 0.48 0.028

Symptomatic Presentation
Screening Detected (0) - - -

Symptomatic (1) 0.09 −0.06, 0.23 0.2
Tumor Stage

T1 - - -
T2 0.03 −0.10, 0.15 0.7
T3 0.18 −0.23, 0.59 0.4

Tumor Grade
Grade 1 - - -
Grade 2 0.09 −0.13, 0.30 0.4
Grade 3 0.28 0.03, 0.52 0.026

Histological Subtype 0.99 0.50, 1.72 0.9
Increasing ER Score −0.14 −0.22, −0.06 0.001

Increasing PgR Score −0.02 −0.04, 0.00 0.11
Legend: 1 CI = confidence interval, RS; recurrence score, ER; estrogen receptor, PgR; progesterone receptor.

Using our training dataset, we created a nomogram model capable of predicting
high-risk RS (RS > 25). Using multivariable logistic regression analyses, having grade
3 disease (odds ratio (OR): 5.67, 95% CIs: 1.32–40.00, p = 0.037), decreased ER score
(OR: 1.33, 95% CIs: 1.02–1.66, p = 0.050), and decreased progesterone receptor score
(OR: 1.16, 95% CIs: 1.06–1.25, p = 0.002) all independently predicted RS > 25 (Table 3).
The calibration plot for these models illustrating the predicted probability for RS versus the
observed RS are illustrated in Figure 1.
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Table 3. Multivariable logistic regression analysis to predict clinicopathological data capable of
predicting recurrence score > 25.

Surrogate RS > 25 Model OR 1 95% CI 1 p-Value

Age at Diagnosis 1 0.95, 1.05 >0.9
Menopause Status

Postmenopausal (0) - - -
Premenopausal (1) 1.4 0.40, 5.23 0.6

Symptomatic Presentation
Screening Detected (0) - - -

Symptomatic (1) 0.87 0.40, 1.96 0.7
Tumor Stage

T1 - - -
T2 1.37 0.47, 3.99 0.6
T3 3.99 0.07, 164 0.5

Tumor Grade
Grade 1 - - -
Grade 2 2.22 0.57, 14.8 0.3
Grade 3 5.67 1.32, 40.0 0.037

Histological Subtype 0.98 0.51, 1.76 >0.9
Decreasing ER Score 1.33 1.02, 1.66 0.05

Decreasing PgR Score 1.16 1.06, 1.25 0.002
Legend: 1 OR = odds ratio, CI = confidence interval, RS; recurrence score, ER; estrogen receptor, PgR; progesterone
receptor.

3.3. Performance of Nomogram Models

ROC curve analyses were performed to test the diagnostic test accuracy of the nomo-
gram models, with associated calibration plots for nomogram models for predicting RS
as a continuous variable (Figure 1A) and as a binary outcome of RS ≤ 25 or RS > 25
(Figure 1B). Using our test (or validation) set (n = 133, 29.7%), the AUC for the nomogram
model assessing RS was 0.719 (Figure 2). Overall, the accuracy of this nomogram was
0.800 (95% CI: 0.719–0.866) with a sensitivity of 0.872, specificity of 0.312, PPV of 0.887,
and NPV of 0.316. Additionally, using our test set (or validation set), the AUC for the
nomogram model assessing RS > 25 was 0.740 (Figure 2). Overall, the accuracy of the
second nomogram was 0.858 (95% CI: 0.764–0.889) with a sensitivity of 0.858, specificity
of 0.400, PPV of 0.972, and NPV of 0.105. This model was selected to develop the static
(Figure 3) and dynamic (https://mattdavey93.shinyapps.io/RSsurrogate/) (accessed on 13
December 2021)) nomogram development. Due to the slightly enhanced diagnostic test
accuracy of both nomogram models, the second surrogate nomogram (which predicted
RS as a binary variable) was selected for use in the static and dynamic nomograms due to
this model providing more information which is of use to the multidisciplinary team when
making decisions about chemoendocrine prescription.

