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Abstract

Motivation: The NCBI’s Sequence Read Archive (SRA) promises great biological insight if one could

analyze the data in the aggregate; however, the data remain largely underutilized, in part, due to the

poor structure of the metadata associated with each sample. The rules governing submissions to the

SRA do not dictate a standardized set of terms that should be used to describe the biological samples

from which the sequencing data are derived. As a result, the metadata include many synonyms,

spelling variants and references to outside sources of information. Furthermore, manual annotation

of the data remains intractable due to the large number of samples in the archive. For these reasons,

it has been difficult to perform large-scale analyses that study the relationships between biomolecu-

lar processes and phenotype across diverse diseases, tissues and cell types present in the SRA.

Results: We present MetaSRA, a database of normalized SRA human sample-specific metadata

following a schema inspired by the metadata organization of the ENCODE project. This schema

involves mapping samples to terms in biomedical ontologies, labeling each sample with a sample-

type category, and extracting real-valued properties. We automated these tasks via a novel compu-

tational pipeline.

Availability and implementation: The MetaSRA is available at metasra.biostat.wisc.edu via both a

searchable web interface and bulk downloads. Software implementing our computational pipeline

is available at http://github.com/deweylab/metasra-pipeline

Contact: cdewey@biostat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The NCBI’s Sequence Read Archive (SRA) (Leinonen et al., 2011)

is a public database that stores raw next generation sequencing

reads from over 1.5 million samples belonging to over 75 000

studies. The size and diversity of these samples offers unprecedented

opportunity to study the relationships between biomolecular proc-

esses and phenotypes across diverse conditions, cell types and dis-

eases. For example, by focusing on RNA-seq datasets in the SRA,

one can study the relationships between gene expression and

phenotype.

Unfortunately, such studies are currently difficult due to the

poor structure of the metadata associated with samples in the SRA.

These metadata are centrally stored at the BioSample database

(Barrett et al., 2012), with each SRA sequencing experiment refer-

encing a sample-specific metadata record within this database. The

BioSample database organizes each sample’s metadata as sets of

key-value pairs where the key is a property of the sample and the

value is a property-value of the sample. Figure 1A and B display the

metadata for two representative samples. Unfortunately, both the

properties and property-values are non-standardized and are created

at the discretion of the submitter. For this reason, both keys and val-

ues consist of synonyms, misspellings, abbreviations and references

to outside sources of information. Furthermore, despite the imposed
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structure of a key-value description, many of the values are complex,

natural language text.

Without uniformly labelled samples, it remains difficult to per-

form large meta-analyses across the SRA. For example, an attempt

at applying machine learning for predicting phenotype from RNA-

seq data would require labelled examples for training a model. The

raw-metadata of the SRA does not satisfy this need. Aside from

large-scale analyses, it also remains challenging to study targeted

phenotypes in the SRA due to the difficulty in querying for samples

that exhibit a phenotype of interest.

Our goal in this work is to provide structured descriptions of the

human biological samples used in the SRA in order to enable aggre-

gate analysis, as well as reanalysis, of these data. This task is chal-

lenging because it requires discriminating between information that

describes the biological sample from information that describes

other entities such as the sample’s study, sequencing protocol and

lab. A solution to structuring the sample-specific information must

address the metadata’s semantics.

Existing methods for normalizing biomedical text focus on anno-

tating the text with terms in a controlled vocabulary, usually in the

form of a biomedical ontology. One can approach the task of anno-

tating metadata using either a manual or automated approach.

Manual annotation allows for high accuracy at the cost of low

throughput. For example, the RNASeqMetaDB provides a database

of manually annotated terms associated with a set of mouse RNA-

seq experiments (Guo et al., 2015). This database describes only

306 RNA-seq experiments, which represents a small subset of all ex-

periments in the SRA.

In contrast, automated annotation allows higher throughput at

the cost of lower accuracy. Methods for automating the normaliza-

tion of biomedical metadata frame the task as that of entity recogni-

tion. Entity recognition is the process of automatically recognizing

and linking entities in natural language text to their corresponding

entries in a controlled vocabulary. Tools that take this approach in-

clude ConceptMapper (Tanenblatt et al., 2010), SORTA (Pang

et al., 2015), ZOOMA (Misha et al., 2012) and the BioPortal

Annotator (Noy et al., 2009). Furthermore, there have been efforts

to utilize such tools to automatically normalize large biomedical

metadatasets. For example, work by Shah et al. (2009) automatic-

ally annotated samples and studies in the Gene Expression Omnibus

(GEO) (Barrett et al., 2013) and other sources of biomedical

metadata. Similarly, work by Galeota and Pelizzola (2017) anno-

tated samples in GEO using ConceptMapper.

