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MicroRNAs are key players in gene regulatory networks controlling cell homeostasis. Their altered
expression has been previously linked to disease outcomes and microRNAs thus serve as biomarkers
for disease diagnostics. However, their synthesis and its transcriptional regulation have been challenging
to investigate. In this study, we validated the use of H3K36me3 histone modification for the quantifica-
tion of microRNA transcription levels using data from the ENCODE Consortium and then applied this
approach to provide new insight into the cell-type-specific regulation in tissues, cell line models and car-
diac disease. In cardiomyocytes derived from patients suffering from septal defects, carrying a G296S
mutation in the transcription factor GATA4, we show that microRNA gene transcription is altered in car-
diomyocytes carrying this mutation and coincides with novel super-enhancers formed within regulatory
domains defined using chromatin interaction profiles. The most prominently elevated primary transcript
encodes for let-7a and miR-100 that may target genes in the Hippo signaling pathway. Collectively, our
work presents a methodology to quantify microRNA gene expression using histone marker data and
paves the way for functional studies of cell-type-specific transcriptional regulation occurring in disease
pathology.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Mature microRNAs (miRNA) are endogenous 20–22 nt long
non-coding RNAs that post-transcriptionally regulate gene expres-
sion. Thus, miRNA-mediated regulation has an impact on diverse
cellular processes, including cell development, stress responses,
and disease progression [1]. However, studies on the regulation
of miRNA genes (primary miRNAs, pri-miRNA) have not been
widely carried out. Pri-miRNAs are transcribed and rapidly pro-
cessed into shorter molecules (reviewed by [2]) and in conse-
quence, conventional methods such as RNA-seq fail to capture
their transcriptional dynamics. This challenge also hindered the
annotation of pri-miRNA transcripts from a single genomic read-
out. In our previous work [3], we have integrated multiple geno-
mics data types (global-run on sequencing (GRO-seq), cap
analysis gene expression (CAGE) sequencing, and chromatin
immunoprecipitation sequencing (ChIP-seq)) from 27 human cell
lines to annotate pri-miRNA alternative transcription start sites
(TSSs) and to assign the transcribed regions at these non-coding
gene loci based on the nascent transcript signal. Our study pro-
vided a bioinformatics workflow that utilized genomic annotations
(referred to as TSS elements) corresponding to over 1,500 pri-
miRNA TSSs to compare their activities based on a signal subtrac-
tion approach. We showed that multiple TSSs contribute to the
transcription of these non-coding RNAs in a cell- and stimulus-
specific manner. This quantification approach, with the obtained
pri-miRNA coordinates, is directly applicable to quantify their tran-
scription level from nascent transcriptome data. However, isola-
tion of nascent transcripts for sequencing is not widely adopted,
prompting the comparison of alternative data types that could be
suitable to study pri-miRNA transcription.

Previous studies have shown that distinct histone modifications
that can be studied by the widely used ChIP-seq assays are
enriched at chromatin regions corresponding to a specific func-
tional state [4,5]. Among activity markers, histone 3 lysine 27
acetylation (H3K27ac) is enriched at active regulatory regions, his-
tone 3 lysine 4 trimethylation (H3K4me3) at active TSSs, and his-
tone 3 lysine 36 trimethylation (H3K36me3) modification is
enriched in regions with active transcript elongation. On the
contrary, histone modifications such as histone 3 lysine 27
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trimethylation (H3K27me3) and H2A.Z associate with gene silenc-
ing [4]. Thus, histone modifications can serve as a dynamic readout
of regulatory regions and transcriptional activity (H3K36me3) to
characterize gene and pri-miRNA regulation [6].

Congenital heart defects (CHD) are the most prevalent type of
malformations present at birth in humans. CHD pathology mani-
fests with alterations in the regulation of gene expression during
cardiac development. Genetic alterations in key transcription fac-
tors (TF) driving cardiac development, including GATA4, TBX5,
MEF2A, and NKX2-5, have been associated with CHD development
and outcome [7–10]. Furthermore, non-coding RNAs that include
miRNAs are important contributors to the cardiac regulatory net-
work [11]. Previous work to dissect in detail the contribution of
miRNA-mediated regulation in CHD has identified miRNA
biomarkers of the disease state [12–14]. However, tissue profiling
of heart, plasma or serum fails to identify the cell type that synthe-
sizes these miRNAs. Therefore, cardiac lineage-specific regulation
of miRNAs and its impact on the disease outcome has been difficult
to study.

Integrating TF binding and chromatin dynamics profiles at dis-
tal regulatory elements (enhancers) with gene expression data
enables studying transcriptional regulation in disease. Moreover,
groups of enhancers referred to as super-enhancers (SE) facilitate
the described (lineage-specific) regulation by participating in the
regulation of key genes involved in the cellular control at the speci-
fic developmental state [15]. SEs can be distinguished from typical
enhancers since they present with wider H2K27ac histone modifi-
cation regions that enable their detection. Furthermore, regulatory
pathways and gene expression profiles can be associated using sta-
tistical analysis with specific signaling pathways to provide mech-
anistic insight into the establishment of disease phenotypes and to
inform candidate drug targeting approaches.

Here, we evaluated the suitability of different histone modifica-
tions as a novel approach for quantification of pri-miRNA expres-
sion levels in cells using ChIP-seq data. We show that our
approach enables assessing the contribution of cell-type-specific
pri-miRNA expression in tissue miRnomes and across cell line
models based on H3K36me3 histone marker. To provide new
insights into pri-miRNA regulation, we analyzed differentially
expressed (DE) pri-miRNA loci from induced pluripotent stem
(iPS) cells-derived cardiomyocytes (referred to as iCM) carrying a
missense mutation in GATA4 [16], revealing changes in the activi-
ties of these non-coding gene loci and candidate target pathways
downstream GATA4, TBX5, and SEs alterations in disease [16].
2. Results