https://mattdavey93.shinyapps.io/RSsurrogate/
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4. Discussion

Contemporary oncological practice now recognizes the idiosyncratic genetic geno-
typic and phenotypic profiles of each breast tumor, which has facilitated the substrati-
fication of the disease into biologically diverse subgroups, even within the same molec-
ular subtypes [36,37]. Thus, the molecular era has facilitated the personalization of the
management of early-stage ER+/HER2− breast cancer through patient and tumor dif-
ferentiation by multigene panels, such as the 21-gene RS expression assay [1,2,38]. Un-
fortunately, as outlined previously, there are several disadvantages to these commercial
profiling assays [10–12,14], which set the foundations for the conduction of the current
study. We successfully designed and validated an online user-friendly nomogram using rou-
tinely available clinicopathological data that could accurately predict RS (accuracy: 0.840,
95% CI: 0.764–0.899). A dynamic version of this nomogram has been made readily available
online, which may be advantageous in serving populations being treated with ER+/HER2−
disease in inadequately resourced and underfunded healthcare systems across the globe.
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While several previous authors have established that RS can be predicted from readily avail-
able clinicopathological variables (i.e.,: ER, PgR, grade, menopause status, etc.) [21–24], the
current study has built on this hypothesis through the incorporation of such parameters
into multivariable models, which have facilitated nomogram development to aid RS estima-
tion. Thus, this study contributes to the current efforts by clinicians to balance healthcare
inequity across the world, as demonstrated in previous global surgery initiatives [39].