We assert that entity recognition alone is insufficient for automating

the normalization of the SRA’s sample-specific metadata. Rather, since

many of the sample’s descriptions mention ontology terms that describe

extraneous entities (such as the study and experiment), a suitable solu-

tion should seek to extract only those terms that are being used to de-

scribe the biology of the sample. Biomedical entity recognition tools are

best suited for data submitters who wish to facilitate annotation of their

metadata before submission. Such tools do not adequately filter terms

that do not describe the biology of the sample because they do not at-

tempt to understand the fine-grained semantics of the text.

We further assert that important biological properties are often

numerical and are not captured by ontology terms alone. Such terms

include age, time point and passage number for cell cultures. To the

best of our knowledge, the problem of extracting real-value proper-

ties from metadata has yet to be addressed.

Lastly, we assert that ontology terms alone do not always pro-

vide enough context to understand the type of sample being

described. For example, a cell culture that consists of stem cells dif-

ferentiated into fibroblast cells may be annotated as both ‘stem cells’

and as ‘fibroblast.’ Such annotation leaves ambiguity as to whether

the sample was differentiated from stem cells, or rather, was reprog-

rammed into a pluripotent state from primary fibroblasts. We assert

that each sample should be categorized into a specific sample-type

that captures the process that was used to obtain the sample.

To address these challenges, we present MetaSRA: a normalized

encoding of biological samples in the SRA, along with the novel

computational pipeline with which it was automatically con-

structed. MetaSRA encodes the metadata for each sample with a

schema inspired by that used in the ENCODE project (Malladi

et al., 2015). This schema is comprised of three parts:

1. Sample labels, using terms from the following biomedical ontol-

ogies: Disease Ontology (Kibbe et al., 2015), Cell Ontology

(Bard et al., 2005), Uberon (Mungall et al., 2012), Experimental

Factor Ontology (EFO) (Malone et al., 2010) and the

Cellosaurus (http://web.expasy.org/cellosaurus).

2. A sample-type classification, with six sample-type categories

similar to those used by ENCODE.

3. Standardized numerical properties of the sample.

A C

B

Fig. 1. Overview of the dataset. (A) Sample-specific key-value pairs describing sample SRS1217219. Note that the values encode natural language text. (B)

Sample-specific key-value pairs describing sample SRS872370. Note the reference to an external cell line BJ. We also note that ‘forskin fibroblast’ is an incorrect

spelling. Lastly, the value ‘no’ negates the key ‘lentiviral transgenes.’ (C) Histogram of the number of samples per study for human RNA-seq experiments using

the Illumina platform. We assert that the 88 studies each with at least 100 samples can be semi-manually normalized using study-specific methods
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The first two parts are shared with the ENCODE schema, with

the last part being a MetaSRA-specific extension. Currently,

MetaSRA encodes all human samples utilized in RNA-seq experi-

ments on the Illumina platform; however, future work will expand

MetaSRA to other species and assays.

2 Data

We standardized all human samples assayed by RNA-seq experi-

ments on the Illumina platform. Metadata was retrieved from the

SRAdb (Yuelin et al., 2013) downloaded on 09/05/2016. The

BioSample’s sample-specific key-value pairs are stored in the ‘attri-

bute’ field of the ‘sample’ table in the SRAdb. Our dataset consists

of 75038 samples, of which, 73407 are associated with a non-empty

set of descriptive key-value pairs.

The samples processed belong to 2681 distinct studies and the

number of samples contained in each study varies by several orders

of magnitude (Fig. 1C). These studies can be partitioned into 88

‘large’ (� 100 samples) and 2593 ‘small’ (<100 samples) studies,

with the ‘large’ studies constituting 57% of all samples processed.

Due to the fact that samples belonging to a common study are

described similarly, we argue that it is tractable to annotate samples

belonging to the modest number of ‘large’ studies using hand-tuned

study-specific methods. In contrast, the large number of ‘small’ stud-

ies and the diversity of their associated descriptions makes the pro-

cess of designing study-specific methods for all of these studies

intractable. We therefore focused our evaluations on samples be-

longing to ‘small’ studies, with future work involving hand-tuning

the normalization of samples from ‘large’ studies.

3 Task definition

3.1 Mapping samples to ontologies
Like the ENCODE project, we label each biological sample using

biomedical ontologies. An ontology is a structured knowledge-base

that defines a set of concepts/terms within a specific domain of dis-

course. Besides providing the definition for each term, an ontology

also encodes a directed graph in which each term is represented by a

node and each edge represents a relationship between two terms.

Edges are usually labelled with a relationship-type. For example, the

most common edge is the is_a edge. Given terms a and b, a is_a b

asserts that all instances of a are also instances of b. Similarly, the

part_of edge represents the knowledge that one entity is a compo-

nent of another entity. Labelling metadata using ontology terms

allows for queries of the data that utilize the structured knowledge

of the ontology. For example, a query for ‘brain’ samples may return

samples labelled with ‘cerebral cortex’ because the cerebral cortex is

a component of the brain.