2.1. H3K36me3 histone modification level captures genome-wide pri-
miRNA expression and differential TSS utilization

Pri-miRNA expression can be efficiently captured by nascent
transcriptomes (e.g. GRO-seq methodology); however, this type
of data is not widely available. To find a new approach to quantify
pri-miRNA expression, we evaluated whether different histone
modifications measured using ChIP-seq could be utilized similarly.
Towards this end, we used the TSS element coordinates introduced
in [3] (genomic annotations that start for each transcript at its TSS
and continue either until the next active TSS, or until the end of the
transcript) for genome-wide quantification and correlated the sig-
nal level (TSS activity, see Methods) from GRO-seq (N = 4) and
ChIP-seq data across 12 different histone modifications collected
by the ENCODE project (ENCODE consortium accession numbers:
Table S1) [17,18]. Using human umbilical vein endothelial cells
(HUVEC, referred hereafter as endothelial cells) for the benchmark,
we found that H3K36me3 and H3K79me2 levels had the highest
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overall correlation with GRO-seq-based quantification (Pearson
correlation coefficient from 0.65 to 0.74 for H3K36me3 and from
0.72 to 0.75 for H3K79me2) (Fig. 1A). To support the findings pre-
sented, we additionally examined H3K36me3 and H3K79me2 cor-
relations in A549 (lung cancer), GM cell lines (lymphoblastoid),
IMR-90 (fibroblast), and K562 (myeloid cancer), resulting in similar
correlations values as shown for endothelial cells (Fig. S1A). To
illustrate the coverage of ChIP-seq signal profiles of the different
histone modifications across the gene body, we visualized GRO-
seq and different histone mark levels at the hsa-mir-221~222 locus
(this pri-miRNA gene locus encodes for both hsa-miR-221 and hsa-
miR-222, hereafter referred with ~ between pri-miRNAs). Two TSSs
are active, and their additive contribution can be evaluated based
on quantifying the signal level within non-overlapping regions
indicated by black rectangles in Fig. 1B (refer to Methods). We fur-
ther compared H3K36me3 profiles across multiple cell types at the
hsa-mir-29a~29b-1 locus (as previously shown in [3], this locus
has multiple TSSs with cell-type-specific activity, Fig. S2A). Both
H3K36me3 and H3K79me2 histone markers are deposited on the
gene body, coinciding with GRO-seq signal (Fig. 1B, Fig. S2A-B).
The H3K79me2 histone mark was elevated near the TSS, whereas
H3K36me3 ChIP-seq signal more equally covered the entire pri-
miRNA transcript. As an exception, we noticed that some miRNA
host genes with long first introns showed a signal elevation for
H3K36me3 from exon 2 (Fig. S2B) that may affect estimating the
pri-miRNA level (see also Methods). As the main difference,
strand-specificity of GRO-seq signal cannot be captured from the
histone marker data and overall, a higher background is present
in ChIP-seq signal (yellow box, Fig. S2C). As a second caveat, in
total 3% of intragenic and 10% of intergenic pri-miRNA transcript
regions overlapped (at least half of the transcript body) with an
expressed gene(s) on the opposite strand, which could lead to
overestimation of pri-miRNA levels. Despite these differences,
pri-miRNA quantification was highly comparable to GRO-seq data
and sensitive to capture cell-type-specific expression between the
cell lines analyzed.

To ascertain whether levels of H3K79me2 and H3K36me3 his-
tone modification correlate with transcriptional activity, i.e.
whether coinciding profiles of these histone modifications are also
reflected in corresponding ranking of expression level, we followed
the genome-wide approach proposed in [4]. We separated 9,053
expressed transcripts (including annotated Refseq genes and pri-
miRNAs) into 100 different transcriptional activity bins based on
their mean expression across GRO-seq samples. The mean histone
marker level of each bin is shown from the lowest to the highest
group (left to right) in Fig. 1C. The level of H3K36me3 histone mod-
ification (purple line, Fig. 1C) had the smallest deviation from the
expression level quantified from GRO-seq (grey line) and the dif-
ference was most distinct at the bins corresponding to low expres-
sion level (bins 0–50). The signal from H3K79me2 underestimated
the expression of low expressed transcripts and this effect was
reproduced in A549, GM cell, IMR-90, and K562 cell lines (Fig. S1,
S3A).

Therefore, we concentrated on the use of H3K36me3 ChIP-seq
data in the quantification of pri-miRNA transcriptional activity.
From 974 pri-miRNA transcripts detected by GRO-seq in endothe-
lial cells, 728 (75%) were also expressed based on H3K36me3 ChIP-
seq data of which 656 (90%) were intragenic and 72 (10%) inter-
genic (Fig. 1D). We next evaluated the correspondence with
mature miRNA levels by comparing the summed pri-miRNA TSS
activity per locus binned by the level of H3K36me3 histone marker
(921 loci, Fig. S3B-C, see also Methods). The processing efficiency
(estimated based on detection rate, Fig. S3B) to mature miRNA
increased from 3 to 20% (small RNA-seq) and 16–38% (microarray)
in the lowest five bins to 13–50% (small RNA-seq) and 23–90% (mi-
croarray) in the five highest bins. Examining the detected mature



Fig. 1. Genome-wide quantification of primary transcripts using transcriptomic and epigenetic data in human endothelial cells. (A) Pearson correlation of primary
transcript expression (counts per million, CPM) quantified from GRO-seq and histone ChIP-seq data from endothelial cells (blue tones correspond to positive correlation
whereas red tones correspond to negative correlation from 1 to �1). Best correlating histone marks are highlighted in grey. (B) Signal profiles indicative of active transcription
and chromatin state are visualized at the hsa-mir-221~222 locus (chrX:45,584,514–45,719,179) as follows: annotation tracks indicate the region used for quantification of
output from each pri-miRNA TSS (black box with arrows pointing left as hsa-mir-221~222 is transcribed from the minus strand) and mature miRNAs (red). NGS hubs
correspond to CAGE-seq, GRO-seq, and ChIP-seq tracks for H3K36me3, H3K79me2, H3K27ac, and H3K4me3. (C) Transcripts were separated into 100 bins according to their
mean expression levels based on GRO-seq data (log2 transformed transcripts per million (TPM), grey line). Histone marker average tag density (H3K36me3 purple and
H3K79me2 green, y-axis) was plotted for each bin (group 1 has transcripts with lowest average expression; group 100 with highest, x-axis). (D) Pri-miRNAs detected based on
either GRO-seq (blue) or ChIP-seq data (purple) are compared in a Venn diagram. Proportions of intergenic (light grey) and intragenic (dark grey) pri-miRNAs detected are
shown in a barplot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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miRNA (violin plots in Fig. S3C, left for microarray and right for
small RNA-seq) we also could distinguish an increasing trend in
mature miRNA levels for highly expressed pri-miRNAs. Taken
together, the H3K36me3 histone marker level corresponds well
with primary transcript synthesis (GRO-seq), while the processing
efficiency additionally contributes to the resulting mature miRNA
level.