It is important to note that the current nomograms pragmatically use steroid hormone
receptor and menopause status as key determinants of RS. Clarifying menopause status
and measurement of ER/PgR is mandated for all cases of invasive breast cancer, as recently
outlined in the 5th ESMO International Consensus for advanced and local breast cancers in
addition to the recent RxPONDER trial [3,40,41]. Therefore, using these critical parameters
to estimate RS is crucial for patients being treated in poorly resourced healthcare settings.
This is not the first study to investigate building a nomogram to predict RS; from their
series of 485 patients with ER+/HER2− breast cancer with 0–3 positive lymph nodes, Lee
et al. developed a nomogram which demonstrated the ability of ER score, PgR score, tumor
grade, lymphovascular invasion (LVI), and Ki-67 to predict low-risk RS (RS < 25) [42]. Of
note, two of the five variables (LVI and Ki-67) used by these authors to predict RS were
not included in our nomogram: LVI is not conducted as routine on every specimen in the
setting of node negative ER+/HER2− cancers in our center due to the limited premise in
best practice guidelines for using the biomarker to guide adjuvant therapeutic treatment
decisions in early-stage breast cancer [40,43–46]. Similarly, Ki-67 measurement is not man-
dated due to inconsistencies in detection [47]. Therefore, reliance upon such biomarkers
to provide a reproducible and equitable surrogate biomarker to RS may be brought into
question. Although measurement is not mandated for all cases of invasive breast can-
cer, we must acknowledge that LVI is an early indicator of metastatic dissemination [48]
and has recently been reported as a significant predictor of recurrence-free (hazard ratio
(HR): 1.425), disease-free (DFS) (HR: 1.345), and overall survival (OS) (HR: 1.345) outcomes
in an analysis of 17,322 patients by Houvenaeghel et al. [49]. Moreover, data from the afore-
mentioned study suggests that LVI has potential to serve as a surrogate biomarker of RS
predictive of patients with luminal A disease who may benefit from adjuvant chemotherapy
prescription. Similarly, Lee et al. describe Ki-67 indices as predictive correlates of RS in
their nomogram, with results validated by other authors in two more recent studies which
developed surrogate nomograms to RS [50,51]. This is an unsurprising finding; within the
21-gene expression assay, comparison between the 16 cancer-related and 5 reference (or
“housekeeping”) genes is included in an algorithm to generate the RS [1]. Of the 16 cancer
genes in the panel, 5 are directly related to proliferation, with 1 representing and corre-
sponding with Ki-67 antigen expression [14,47], making it foreseeable that several reports
correlate RS and Ki-67 protein expression in ER+ disease [52–54]. Therefore, inclusion of
Ki-67 expression indices is justified in previous nomograms. At present, Ki-67 proliferation
indices are not routinely performed for every specimen with ER+/HER2− early breast
cancer due to its limited value for treatment decisions due to inconsistent and questionable
analytical validity and reproducibility [47], as recently outlined by the International Ki-67
in Breast Cancer working group [55]. Ovucevic et al. previously developed a surrogate
prediction nomogram model from 27,719 patients using six clinicopathological variables
(age at diagnosis, tumor size, tumor grade, PgR status, LVI, and histopathological subtype)
from the National Cancer Database [56], with higher diagnosed test accuracy than the
nomogram developed in this study (Ovucevic—accuracy: 0.887 (95% CI: 0.880–0.893),
Davey—0.840, 95% CI: 0.764–0.899). The same authors then updated their nomogram based
on the TAILORx clinical cut-offs with slightly lower accuracy (0.860) [57]. Nevertheless, we
must reiterate the importance of this nomogram for using the most crucial clinicopatho-
logical parameters (i.e., ER, PgR, menopause status, etc.) required to guide therapeutic
decision-making in accordance with best practice management for those being treated for
ER+/HER2−/N- disease in settings where routine RS testing is not available.
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In our multivariable analysis, a combination of menopause status, tumor grade, ER
score, and PgR score independently predicted RS (accuracy: 0.800, 95% CI: 0.719–0.866)
and RS > 25, respectively (accuracy: 0.858, 95% CI: 0.764–0.889). These results have been
consistently observed in the previous studies which have built nomograms predictive of
RS [42,50,51,56,57] and are unsurprising, as gene expression levels of ER and PgR were
included in the algorithm designed by Paik et al. when creating the 21-gene expression
assay [1]. Moreover, menopause status independently predicted RS, an unanticipated
result which is less well-described in previous studies [22,24]. This is an interesting finding,
as this data coincides with the recent results of the RxPONDER trial reported by Kalin-
sky et al. [58]. In RxPONDER, the authors describe an improved relative DFS benefit
for premenopausal patients with RS < 25 in receipt of combined chemoendocrine ther-
apy (vs. endocrine therapy alone) (HR: 0.54, 95% CI: 0.38–0.76), in addition to an early
indication of an improved OS (HR: 0.47, 95% CI: 0.24–0.94) for those with 1–3 positive
lymph nodes [3,58]. Nevertheless, caution is required when interpreting these results, as
combined chemoendocrine therapy use in premenopausal patients in RxPONDER con-
ferred an absolute risk reduction of just 5.2% and 1.3% for DFS and OS, respectively, in
addition to a negligible benefit in those who were postmenopausal at diagnosis. Con-
versely, Carr et al. successfully challenged this concept in their analysis of 575 patients
(142 premenopausal, 433 postmenopausal) which coherently demonstrates that menopause
status is not useful in predicting RS in their analysis of 575 patients (142 premenopausal,
433 postmenopausal) [59]. Overall, data interpretation in relation to menopause status is
challenging, given that confounding factors may change over time, with menses becoming
inconsistent and unpredictable in those who are perimenopausal [60]. These challenges are
reflected in the varying definitions and criteria used by several breast cancer study groups
(including the National Comprehensive Cancer Network, Austrian Breast and Colorectal
Cancer Study Group, and National Cancer Institute) to identify menopause [60]. This adds
further complexity to interpretating the results and drawing of conclusions with respect to
menopause status as a predictor of RS. Therefore, the authors recommend judicious use
of menopause status as a parameter to determine chemotherapy benefit in the setting of
early-stage ER+/HER2− disease, and advocate for endocrine and ovarian suppression
therapy prescription as a useful alternative in these patients [61].