We define the task of mapping samples to ontologies as follows:

given a set of samples S, a set of ontology terms O and set of

relationship-types R, we seek a function f : S ! PðOÞ, where PðOÞ
is the powerset of O, such that given a sample s, for each o 2 f ðsÞ,
there exists a relationship-type r 2 R that relates the sample s to the

ontology term o. We restrict R to the following types of

relationships:

• has phenotype: Maps samples to phenotypic or disease terms.
• derives from: Maps samples to cell lines or, when the sample

consists of differentiated cells, to stem cell terms.
• part of: Maps samples to the anatomical entity from which it

was extracted.
• consists of cells of type: Maps samples to their constituent cell types.
• underwent: Maps samples to ontology terms that describe a med-

ical or experimental protocol.

We restrict our use of ontology terms to only ‘biologically signifi-

cant’ terms. An ontology term o is deemed biologically significant

if given two samples s1; s2 2 S where f ðs1Þ � f ðs2Þ and f ðs2Þnf ðs1Þ ¼
fog there likely exists a difference in gene expression or other meas-

urable difference in biochemistry between the two samples. In sim-

pler terms, an ontology term o is deemed biologically significant if

given two samples with equivalent descriptions barring that one

sample can be described by o and the other cannot, a significant dif-

ference in the biochemistry of the cell may exist between the two

samples. For example, the ontology term for ‘cancer’ is biologically

significant, whereas the term ‘organism’ is not because all samples

are trivially derived from an organism. We map samples to only bio-

logically significant terms in the ontologies. An example of a stand-

ardized sample is shown in Figure 2.

3.1.1 Discriminating between term mentions and term mappings

Our goal in mapping samples to ontology terms goes beyond named en-

tity recognition. Rather than finding all occurrences or ‘mentions’ of

ontology terms in the metadata, we attempt to infer which labels ad-

equately describe the biological sample being described. A term may be

mentioned, but not mapped as well as mapped, but not mentioned.

For example, consider a sample’s description that includes the

following text: Metastatic castration resistant prostate

cancer. If we consider the Uberon and Disease Ontology, we see

that the string ‘prostate cancer’ mentions three terms in these ontol-

ogies: ‘prostate gland’, ‘cancer’ and ‘prostate cancer.’ Of these

Fig. 2. An example of the metadata normalization process for sample ERS183215. We extract explicit mappings, consequent mappings, real-value properties and

the sample-type category for each set of sample-specific key-value pairs in the SRA

2916 M.N.Bernstein et al.

Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text:  
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx2009;
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;, 
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: .&hx201D; 


terms, only ‘cancer’ and ‘prostate cancer’ are mapped because they

are related to the sample through the ‘has phenotype’ relationship.

The string ‘prostate’ is not mapped because it localizes the disease

rather than the sample. There is no relationship-type in R that asso-

ciates the sample with ‘prostate.’ By prohibiting the mapping to

‘prostate’, we remove ambiguity as to whether the sample was

derived from an organism with a prostate-related disease, or from

prostate tissue itself. More generally, whenever a sample maps to an

anatomical entity, we are asserting that the sample originated from

that site.

To provide an example in which an ontology term should be

mapped, but is not mentioned, consider a sample described with the

key-value pair passage: 4. The Cell Ontology term for ‘cultured

cell’ is not mentioned in this description; however, by the fact that it

was explicitly stated that the cell was passaged, we can infer that the

sample consists of cultured cells. Thus we map the sample to ‘cul-

tured cell’ via the ‘consists of cells of type’ relationship.

3.1.2 Discriminating between explicit and consequent mappings

We distinguish between two types of mappings: those that are expli-

cit in the metadata and those that can be inferred from the explicit

mappings. We refer to the latter as ‘consequent mappings.’ For ex-

ample, the ontology term for ‘female’ is explicitly mapped from the

key-value pair, sex: female, because the author is explicitly com-

municating the fact that this sample maps to ‘female’ through the

‘has phenotype’ relationship.

A sample ‘consequently’ maps to an ontology term if, using ex-

ternal knowledge, one can logically conclude that the sample maps

to the term. The premier example of such a case arises when a sam-

ple maps to a cell line. In such a case, the sample would conse-

quently map to terms that describe this cell line. For example, given

the key-value pair cell line: MCF-7, the sample would conse-

quently map to ‘adenocarcinoma’ because the MCF-7 cell line was

established from a breast adenocarcinoma tumor. MetaSRA in-

cludes both explicit and consequent mappings.

3.2 Extracting real-value properties
In addition to mapping samples to ontology terms, we also annotate

samples with real-value properties that are described in the meta-

data. We structure each real-value property as a triple (property,

value, unit) where property is a property ontology term in the EFO,

value 2 R, and unit is an ontology term in the Unit Ontology

(Gkoutos et al., 2012). For example, the raw key-value pair age:

20 years old would map to the tuple (‘age’, 20, ‘year’).

3.3 Predicting sample-type category
Like the ENCODE project, we categorize samples into their respect-

ive sample-type using categories similar to those used by ENCODE.