2.2. H3K36me3-based quantification of pri-miRNA expression allows
assessing cell-type-specific contribution in tissue profiles

The ENCODE project generated a resource of ChIP-seq across
multiple human cell types, to enable functional studies of the
non-coding genome. As a first application to leverage our
H3K36me3 ChIP-seq based quantification of pri-miRNA locus
activities, we focused on comparing their transcription level across
cell types in a given tissue context. We selected data from the heart
tissue where key tissue-resident cell types include cardiomyocytes,
smooth muscle cells, endothelial cells and fibroblasts. We selected
miRNAs that change their expression level before and after
1946
myocardial infarction (GEO accession number: GSE46224, 160 DE
mature miRNAs [19]) and retrieved their genomic coordinates
(considering that some mature miRNA are encoded from multiple
gene loci). We then matched these miRNAs by genomic coordinate
overlap with the corresponding pri-miRNA transcript variants and
quantified their expression levels in cell types that are present in
the cardiac tissue (ENCODE consortium accession numbers:
Table S1). In total, 100/150 pri-miRNA transcripts were detected
across the cell types studied (Fig. 2, refer to Table S2 for pri-
miRNA annotation in panel A). Clustering of the pri-miRNA expres-
sion levels revealed that each cell type could differentially con-
tribute to the heart tissue miRnome. Notably, the highest
expression in cardiomyocytes characterized only a quarter of the
analyzed miRNA genes and many of these disease-altered miRNAs
had the highest level in fibroblasts (Fig. 2A). Cardiomyocyte miR-
NAs included the hsa-mir-1~133a-2 cluster and hsa-mir-155.
Endothelial cells expressed at high levels the hsa-mir-29b-2~29c-
2 cluster and mir-328, while hsa-mir-887 and hsa-mir-625 were
distinctive of smooth muscle cells, in agreement with FANTOM5
[20,21]. Our analysis highlighted two pri-miRNA loci, hsa-mir-
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193b~365a and mir-548ao, to correspond to the most abundant
disease-associated miRNA in fibroblasts. Overall, our analysis
underscores the cell type diversity in miRNA gene transcriptional
1947
activities and the value of integrating the ENCODE resource into
miRnome analysis to identify cell-type-specific contributions of
the non-coding genome in disease.



Fig. 3. iCM dataset allows the characterization of cardiac genes and pri-miRNA expression based on H3K36me3 profiles. (A) Pedigree describing H3K36me3 profiles
collected from a family where half of the individuals are carrying GATA4 mutation [16] referred to by sample numbering. Circles indicate females and squares males. All
individuals carrying the mutation (MUT) have been diagnosed with septal defects. Healthy individuals are indicated with WT, wild-type familial control. MUT, GATA4 G296S
mutants. (B) Relative expression of heart development associated genes based on H3K36me3 levels in iCM compared to other cell lines. TSS activity values are row-scaled to
show relative expression across samples (red tones correspond to a high level, blue to low level). (C) Library sizes (total number of reads, in grey) and the portion of reads that
map to pri-miRNAs (in yellow) are shown as overlaid barplots. The y-axis on the left indicates the number of reads. The dotted line and the axis on the right indicate the
number of pri-miRNAs detected enriched over the input signal per sample. (D) Distribution of the RPKM values of expressed pri-miRNAs in control iCM cells. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ENCODE has also become a unique resource for cancer geno-
mics, with the potential to systematically characterize transcrip-
tional and post-transcriptional regulatory networks. Integrating
this rich resource with patient profiles can inform the selection
of appropriate cell line models for further functional studies [22].
We selected as an example 17 miRNAs that were previously shown
to recurrently negatively correlate with cancer gene signatures
across TCGA cancer types [23]. Similarly as above, we retrieved
the corresponding pri-miRNA TSS elements and quantified pri-
miRNA expression across cancer cell lines based on H3K36me3
ChIP-seq data. Cell lines clustered according to the pri-miRNA
TSS activities, and we observed that both the basal transcriptional
activity of pri-miRNA genes and their TSS utilization varied
between cancer cell lines. This finding demonstrated that not all
cancer cell lines shown have the same pri-miRNAs transcribed
from the same TSS (Fig. 2B-C), suggesting that they are wired into
distinct TF-regulatory networks. Using hsa-mir-15a~16–1~3613
with multiple TSSs as an example, these differential TSS utilization
and transcriptional activities can be compared across cell lines
(Fig. 2B-C). Overall, TSS2 of hsa-mir-15a~16–1~3613 shows the
highest transcriptional activity. In the A673 cell line, the sharp
Fig. 2. Application of H3K36me3-based quantification in case studies. (A) Pri-miRN
normal heart and heart after myocardial infarction were quantified in cardiomyocytes, en
values are row-scaled to show relative TSS activity across samples (red tones correspo
candidate pri-miRNAs clustered based on different TSS activity across cancer cell lines pr
of 17 significant mature miRNAs that recurrently negatively correlated with their target (
denoted from high to low in red and blue colors, respectively. (C) Annotation tracks for p
signal profiles of H3K36me3 cancer cell lines visualized at the hsa-mir-15a~16–1~3613 lo
this figure legend, the reader is referred to the web version of this article.)

3
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increase in H3K36me3 signal at TSS2 identifies it as the main TSS
used. In comparison, the upstream TSS3 of hsa-mir-15a~16–1~36
13 shows the highest activity in DND-41, KOPT-K1 and OCI-LY7
lymphoid cell lines. In summary, our approach extends the current
methodology to investigate the functional non-coding regions, pro-
viding a resource for the comparison of different pri-miRNA TSS
activities across the entire ENCODE collection of H3K36me3
ChIP-seq and complementary other histone marker profiles pro-
duced by the ENCODE consortium.