While the current study successfully developed a nomogram capable of predicting RS
with high accuracy (0.840), sensitivity (0.858), and positive predictive value (0.971), there
have been several previous attempts to develop surrogate biomarkers of RS. Klein et al.
previously developed Magee equations from 817 patients with RS which were then suc-
cessfully applied to differentiate low and high RS categories [22]. Similarly, Abubakar et al.
developed an IHC4 score from four readily available IHC parameters (ER, PgR, HER2,
and Ki-67) from 2498 patients with RS results through the substratification of patients
into luminal-A-like (ER+/PgR+/HER2−/low-Ki-67) and luminal-B-like (ER+/PgR+ or
PgR−/HER2+ or high-Ki-67) [62]. Interestingly, there is now evidence illustrating the
evolving role of radiogenomic data which may be used to successfully predict RS [63,64]:
Radiogenomics is an evolving field which examines the relationship between radiological
features undetectable to the human eye and the underlying genomic landscape of the dis-
ease [65]. It is worth noting that proposed nomograms, Magee equations and IHC4 scores
are all models which possess relatively straightforward capacity for prospective evaluation
because they are easily reproduced with no additional expenses to healthcare services.
Conversely, radiogenomics is imperfect in its current form and will inevitably require re-
finement of current techniques. This is likely to only be achieved through large-scale buy-in
from international investment companies to financially facilitate the robust technological
enhancement required (i.e.,: refining machine learning strategies through high-throughput
image-based screening) to successfully challenge clinically validated multigene expression
assays. However, if given the opportunity to be prospectively validated, it is plausible
that radiogenomics has potential to become embedded into multidisciplinary discussion
within clinical oncological practice to further facilitate a more personalized approach to
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oncological patient care. In the interim, RS testing will remain the gold standard, with
use of surrogate biomarkers, such that the current nomogram may guide chemoendocrine
prescription in the setting of early-stage ER+/HER2− disease.

Despite several strengths, the current analysis is subject to several limitations. Firstly,
although RS was initially validated for use in patients being treated for ER+/HER2−
breast cancer with axillary lymph node-negative disease, the paradigm has evolved in
recent years to highlight the utility of the RS in cases of 1–3 positive lymph nodes in the
axilla [58]. This study is retrospective in design, wherein all patients were recruited to this
study in an era prior to validation of RS for use in cases of node-positive disease. Thus,
the application of the nomogram developed in this study should ideally be limited to
those with node-negative breast cancers. Secondly, this model has been developed and
validated in a combined cohort of less than 450 patients all treated in a tertiary referral
center serving a unique population on the edge of Europe [66,67]. Therefore, results
generated from the genomic profile of these patients may be somewhat untranslatable to
other culturally distinct regions, such as those in the United States and mainland Europe,
limiting the clinical utility of this nomogram in certain jurisdictions. Thirdly, despite high
diagnostic test accuracy, sensitivity, and PPV, this nomogram suffers from poor-to-modest
specificity and NPV. It is possible that these may expose patients to overtreatment through
the overestimation of high RS and failure to detect those with low-risk RS. Thus, prudent
application of this nomogram is required. Finally, due to this nomogram being designed
from a study comprised of retrospective data, this study inherently faces exposure to
selection, ascertainment, and confounding biases. Nevertheless, the authors advocate for
the application of this nomogram as a cost-effective surrogate to RS testing for use in poorly
resourced healthcare economies to guide the personalisation of therapeutic decision-making
in early-stage ER+/HER2− disease.

In conclusion, this study successfully designed and validated a static and online user-
friendly nomogram from routinely available clinicopathological parameters that could
predict outcomes of the 21-gene RS expression assay with high diagnostic test accuracy,
sensitivity, and PPV. Following the results of this study, a dynamic nomogram has been
made readily available online, which may prove advantageous in serving patients being
treated for early-stage ER+/HER2− disease in inadequately resourced and underfunded
healthcare systems worldwide. Therefore, this study ensures the provision of a personalized
approach to breast cancer patient care and attempts to address healthcare inequity in breast
cancer management in a cost-effective, user-friendly manner.
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