These categories consist of cell line, tissue, primary cell,

stem cell, in vitro differentiated cells and induced

pluripotent stem cell line. Whereas ENCODE uses an

immortalized cell line category, we instead use the category

cell line to generalize to any cells that have been passaged mul-

tiple times, which include those from finite cell lines. For more de-

tails, see Supplementary Materials.

4 Materials and methods

Framing the ontology term mapping task as a multi-class classifica-

tion problem in which each ontology term is a class, a machine

learning approach might seem to be a natural choice. However, such

an approach would require a training set that includes multiple ex-

amples of samples that map to each ontology term. Due to the large

number of ontology terms, obtaining such a training set is unfeas-

ible. Thus, for the ontology term mapping and real-value property

extraction tasks, we took an algorithmic approach. In contrast, the

sample-type classification task involves only a handful of possible

classes and we can easily create, via manual annotation, a training

set containing multiple samples from each class. Thus, for this latter

task, we used a statistical machine learning approach.

4.1 Mapping samples to ontologies
At the core of our method is a graph data structure for maintaining

the provenance of each derived ontology term. This graph, which

we call a Text Reasoning Graph (TRG), provides a framework for

maintaining the provenance of extracted ontology terms, and for

writing rules and operations that can reason about which terms

should be mapped versus which are merely mentioned. Nodes in the

TRG represent artifacts derived from the original metadata text.

Such artifacts may be n-grams, inflectional variants, or synonyms.

Other nodes in the graph represent mapping targets such as ontol-

ogy terms or real-value property tuples. Edges between artifacts rep-

resent derivations from one artifact to another. An edge between an

artifact and an ontology term represents a lexical match between the

artifact and the ontology term.

We implemented a computational pipeline that is composed of a

series of stages that constructs the TRG. To start, the pipeline ac-

cepts the raw key-value pairs and constructs an initial TRG. Then,

each stage operates on the TRG by modifying its nodes and edges.

Figure 3 depicts the subgraph of a final TRG that maps a key-value

pair to a set of ontology terms. By maintaining the provenance of

each derived ontology term we can implement custom reasoning op-

erations that more accurately determine which terms describe the

sample. Such reasoning operations utilize the graph structure to fil-

ter out ontology terms for which there is no relationship-type in R
that describes the relationship between the sample and the ontology

term.

In the following sections we describe the most notable stages of

the pipeline. Full details are provided in the Supplementary

Materials.

4.1.1 Filtering key-value pairs

Before initializing the TRG, we filter key-value pairs from the meta-

data where either the key or value appears in a set of blacklisted

keys and values. This blacklist of keys contains those that describe a

property that does not pertain to the biology of the sample, such as

‘study name’ and ‘biomaterial provider.’ The blacklist of values in-

clude those that negate the key, such as ‘none’ or ‘no.’ For example,

the key-value pair is tumor: no is removed because the value no

negates the property is tumor.

4.1.2 Artifact generation

We define an artifact to be any string that is derived from a substring

of the original metadata text. Such artifacts include n-grams, lower-

cased words, and inflectional and spelling variants of words in the

metadata. An artifact node in the TRG represents a single artifact.

Several stages of the pipeline generate new artifact nodes from exist-

ing artifact nodes and draw edges from original to derived artifacts.

One such stage derives inflectional and spelling variants from exist-

ing artifacts using the National Library of Medicine’s SPECIALIST

lexicon (Browne et al., 2000). For example, given an artifact node

representing the pluralized noun ‘fibroblasts’, this stage will create a
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node for the singular noun ‘fibroblast’ and draw a directed edge

from ‘fibroblasts’ to ‘fibroblast’ (Fig. 3).

4.1.3 Matching artifacts to ontologies

We perform fuzzy string matching between all artifacts and ontol-

ogy terms to find all exact matches and minor misspellings (for mis-

spelling criteria, see Supplementary Materials). For example, in

Figure 3, both the strings ‘fibroblasts’ and ‘fibroblast’ fuzzily match

to the ontology term for ‘fibroblast’.

In general, fuzzy matching is computationally expensive. To

speed up this process, we pre-compute a metric tree index (Bartolini

et al., 2002) for all ontology term names and synonyms. The index

allows us to filter for ontology term strings that are nearby the query

string in edit space. We then explicitly compute the edit distances to

these nearby strings.

4.1.4 Graph reasoning

Certain stages of the pipeline utilize the structure of the TRG. We

refer to such steps as ‘reasoning’ steps. For example, we remove ex-

traneous mappings to cell line terms by searching the graph emanat-

ing from the key for a lexical match to ontology terms such as ‘cell

line’ and ‘cell type.’ If such a match is not found, we search the

graph emanating from the value for artifacts that have a lexical

match to a cell line ontology term and remove all such ontology

term nodes. This process is important for removing false positives

due to the fact that names of cell lines are often similar to gene

names and acronyms. For example, ‘Myelodysplastic Syndromes’ is

often shortened to ‘MDS.’ MDS also happens to be a cell line in the

Cellosaurus. Other examples of stages that utilize the graph struc-

ture are described in the Supplementary Materials.