2.3. Dysregulation of pri-miRNA expression in a cardiomyocyte disease
model

The largest public repository of genome-wide data, NCBI GEO
[24,25], currently hosts 665 human H3K36me3 ChIP-seq samples
across different biological conditions that includes data produced
by the ENCODE consortium (Table S3). We selected for a case study
ChIP-seq profiles from a dataset that characterized the effects of a
TF mutation based on multiple genomic profiles acquired in
patient-derived induced cardiomyocytes (iCM). The dataset repre-
sents a family where half of the individuals suffer from penetrant
A expression corresponding to mature miRNAs that differ in expression between
dothelial cells, fibroblast and smooth muscle cells H3K36me3 ChIP-seq data. RPKM
nd to a high level, blue to low level). (B) Transcriptional activity of cancer-related
ovided by the ENCODE project. The pri-miRNAs shown were selected based on a list
gene)s across TCGA cancer types presented in [22]. RPKM values are row-scaled and
ri-miRNAs (black boxes), mature miRNAs (red) and UCSC genes (purple) followed by
cus (chr13:50,570,551–50,570,637). (For interpretation of the references to color in
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septal defects caused by GATA4 mutation (referred to as MUT,
Fig. 3A). The original study elucidated the effects of GATA4 muta-
tion on polyA mRNA transcripts based on RNA-seq and cardiac TF
binding profiles [16]. Here, we aimed to extend the characteriza-
tion of GATA4 effects by focusing on transcriptional regulation of
cardiac pri-miRNAs using the H3K36me3 profiles collected.

The original study included the ChIP-seq data to complement
the analysis of GATA4-regulated gene loci. Therefore, we first
ensured the data quality for our purpose to assess cell-type-
specific transcript expression based on the available ChIP-seq sam-
ples. We quantified the levels of heart development associated
genes, collected based on literature, and compared their expression
in the iCM cells to endothelial and fibroblast cultures (ENCODE
consortium, accession numbers in Table S1) representing the other
main cell types in the cardiac tissue environment (Fig. 3B). Despite
the mutation, the heart developmental associated genes analyzed,
except TBX3, were higher transcribed in all of the iCM samples
compared to the reference cell types, in agreement with mRNA-
seq and physiological characterization in the original study [16].
Second, we analyzed the relationship between the number of reads
mapping to pri-miRNA loci (shown in yellow) and the number of
pri-miRNA expressed per sample (dotted line) across the iCM data-
sets (Fig. 3C). Transcript detection was robust despite the variabil-
ity in library sizes. In total, an average of 855 pri-miRNA transcripts
out of 1,848 annotated pri-miRNA transcripts were expressed in
the control iCM cells at day 32 of differentiation and the majority
of the transcripts could be detected at 10–25 RPKM level, as shown
in the histogram in Fig. 3D.

Todiscernhowpri-miRNAtranscription isaffectedby thepresence
of theGATA4G296Smutation,weperformed statistical analysis com-
paring three samples (iPS-lines 1.8, 5.6 and7.2) carrying intactGATA4
(WT) and two samples representing themutation (denotedMUT, iPS-
lines 2.6 and 4.2) (Fig. 3A). At day 32of differentiation,wedetected75
DE pri-miRNA transcripts that passed a pre-filtering step (see Meth-
ods),were annotated inmiRbase v.22 [26] and obtained a nominal p.-
value < 0.05. Among these DE pri-miRNAs, 42 were downregulated
(from�1.2 to�0.29 log2 fold-change) and33wereupregulated (from
0.28 to 1.877 log2 fold-change) (Fig. 4A).

In order to discern how changes in pri-miRNA levels may affect
cellular functions, we analyzed which signalling pathways could be
altered as a consequence of changes in pri-miRNA expression upon
GATA4 G296S mutation. We assigned mature miRNA species to DE
pri-miRNA based on public cardiac small RNA-seq data and per-
formed pathway analysis based on their experimentally validated
or predicted target genes available in TarBase (Fig. 4B) [27,28].

Hippo signalling was the most significant pathway associated
with mature forms derived from DE pri-miRNAs (Fig. S4A, a sum-
mary of experimentally confirmed miRNA targets). Disease path-
ways (Arrhythmogenic right ventricular cardiomyopathy, Long-
term depression), and signaling pathways (ErbB, Wnt, Neu-
rotrophin) were enriched in addition to Hippo signaling. The num-
ber of putative target genes and miRNAs targeting them also
implicated some neuronal and cancer-related pathways (Proteo-
glycans in cancer, Pathways in cancer, Renal cell carcinoma, Axon
guidance, Adherens junction, Endocytosis, and Colorectal cancer)
that may potentially relate to calcium signalling and cardiac
remodelling [29]. Taken together, the comparison of pri-miRNA
transcriptional activities and integrating these with existing bioin-
formatics tools can guide further functional analysis of the miRNAs
in the context of the implicated cellular pathways.

2.4. GATA4 G296S mutation impacts pri-miRNA regulation in human
iCM

To leverage the collected ChIP-seq data further, we next asked
what insights could be gained at the gene regulatory level, to dis-
1949
cern how the mutated GATA4 impacted transcriptional regulation
at the candidate DE pri-miRNA loci. Towards this end, we focused
on contacts betweenenhancers and pri-miRNA promoters,
restricted by chromatin structure [30]. We defined so-called regu-
latory domains for each pri-miRNA locus as the region of chro-
matin flanked by topologically associating domain (TAD)
boundaries (Fig. 4A, regulatory domains sidebar, blue color, see
Methods for coordinate retrieval based on Hi-C data from human
cardiomyocytes [30], 13 DE pri-miRNAs were not located within
the assigned TADs). Additionally, we detected iCM SEs based on
the H3K27ac ChIP-seq profiles available directly from the same cel-
lular models: 841 and 733 SEs were detected in WT and MUT sam-
ples, respectively.

In total, 51 of DE pri-miRNAs were within regulatory domains
that contain SEs (Fig. 4A, green colour, regulatory domains side-
bar). We summarized changes by DE pri-miRNA locus: the major-
ity (2/3) of the iCM SEs were among downregulated pri-miRNAs.
Moreover, iCM SEs were predominantly lost in downregulated
pri-miRNA loci, while new iCM MUT-specific SEs mainly formed
within upregulated pri-miRNA regulatory domains (Fig. 4C). The
largest TF changes at the up-regulated pri-miRNA loci with iCM
SEs corresponded to the loss of GATA4 and gain of TBX5 binding
(Fig. 4D, GATA4 and TBX5 sidebars). It has been shown that failure
in silencing of the endothelial program is a key step during cardiac
development that may affect CHD outcome [16]. Thereafter, we
compared the localization of iCM, cardiac and endothelial SEs in
pri-miRNA regulatory domains [31]. The majority of these up-
regulated pri-miRNA loci with iCM SEs were also associated with
endothelial SEs (Fig. 4D).