4.1.5 Inferring consequent terms

Certain stages of the pipeline attempt to map the sample to terms

that are not explicitly mentioned in the raw metadata text describing

the sample. We refer to such mapped terms as consequent terms. We

map to consequent terms by consulting external knowledge bases.

The pipeline uses two external knowledge bases: a cell line database

and a rules database.

First, we created a database of mappings between cell lines and

ontology terms. We obtained this data by scraping from the ATCC

website (https://www.atcc.org). We scraped cell line metadata for all

cell lines that are present in the Cellosaurus. To construct mappings

between cell lines and ontology terms, we ran a variant of our pipe-

line on the scraped cell line data. Our pipeline uses this database as

follows: our pipeline will draw edges between mapped cell line

ontology term nodes and the ontology terms that describe the biol-

ogy of the cell line. For example, in Figure 3, the ontology term for

the MRC5 cell line has an edge to ‘lung’, ‘male’ and ‘Caucasian’ be-

cause this cell line was derived from lung tissue of a Caucasian male

aborted fetus (Jacobs et al., 1970).

Second, we created a small rules database that dictates how cer-

tain ontology terms logically imply other ontology terms. For ex-

ample, in Figure 3 the term ‘cell line’ has an edge to the term

‘cultured cell’ because all cell lines are grown in a culture.

4.1.6 Maximal phrase-length mapping

It is a common occurrence for disease ontology terms to include ana-

tomical entities in their name. For example, ‘breast cancer’ includes

‘breast’ as a substring. As previously discussed, under our frame-

work, it would be incorrect to map ‘breast’ to a sample solely based

on a mention of ‘breast cancer’ in its metadata because ‘breast’ lo-

calizes the cancer, but does not localize the origin of the sample.

Whereas it is entirely possible that such a sample was indeed derived

from breast tissue, without additional information we cannot elim-

inate the possibility that the sample originated from some other tis-

sue, such as from a malignant site. In this example, we maintain a

conservative approach and avoid mapping to ‘breast.’ We imple-

ment this process by having each artifact node keep track of the ori-

ginal character indices in the metadata from which it was derived.

After mapping all artifacts to the ontologies, we remove all ontology

terms that were lexically matched with an artifact node that is sub-

sumed by another artifact node that matches with an ontology term.

4.1.7 Linking ontologies

The domain covered by the EFO overlaps with many of the other

ontologies because it includes cell types, anatomical entities, diseases

and cell lines. In many cases, the EFO is inconsistent with other

ontologies in how it draws edges between terms. For example, the

term ‘lung adenocarcinoma’ and ‘adenocarcinoma’ are present in

both the Disease Ontology and the EFO; however ‘adenocarcinoma’

is a parent of ‘lung adenocarcinoma’ in the Disease Ontology but

not in the EFO. These inconsistencies pose a problem when we

apply our maximal phrase-length mapping process. For example,

when a sample maps to ‘lung adenocarcinoma’ and ‘adenocarcin-

oma’, we remove ‘adenocarcinoma’ because it is a substring of ‘lung

adenocarcinoma.’ This is valid for the Disease Ontology because the

term for ‘adenocarcinoma’ is implied by ‘lung adenocarcinoma’ by

Fig. 3. A subgraph of the TRG constructed from sample SRS1212219 illustrating the graph data structure that our pipeline maintains as it reasons about the sam-

ple. This framework allows us to maintain the context of each artifact. For example, we map to the MRC5 cell line only because there is a mapping to the ‘cell line’

ontology term in the graph emanating from the key. We also note the terms for ‘lung’, ‘male organism’ and ‘Caucasian’ were mapped to the MRC5 cell line from

the ATCC cell bank data and are thus consequent mappings
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its position in the ontology. However, this results in a false negative

for the EFO version of this term.

To counteract this problem, we link EFO terms to terms in the

other ontologies. Two terms are linked when they share the same

term-name or exact-synonym. Then, when an artifact maps to a

term, we traverse the term’s ancestors and map to any terms that are

linked to those ancestors. In the case of ‘lung adenocarcinoma’, we

would traverse the ancestors of this term in the Disease Ontology

and map to the EFO’s ‘adenocarcinoma’ because it is linked to the

Disease Ontology version of this term.

4.2 Extracting real-value properties
We maintain a list of ontology terms that define real-value properties.

Currently, we use 6 terms: ‘age’, ‘passage number’, ‘timepoint’, ‘age at

diagnosis’, ‘body mass index’ and ‘age at death.’ Future work will entail

expanding this list. To extract a real-value property from a key-value

pair, we search the graph emanating from the key for a match to a

property ontology term. If such a property is found, we search the

graph emanating from the value for an artifact representing a numerical

value and a unit ontology term node (e.g. ‘46’ and ‘year’). From this

process, we extract the triple (property, value, unit). For example, given

the key-value pair age: 46 years old, we extract (‘age’, 46, ‘year’).