Next, we examined in more detail the top upregulated pri-
miRNA locus, hsa-mir-100~let-7a-2~mir-125b-1 which also
includes multiple targets among the top-ranked pathway (Hippo
signaling). This pri-miRNA locus comprises several TSSs of which
TSS5 was active in cardiomyocytes and upregulated in MUT sam-
ples according to H3K36me3 ChIP-seq signal (1.877 log2 fold-
change) (Fig. 4A, 5A-B).

Based on the H3K27ac data, increased transcriptional activity
coincides with an iCM MUT gained SE downstream TSS5
(Fig. 5A). Within the gained SE region (Fig. 5B), the H3K27ac signal
mainly localizes in two regions: the signal is most elevated down-
stream the TSS (on the right), extending across >15,000 bp, charac-
teristic of SE regions. Reflecting the changes in TF binding across
pri-miRNA loci (Fig. 5A-B), TBX5 ChIP-seq signals increased in this
region in MUT samples (Fig. 5A). These results together with those
presented in Fig. 4 demonstrate that GATA4 mutation disrupts the
transcriptional regulation of several pri-miRNA genes through loss
of cardiac SEs and by inducing the formation of a new SE that facil-
itates binding of TBX5 and potentially other TFs. Quantifying the
H3K36me3 signal level together with TF ChIP-seq and enhancer
marker profiles could thus be utilized to connect the pri-miRNA
TSS activity changes with upstream regulatory programs.
3. Discussion

MiRNAs are important players in complex regulatory networks
that fine-tune cellular functions. Through the development of new
methods to dissect in detail these networks, miRNA studies have
been exponentially increasing in a variety of cellular contexts [1].
In spite of equal importance, their primary transcription and TF-
mediated regulation is still widely unknown. Here we utilized
genome-wide pri-miRNA TSS annotation that was previously gen-
erated by integrating data from 27 human cell types [3]. We
showed that H3K36me3 ChIP-seq data could serve as a suitable
data type for quantifying pri-miRNA expression levels, in addition
to nascent transcriptome profiles. This approach allowed us to (1)



Fig. 4. Differentially expressed pri-miRNAs and functional annotation of putative regulatory regions. (A) A heatmap of relative expression of DE pri-miRNAs. Values are
row-scaled and denoted from high to low expression (in red and blue colors, respectively). Reg. domains sidebar contains pri-miRNAs regulatory domain annotation. (B)
Pathway analysis of putative targets of mature forms of DE pri-miRNAs, ordered by the level of significance. The number of genes in each pathway is represented with blue
bars and the number of mature miRNAs with purple bars. (C) Summary of H3K27ac peaks detected as SEs that are either unchanged, gained or lost between WT and MUT
samples is shown as Venn diagrams: left, total SE changes genome-wide; middle, down-regulated or, right, up-regulated pri-miRNA regulatory domains. (D) GATA4 and TBX5
sidebars contain summarized TF peak numbers by up-regulated pri-miRNA locus that are either gained or lost between WT and MUT samples. Annotation of published SEs
within each pri-miRNA regulatory domain is depicted in either purple (cardiac tissue SE) or orange (endothelial SE). iCM sidebar corresponds to annotated SEs within pri-
miRNA regulatory domains that were either unchanged, gained, or lost between WT and MUT samples. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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assess the contribution of cell-type-specific pri-miRNA expression
activity in tissue profiles and on pathway activities, (2) enable a
wider integration of ENCODE data to study these non-coding genes
and (3) provide novel insight into the transcriptional regulation of
genome-wide pri-miRNA expression in different disease contexts.

The H3K36me3 histone marker is deposited co-
transcriptionally by SETD2 in humans that travels with Pol II dur-
ing transcription. Therefore, it serves as a marker for actively tran-
scribed gene bodies, including those corresponding to pri-miRNAs
1950
[32,33]. Previously, H3K36me3 histone modification has been
widely profiled across cells by ENCODE. Independent studies have
further established it as a marker to dissect active gene regions
from inactive ones, also during cardiac differentiation [31,34]. In
agreement with these findings, our genome-wide comparison with
GRO-seq found the highest correlation with H3K36me3 and
H3K79me2 levels among the histone mark collection available in
ENCODE. Wang et al. proposed that H3K79me2 histone modifica-
tion is enriched in genomic regions with high gene expression



Fig. 5. Effects of pri-miRNA dysregulation exemplified at the hsa-mir-100~let-7a-2~mir-125b-1. (A) Annotations’ tracks depict firstly iCM TADs from Hi-C data, secondly,
SEs detected based on H3K27ac data in endothelial cells (purple bar), in iCM model (WT and MUT, orange bar) and UCSC genes. Signal profiles indicative of active
transcription and chromatin state are visualized at the hsa-mir-100~let-7a-2~mir-125b-1 locus (chr11:121,535,430–123,465,441) as follows: GRO-seq (endothelial cells),
H3K36me3 ChIP-seq (endothelial cells) followed by ChIP-seq tracks of iCM for H3K36me3, CAGE-seq, and iCM ChIP-seq tracks for H3K27ac, TBX5, and GATA4. (B) The region
highlighted on the right (full signal track shown for H3K27ac) corresponds to the TSS5 region and the downstream SE detected based on iCM MUT signal. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and that contain a large number of genes with a housekeeping role
[5]. When correspondence at the level of transcriptional activity
bins was evaluated, we noticed that H3K36me3 profile resulted
in a more comparable level of transcription to GRO-seq data, mak-
ing it better suitable than H3K79me2. In the context of miRNA
gene annotation, Liu and colleagues exploited H3K36me3 ChIP-
seq data to support the identification of active TSSs of miRNAs
based on GRO-seq, by evaluating the level of this marker before
and after identified genomic TSSs [35]. Thus, once the coordinates
are established, both GRO-seq and H3K36me3 data types enable
the comparison of pri-miRNA levels across samples. Currently,
there are 547 human GRO-seq samples and 665 human
H3K36me3 ChIP-seq samples available in the NCBI GEO data
repository (March 2021, Table S3) that allows the quantification
of pri-miRNA expression as demonstrated here. Thus, our work
considerably widened the use of publicly available data for charac-
terizing pri-miRNA gene transcriptional activity. Additionally,
caRNA-seq, mNET-seq, PRO-seq and TT-seq represent other data
types that capture nascent RNA [36] and could be utilized similarly
to capture pri-miRNA expression. Furthermore, these methods pro-
vide slightly different information (reviewed in [36]). Combination
with H3K36me3 ChIP-seq could be informative to elucidate addi-
tional regulatory steps, such as co-transcriptional processing effi-
ciency in loci encoding multiple miRNAs. Our comparison of pri-
miRNA synthesis vs mature miRNA levels supports that this may
serve as an additional regulatory step.