4.3 Predicting sample-type category
We classify samples by sample-type using a supervised machine

learning approach. This stands in contrast to the non-statistical ap-

proach used in the aforementioned ontology term mapping task. We

trained a one-vs.-rest ensemble of logistic regression, binary classi-

fiers where each classifier was trained using L1 regularization. For

each sample, the classifier accepts as input both the raw key-value

metadata as well as the ontology terms that were mapped by our

aforementioned pipeline. The classifier then outputs the sample’s

predicted sample-type.

4.3.1 Feature selection

We consider two types of features for representing each sample:

n-gram features and ontology term features. For n-gram features, we

consider all uni-grams and bi-grams appearing in the training sam-

ples’ raw metadata. For ontology term features, we consider the set

of all ontology terms that were mapped to the training samples by

our automated ontology-term mapping pipeline. We performed a

feature selection process (for details, see Supplementary Materials)

that involved using mutual information to select features that are in-

dicative of at least one of the target sample-types.

4.3.2 Prediction

When making a prediction on a sample x, each logistic regression

binary classifier cj in the ensemble computes its estimate of the con-

ditional probability cjðxÞ :¼ pðy ¼ jjxÞ, which can be interpreted as

the confidence that classifier cj believes that x is of type j. Using

these probabilities, we designed a decision procedure that uses our

domain knowledge for determining the sample-type. Specifically, we

limit the possible sample-types based on the ontology terms mapped

to the sample. For example, if ‘stem cell’ was mapped to the sample,

we limit the possible predictions to stem cells, induced pluri-

potent stem cell line and in vitro differentiated

cells. We found that injecting such domain knowledge into the

process boosted performance in cross-validation experiments.

Although theoretically, the learning algorithm should learn these

facts itself, there is likely not enough training examples for the algo-

rithm to learn such patterns.

4.3.3 Training set

We randomly sampled and manually annotated 705 samples based

on their metadata. We determined each sample’s sample-type by

consulting the sample’s study, publication and other external re-

sources that describe the experimental procedure used to obtain the

sample. Four of these samples did not adequately fit into any

sample-type category and thus were excluded from training. Since

samples that belong to the same study are likely described similarly,

one potential pitfall in the learning process is that if training samples

are drawn uniformly and at random from all samples, the learner

will be biased towards features that correlate with how larger stud-

ies describe their samples rather than features that correlate with

sample-type. To avoid this issue, we ensured that no two samples in

the training set came from the same study.

5 Results

5.1 Evaluation of ontology mappings
In order to create a test set for evaluation of our pipeline, we manu-

ally normalized metadata for 422 samples from the SRA where each

sample belongs to a unique study. This test set was obtained by ran-

domly sampling from entries that were recently added to the archive

and had not been considered during the development of our compu-

tational pipeline. Thus, performance on this subset of data provides

an unbiased estimate of its ability to generalize to unseen samples.

We note that these 422 samples are disjoint from the 705 samples

described Section 4.3.3 that were used to train the sample-type

classifier.

5.1.1 Evaluating explicitly mapped ontology terms

We first evaluated our pipeline’s ability to map samples to explicitly

mapped ontology terms using the following metrics: recall, error rate,

specific terms recall and specific terms error rate. Given a sample, let

T be the set of all ontology terms to which the sample maps including

terms ancestral to those explicitly mentioned. Let T 0 be the most spe-

cific terms in T. That is T 0 :¼ ft 2 T : no child of t is in Tg. Let P be

the set of predicted terms to which the sample maps. Let P0 be the

most specific terms in P. That is P0 :¼ fp 2 P : no child of p is in P g.
We define our metrics as follows:

recall :¼ jT \ Pj
jTj specific terms recall :¼ jT

0 \ Pj
jT 0j

error rate :¼ jPnTjjPj specific terms error rate :¼ jP
0nTj
jP0j

We use these four metrics instead of traditional precision and re-

call because precision and recall are affected by the structure of the

ontology. This is due to the fact that the act of retrieving an ontol-

ogy term implicitly retrieves all of its ancestral terms in the ontol-

ogy’s directed acyclic graph. Thus, retrieving a term with a high

number of ancestral terms will lead to exaggerated metrics. The spe-

cific terms error rate corrects for this by describing the fraction of

the most specific predicted terms that incorrectly describe the sam-

ple. We note that the error rate is simply 1� precision. The metrics

are demonstrated in Figure 4A.

With these metrics, we compared our pipeline to the BioPortal

Annotator, SORTA and ZOOMA across all ontologies (Fig. 4B).

Compared to these methods, our pipeline has a low error rate while

maintaining a competitive recall. For example, although the

ZOOMA pipeline scores a slightly lower error rate on the Disease

Ontology, Cell Ontology and Uberon than our pipeline, this comes
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at the cost of a much lower recall. Similarly, although the SORTA

tool scores a slightly higher specific terms recall on the Disease

Ontology and Cell Ontology than our pipeline, this comes at the

cost of a much higher error rate. Lastly, we note that our pipeline

scores a higher recall and lower error rate across all ontologies when

compared to the BioPortal Annotator.

5.1.2 Evaluating consequently mapped ontology terms

Recall is an inappropriate metric for evaluating our ability to map con-

sequent terms due to the fact that the set of consequent terms is un-

defined. By our definition, a consequent term is any term that the

sample can be mapped to based on expert or external knowledge.

Thus, depending on the expert or external knowledge base, the set of

consequent terms may change. Furthermore, an expert may use an ex-

ceedingly large number of ontology terms to describe the sample de-

pending on what she knows about the sample and experiment. For

these reasons, we look at the total average number of consequent terms

that we map to each sample. This metric describes the amount of extra

information that is provided when considering external knowledge.

We further looked at the average number of most specific mapped con-

sequent terms. Figure 4C displays these metrics across the ontologies.

5.1.3 Evaluating the impact of individual pipeline stages

In order to evaluate the performance impact of each of our pipeline’s

stages, we ran our pipeline on our test set with certain individual stages

disabled. Figure 4D shows the performance impact when removing

stages for filtering key-value pairs, linking ontologies, filtering sub-

phrase matches and generating spelling and inflectional variants. As ex-

pected, the results of these tests indicate a general trade off between re-

call and error rate. Certain stages may decrease recall, but pose the

benefit of decreasing the error rate. Furthermore, a given stage may be

more effective for mapping terms in some ontologies rather than others.

5.2 Evaluating extraction of real-value properties
Of the 422 samples in our test set, 104 described real-value proper-

ties. We evaluated our performance in retrieving real-value property

tuples in terms of precision and recall. A predicted real-value prop-

erty was called a true positive if the property type, value and unit all

matched the ground truth. On the 104 samples, we report precision

of 0.989 and recall of 0.672. We note that the high precision our

method achieves is due to the heavy constraints we place on calling

a real-value property, which also result in relatively low recall.

5.3 Evaluating sample-type predictions
To evaluate our ability to predict each sample’s sample-type, we

evaluated the algorithm’s performance on two held-out test sets.

The first test dataset was created by manually annotating the

sample-types for the 422 samples that were used for evaluating our

ontology term mapping procedure. As noted previously, no two

samples in this dataset belong to the same study. We annotated all

samples for which the origin of the sample was explained in an ex-

ternal resource such as a scientific publication. In total, this came to

A B

C D

Fig. 4. (A) A schematic of an ontology subgraph demonstrating our calculation of recall, specific terms recall, error rate and specific terms error rate.

(B) Performance of our pipeline in mapping explicit ontology terms versus BioPortal’s Annotator, ZOOMA and SORTA. We ran SORTA using the three confidence

thresholds of 1.0, 0.5 and 0.0. We also ran ZOOMA using the three confidence thresholds of high, good and low. We measured recall, error rate, specific terms re-

call and specific terms error rate for all programs across all ontologies with the exceptions that ZOOMA only maps to three of the ontologies and only MetaSRA

and SORTA map to the Cellosaurus. (C) The error rate, specific terms error rate, average retrieved terms per sample and average specific retrieved terms per

sample across all ontologies when considering only consequently mapped terms. No terms from the Cellosaurus were consequently mapped and thus this ontol-

ogy is omitted. (D) Recall, error rate, specific terms recall and specific terms error rate for versions of our pipeline in which certain stages are disabled. The data

points labelled ‘none’ refer to the complete pipeline in which no stage is disabled
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367 samples. The distribution of sample-types in our test set is illus-

trated in the bar graph above the matrix in Figure 5A.

Our trained classifier achieved an accuracy of 0.845 over these

samples. The confusion between categories is plotted in Figure 5A.

In general, the classifier does well in determining the cell line sam-

ples and tissue samples. Close inspection of the classifier’s errors re-

vealed that most were due to samples with descriptions of poor

quality. Such samples are difficult to categorize, even as a human,

without consulting the scientific publication in which the sample is

described. Correctly classifying these samples will require utilizing

external descriptions of the samples.

Because this test set of 422 samples is impoverished for some

sample-types, we enriched it by sampling additional samples from

each predicted sample-type category, continuing to ensure that no

two samples belonged to the same study. We sought at least 100

samples that were predicted to fall in each category; however for

primary cells, stem cells and induced pluripotent stem

cell line samples, we were unable to achieve this threshold given

our criteria. This resulted in a test dataset consisting of 554 samples.

We used this enriched test dataset to better estimate the category-

specific precision of our classifier (Fig. 5B). Since the sampling pro-

cedure used for the enriched test dataset was biased by the predicted

sample-type of each sample, it could not be used for an unbiased es-

timate of recall or overall accuracy.

MetaSRA includes the classifier’s confidence of each prediction.