The limitations of using H3K36me3 data to quantify gene
expression include lack of strand-specificity and increased back-
ground signal in comparison with nascent transcriptomes. It would
be possible to address the former by modifying the TSS elements
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used in the pri-miRNA quantification by excluding the overlapping
region between pri-miRNAs and genes in opposite strands. For
regions where transcripts completely overlap, additional experi-
ments such as CRISPR-mediated deletion of each transcript TSS
separately could help discern which transcript is contributing to
the overall signal. To deal with the variable background signal in
distinguishing lower expressed pri-miRNA transcripts, tools that
are applied to ChIP-seq peak identification can be used to discern
at which genomic locations, the signal is enriched over the back-
ground signal [37,38]. Furthermore, ensuring the quality of the
sequencing data is another consideration that should be addressed
prior to quantification of the signal levels. This data quality assess-
ment could be performed following the quality standards proposed
by ENCODE.

We show that H3K36me3-based quantification could enable
assessing the contribution of different cell types present in a tissue
environment (such as the cardiac environment) to the miRNA
expression in normal and disease states. Pri-miRNA transcripts
are further processed into hairpins called premature miRNAs
exported from the nucleus to the cytoplasm and further processed
into mature miRNA forms [2]. Pri-miRNAs and mature miRNAs
have a similar relation as primary RNAs and mature RNAs, affected
by synthesis, processing, and degradation rates. Furthermore, mul-
tiple transcript variants and genomic loci can influence the mature
form expression level. Therefore, our workflow to quantify the pri-
miRNA levels can lead to specific mature miRNA candidates, never-
theless, those need to be experimentally validated in order to cor-
relate the pri-miRNA TSS activity to the mature miRNA output.
Among disease-associated pri-miRNAs that were distinctive for
cardiac cell types, hsa-mir-193b~365a cluster was found to be
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highly expressed in fibroblasts. The mature miRNA expression
level has been shown to return to physiological levels after intro-
ducing Left Ventricular Assist Device into the patients’ hearts
[19]. This intervention was shown to modulate non-
cardiomyocyte cell phenotypes [39]. In this manner, discerning
whether the differential expression originated from fibroblasts or
cardiomyocytes through integrative data analysis, followed by
further characterization in the appropriate cell models, could have
important implications for targeted therapy to restore tissue
homeostasis after myocardial infarction and surgery.

In this study, we further examined cancer pri-miRNA signatures
from ENCODE data. Focusing on a candidate list of miRNAs associ-
ated with cancer gene signatures, we quantified their transcrip-
tional activities across multiple cell lines. Elevated expression of
miRNAs encoded from hsa-mir-15a~16–1~3613 locus has been
associated with glucocorticoid resistance in acute lymphoblastic
leukemia [40], whereas mir-15 deletion has been linked to overex-
pression of apoptotic gene BCL2 in cancer [41]. Based on our
results, it would be important to further discern the contribution
of differential TSS usage on the disease onset [41]. Overall, our
analysis highlights the high variation between the different cancer
cell lines in both the basal transcriptional activity and differential
TSS utilization. Through the ENCODE data resource, it would now
be possible to investigate how different stimuli, TFs and DNA
sequence mutations impact the TSS activity, and in parallel to
investigate epigenetic mechanisms that may act to silence such
tumor suppressor miRNAs, through quantitative analysis of ChIP-
and DNAse-seq signals across the cell lines.

Cellular homeostasis is subjected to complex regulation that is
coordinated by shared or cell-type-specific signaling pathways,
TFs and miRNAs. We showed here that H3K36me3-based quantifi-
cation could distinguish cell-type-specific expression and extend
the analysis of regulatory networks to include pri-miRNA tran-
scripts. In our analysis of altered pri-miRNA regulation in cardiac
disease, we detected 75 candidate DE pri-miRNAs. The mature
miRNA forms derived from these loci have been linked to CHDs
or heart diseases (reviewed by [12,13]), thus further supporting
the H3K36me3 level as a suitable measure of transcriptional
changes. Among those, miR-1–1 was previously found to be
down-regulated in cardiac tissue of patients with CHD/septal
defects [42]. Our study confirms that this downregulation occurs
directly in cardiomyocytes carrying the GATA4 G296S mutation.
We acknowledge that this case study is limited in statistical power
by the number of samples available. The primary purpose of
H3K36me3 ChIP-seq data has been to capture chromatin dynamics,
therefore future studies that aim to leverage this marker for statis-
tical analysis should be designed with a higher number of repli-
cates to have improved statistical power.

Focusing on putative targets corresponding to the mature forms
of DE pri-miRNAs, our pathway analysis revealed several key car-
diac pathways. Notably, several DE miRNAs were associated with
Hippo signaling that has been shown to have a central role in organ
development and tissue homeostasis by controlling proliferation,
cell fate decisions and survival (considering heart development
reviewed by [43]). Dysregulation of this pathway is associated with
development defects including septal defects and YAP1, the target
of the mature form of hsa-mir-100~let-7a-2~mir-125b-1, is down-
regulated in the disease condition [44]. Our analysis provides a
rationale to perform further mechanistic studies to characterize
the interplay between altered TF recruitment and post-
transcriptional regulation via miRNAs which can perturb cardiac
cell homeostasis by modulating the expression of this pathway.

We have previously shown that pri-miRNA loci display a com-
plex regulatory structure, where distinct TSS interacts with distal
enhancers [3]. In a similar fashion that promoters for protein-
coding genes, pri-miRNA TSS-to-enhancer contacts are also con-
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fined by chromatin architecture. Distal enhancers up- and down-
stream from promoter regions can be brought into close
proximity and influence transcription and stimulate cell-type-
specific differential TSS utilization within the same chromatin
domain [3,45]. Here, we explored regulatory interactions associ-
ated with differential pri-miRNA expression. Focusing on SEs
located within regulatory domains of DE pri-miRNAs, we noted
that a majority of DE pri-miRNA loci included SEs that were lost
or gained in the MUT samples. Loss of SEs associated with down-
regulated pri-miRNAs. Furthermore, we observed the formation
of new iCM SEs in MUT samples within regulatory domains with
upregulated pri-miRNAs. Our analysis revealed that a major part
of these gained iCM SEs had an increasing number of TBX5 binding
sites. Specifically, among DE pri-miRNA, we annotate a novel SE
downstream hsa-mir-100~let-7a-2~mir-125b-1 TSS5 that is gained
in patients carrying GATA4 mutation and contains TBX5 gained
peaks. These results demonstrated that the GATA4 mutation
impacts the transcriptional regulation of pri-miRNAs. These stud-
ies could also be extended to include binding profiles for additional
cardiac TFs to gain a better understanding of the mechanisms that
contribute to the formation of these SE. Overall, the integrative
analysis across different genomic data highlighted changes not
only at pri-miRNA expression levels but also in fine-tuning of chro-
matin states between WT and MUT samples that affect pri-miRNA
transcriptional regulation.

In conclusion, the approach we present can advance research on
miRNA regulation based on existing and well-established genome-
wide histone marker data. We assessed the pitfalls that arise from
the main differences between GRO-seq and H3K36me3 ChIP-seq
data and provided suggestions on how to consider them in the
analysis and interpretation. Moreover, we improved the global
understanding of factors affecting cardiac development, widened
the knowledge of the transcriptional regulation of pri-miRNA
expression in cardiomyocytes, and highlighted candidate miRNAs
for further investigations. Together with other related studies, this
paves the way to reconstruct TF-pri-miRNA networks that are fun-
damental in regulating cell identity. Methods for understanding
cell-type-specific regulatory mechanisms that are dysregulated in
disease pathogenesis could benefit drug discovery by assessing
each component of the regulatory network, thus providing a
rational approach to develop more efficient treatments.
4. Material and methods

4.1. Pre-processing ChIP- and GRO-seq data

iCM ChIP-seq data was pre-processed from SRA files that were
previously downloaded from the NCBI SRA database with GSE
accession number: GSE85631 and GSM identifiers listed in
Table S1. The quality of the reads was assessed using FastQC tool
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and
reads were filtered using FastX toolkit (http://hannonlab.cshl.edu/-
fastx_toolkit/) so that minimum 97% of all bases in one read have
to have a minimum phred quality score of 10 [46]. The resulting
reads were aligned to the human genome hg19 using bowtie-
0.12.7 with parameters set to allow two mismatches, accepting
maximum 3 locations per read in the genome and reporting the
best alignment found. Additional ChIP-seq data used in this study
was downloaded from the ENCODE consortium directory (ftp://hg-
download.cse.ucsc.edu/goldenPath/hg19/encodeDCC/, GEO identi-
fiers are listed in Table S1). Next, the aligned .bam files were
used to quantify pri-miRNA coordinates. BigWig files were created
using HOMER software v.4.9.1 [47] (makeMultiWigHub.pl) to visu-
alize the data in the UCSC genome browser [48].

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
http://ftp%3a//hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
http://ftp%3a//hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
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4.2. Annotation and quantification of pri-miRNA transcripts

Reads mapping to pri-miRNA coordinates were quantified as
described in [3] with slight modifications. Briefly, since some tis-
sues (including cardiac) were only represented by one cell line
model, we extended the pri-miRNA annotation by generating TSS
elements from Refseq and UCSC knownGene annotations (2018)
[49,50] (gene transcript coordinates for intragenic and host-gene
(HG) coordinates for intergenic pri-miRNAs) and added to the
TSS elements representing further intergenic pri-miRNAs coordi-
nates reported in our previous work based on 27 human cell types
[3]. Known annotations were used similarly as the de novo tran-
scripts generated from GRO-seq signal and TSS elements that over-
lapped with pre-miRNA (cluster) genomic coordinates were
extracted as previously described. This extended the current anno-
tation by 201 pri-miRNA transcripts (Table S4).

The resulting TSS elements were quantified using HOMER soft-
ware v.4.9.1 (analyzeRepeats.pl with parameters -strand + -noadj-
noCondensing-pc 3). Finally, we estimated the contribution of each
TSS in a given locus to the overall transcriptional activity. This was
done by subtracting the signal level of the upstream TSS element
based on the RPKM values, as previously described [3]. To avoid
introducing low expressed transcripts that would raise false posi-
tives in the DE analysis, transcripts were considered expressed if
the H3K36me3 ChIP-seq signal was 5-fold enriched over the input
signal (findPeaks.pl command from HOMER software v.4.9.1 with
option -F 5) [47].
4.3. Benchmarking the use of H3K36me3 histone mark to detect pri-
miRNA expression

Data available from endothelial cells was used to compare tran-
script expression level quantification between GRO- and ChIP-seq
data. A total of 12 different datasets including H3K36me3 were
included in the analysis (accession numbers in Table S1). Raw
counts for each TSS element were normalized to CPM values.
Expressed transcripts (CPM > 1 across all samples) were correlated
pairwise using Pearson correlation. H3K36me3 and H3K79me2 sig-
nal was further analyzed from A549 (lung cancer), GM lines (lym-
phoblastoid), IMR-90 (fibroblast), and K562 (myeloid cancer) ChIP-
seq data generated by ENCODE. To further evaluate the H3K36me3
and H3K79me2 signal in comparison with GRO-seq signal, we
divided 9,053 TSS elements into 100 transcriptional activity groups
(bins) based on GRO-seq mean expression and ordered these
groups from lowest to highest expressed. Next, the mean histone
marker signal for the same groups was calculated. Log transformed
average TPM counts were plotted to assess the correspondence of
GRO- versus ChIP-seq based transcriptional activity level in groups
of genes that are similarly expressed (y-axis), following the
approach in [4]. Pri-miRNA transcripts detected by GRO- and
ChIP-seq were determined after data type-specific filtering:
CPM > 0 for GRO-seq and signal 5-fold over the input for ChIP-
seq (findPeaks.pl command from HOMER software v.4.9.1 with
option -F 5) [47]. The portion of pri-miRNAs affected by expressed
genes on the opposite strand was found using intersect command
with parameters -S -f 0.50 (software BEDTools v2.27.1) [51].