To evaluate the quality of these confidence scores, we assessed the

calibration of the classifier. A classifier is well calibrated if for any

instance x with true label y, it holds that bp ¼ pðby ¼ yÞ where by is the

classifier’s predicted class label of x and bp is its confidence. To assess

calibration, we grouped the predictions into bins according to their

confidence scores and compute the empirical accuracy of predictions

in each bin (Fig. 5C). We found the classifier to be well calibrated,

and thus that its confidence scores may be of use in filtering predic-

tions to a achieve a target accuracy level.

6 Summarizing the MetaSRA

We summarized the contents of the MetaSRA run on all samples,

including those that belong to the ‘large’ (� 100 samples) studies.

First, we explored the distribution of the number of samples mapped

to each ontology term (Fig. 6A). Most terms from each ontology

map to fewer than 100 samples, whereas a few terms map to up-

wards of 10 000 samples. Second, we looked at the fraction of sam-

ples that were mapped to terms within each ontology (Fig. 6B). The

fraction of samples mapping to each ontology differed markedly be-

tween samples of different predicted sample type, which provides

some insight into how the sample-type classifier makes its decisions.

For example, tissue samples tend to be described by an anatomical

term in the Uberon ontology and not described by a specific cell type

in the Cell Ontology. Lastly, we identified the most common ontol-

ogy terms (Fig. 6C) and real value properties (Table 1) in the

MetaSRA. In general, the error rate for the most common ontology

terms was quite low (see Supplementary Materials).

7 Discussion and future work

Although previous work has addressed the task of annotating bio-

medical text, there had yet to be a thorough effort at generating an

accurate annotation of sample-specific metadata for the SRA.

MetaSRA addresses this gap, providing normalized metadata

encoded into a schema inspired by that used by the ENCODE pro-

ject. Currently, the MetaSRA includes normalized sample-specific

metadata for human samples assayed by RNA-seq experiments on

the Illumina platform. We expect that this resource will enable

higher utilization of the SRA and investigations across diverse

phenotypes, diseases, cell types and conditions.

Future work will involve expanding MetaSRA to incorporate

more biological samples as well as to expand the set of ontologies

used for annotation. First, we plan to expand MetaSRA to all

human samples (not only those used in RNA-seq experiments). We

will also expand the set of ontologies to those that include experi-

mental variables. For example, we hope to include the ChEBI ontol-

ogy for annotating samples with chemical treatments (Hastings

et al., 2013). Our initial experiments with ChEBI revealed that map-

ping samples to this ontology poses unique challenges because of its

relatively large size and inclusion of synonymous terms that share

names with those representing unrelated concepts (e.g. the ChEBI

term ‘maleate(2-)’ has the synonym ‘male’). We also plan to

A B C

Fig. 5. (A) Row-normalized confusion matrix for sample-type category prediction accuracy on the initial test dataset. Element i, j is the fraction of samples in cat-

egory i that were labelled as category j by the classifier. The diagonal elements are category-specific recall values. The number of samples in each category are

shown above the matrix. (B) Transpose of the column-normalized confusion matrix for sample-type category on the enriched test dataset. Element i, j represents

the fraction of samples labelled as category i that are truly category j. The diagonal elements are category-specific precision values. The number of samples pre-

dicted to be in each category are shown above the matrix. (C) Calibration of the model. The estimated probability of the model (average of confidence values in

each bin) is plotted against the empirical probability that the model is correct (accuracy of predictions in each bin). The straight blue-line plots a well-calibrated

model. Error bars are drawn according to a bootstrap sampling approach (Bröcker and Smith, 2007). Points are omitted for bins that contain no predictions. This

plot was created from the initial dataset of 422 samples
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incorporate more sources of external knowledge in the MetaSRA

construction pipeline in order to map samples to a larger number of

consequent terms. For example, additional sources of cell line data,

such as the Coriell Institue for Medical Research (https://www.cor

iell.org), could be used to annotate cell lines that are not present at

the ATCC. Lastly, we plan to leverage other sources that provide in-

formation on sets of samples, such as a publication describing the

study in which a set of samples was assayed. Although such sources

provide valuable details, because they are not sample-specific, a key

challenge will be to automatically determine which details may be

confidently assigned to individual samples.

Future work will also entail expanding the MetaSRA to other

species. We note that our current methods will likely need to be ad-

justed for standardizing metadata of other species. One such modifi-

cation would be changing the ontologies to cover the biology of new

species as some of the ontologies used in this work do not apply to

all species in the SRA. For example, the Disease Ontology only rep-

resents human diseases. Furthermore, there exist species-specific

ontologies that would be useful for standardizing the metadata of

these species. For example, the Drosophila anatomy ontology

(DOA) should be used for standardizing Drosophila melanogaster

metadata (Costa et al., 2013). Nevertheless, we expect that the core

of the MetaSRA computational pipeline will be robust to species-

specific changes in the set of ontologies.
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