We noted that H3K36me3 profiles often have a signal increase at
the second annotated exon that corresponds to the first splicing site.
The relationship has been observed previously [32,52,53] and may
indicate a link between the histone marker level and co-
transcriptional pre-mRNA processing efficiency. When the
H3K36me3 signal is averaged across the transcript length, the size
of the first intron may influence the obtained signal level. To over-
comethis, TSSelementswhere thefirst exon is excludedcouldbeuti-
lized. As the relevance of this signal elevation to co-transcriptional
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pre-miRNA processing has not yet been established, we chose to
use the signalquantified fromtheentireannotatedcoordinate range.

4.4. Assessing the relationship between pri-miRNA transcripts and
mature miRNA species

Mature miRNA level is affected by transcription (synthesis)
level, transcript processing efficiency, and stability. We compared
the level of miRNA expression between datasets that capture pri-
miRNA expression (GRO-seq and H3K36me3 ChIP-seq data reflect-
ing transcript synthesis) and datasets that capture mature miRNA
expression (small RNA-seq from GSE136813 and microRNA
microarray from GSE30512, Table S1). Mature miRNA annotations
were converted between miRbase versions using the miRBaseCon-
verter v.1.10.1 [54]. To analyze the relationship between the pri-
mary transcript and mature miRNA levels, we chose to keep only
the predominant �3p and �5p form of each mature miRNA, and
for pri-miRNA transcripts that could be processed to yield multiple
different mature forms only the highest �3p or �5p expressed
mature miRNA form was analyzed for simplicity. Furthermore,
only well-annotated miRNAs (hsa- prefix in miRBase) were used.
Summed TSS activity for these pri-miRNA loci (log2 RPKM) based
on H3K36me3 ChIP-seq data was divided into 10 activity bins
(921 pri-miRNA loci) The detection rate was calculated using both
mature miRNA microarray and small RNA-sequencing data. Those
pri-miRNA loci that had at least one mature miRNA detected were
then plotted showing the signal distribution for each data type as
violin plots (GRO-seq, H3K36me3 ChIP-seq, small RNA-seq and
array).

4.5. Statistical analysis of pri-miRNA expression in iCM cells

The publicly available ChIP-seq data was obtained from iPS car-
diomyocytes that were differentiated from induced pluripotent
stem cells derived from patients suffering from CHD. The patients
were previously genotyped to have a heterogenous G296S muta-
tion in the cardiogenic TF GATA4 [16]. TSS elements representing
pri-miRNA transcripts were overlapped with peaks found enriched
by findPeaks command as described above and those lacking
enriched peaks were discarded. Differentially expressed transcripts
were calculated with limma R package that fits the data to a linear
model and uses the voom transformation for introducing weights
to capture the mean–variance relationship in count data [55].
Transcripts with a nominal p.value < 0.05 we included in the
downstream analysis. To overcome the limitation of ChIP-seq data
lacking strand-specificity, we excluded those pri-miRNAs with
>25% overlap with an expressed gene on the opposite strand based
on H3K36me3 data (software BEDTools v2.27.1 with parameters -S
-f 0.25). After exclusion of sample 3.2, with insufficient library
sequencing depth to provide enough sensitivity in the detection
of pri-miRNA expression (Fig. S5A-B) [46], the low number of repli-
cates was estimated to lead to a loss in sensitivity to detect DE
genes. Therefore, we opted to assign DE genes using the nominal
p-value from the genome-wide quantification (statistical model
fitting included Refseq/UCSC and pri-miRNA genes, only the latter
were reported). To limit the number of false-positive findings, we
examined all DE pri-miRNAs based on the signal tracks and
excluded 3 DE pri-miRNAs transcripts due to overlapping genes
that were actively transcribed from the opposite strand, and six
transcripts due to low and variable signal between the replicates.

4.6. Regulatory analysis of pri-miRNA loci

We defined regulatory domains as limited by TAD boundaries.
Coordinates of TADs determined using Hi-C from cardiomyocytes
were downloaded from GEO (GSE106687). Original coordinates
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were aligned to hg38 and we lifted them over to hg19 using UCSC
liftOver tool [56]. Peak calling was performed for GATA4 and TBX5
ChIP-seq data using findPeaks command [47] with parameters -
style factor -o auto. We excluded GATA4 and TBX5 binding peaks
that were located ±250 bp from a TSS (promoter binding) of DE
pri-miRNA before calculating the number of TF peaks within regu-
latory domains. The co-operation of GATA4 and TBX5 was found by
using intersect command with default parameters (software
BEDTools v2.27.1) [51]. The number of TF peaks were normalized
to regulatory domain size for barplots. Portions of lost, unchanged,
and gained TF peaks were determined based on the number of
overlapping peaks between WT and MUT samples. Data was visu-
alized using UCSC Genome Browser [48,57]. SE annotation for
mature cells was downloaded from the dbSUPER database for
endothelial cell line and cardiomyocytes (Left Ventricle and Right
Ventricle) [58]. Schematic illustrations were created with
BioRender.com.
4.7. SE detection in iCM samples

H3K27ac tag directories were pooled for WT samples (1.8, 5.6
and 7.2) and MUT samples (2.6 and 4.2). SEs were detected in
iCM cells by using HOMER software v.4.9.1 [47] (annotatePeaks.
pl with parameters -style super -L 0).
4.8. Pathway analysis

We obtained mature miRNA �3p and �5p forms from miRBase
v.20 [26] and filtered out the �3p or �5p form that was not
expressed (RPKM < 0.5) based on the following cardiomyocyte
small RNA-seq datasets: GSE108021 (samples GSM2887374,
GSM2887375, and GSM2887376), GSE62913 and GSE60292, under
physiological conditions. In order to perform pathway analysis, we
used mirPath v.3 online tool, which contains experimentally vali-
dated and predicted miRNA gene targets, KEGG and GO pathways
[59]. We selected the top 15 KEGG pathways ranked according to
their significance (p.value < 0.05, Fisher’s Exact Test). Experimen-
tally validated gene targets were obtained from TarBase v.8 [60].
For each mature miRNA of the hsa-mir-100~let-7a-2~mir-125b-1
cluster, target genes were plotted into the hippo pathway map (ac-
cession hsa04390) using KEGG Mapper tool [61].
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