
Primary angle-closure glaucoma (PACG) is character-
ized by elevated intraocular pressure (IOP) due to the apposi-
tional obstruction of trabecular meshwork or synechia contact 
between the peripheral iris and trabecular meshwork [1]. In 
2013, the number of people between 40 and 80 years old with 
PACG was estimated to be 20.17 million worldwide [2]. About 
76.70% of PACG patients live in Asia, especially in China [2].

Significant racial differences and familial clustering 
suggest a strong genetic basis for PACG [2]. Although 
nine genes/loci, including collagen type XI alpha 1 chain 
(COL11A1) and ATP binding cassette subfamily C member 5 
(ABCC5), have been identified using genome-wide associa-
tion studies (GWAS), they only explain up to 2% of the genetic 
variance in PACG [3-5]. A meta-analysis also identified five 

additional genetic susceptibility genes for PACG in candidate 
gene studies, such as membrane-type frizzled-related protein 
(MFRP) and matrix metallopeptidase 9 (MMP9) genes [6]. 
Furthermore, the identification of eight PACG-associated 
single nucleotide polymorphisms (SNPs) using anterior 
segment imaging parameters provided only a marginal 
improvement in PACG detection [7]. The poor correlation 
between the genes and pathogenesis of PACG indicates that 
it is a heterogeneous disease with a complex etiology. The 
occurrence of PACG can hardly be attributed to variants 
within a single gene, thereby leading to the consideration 
that other latent factors might play important roles. Consid-
ering the heterogeneity and complexity of PACG, the lack of 
phenotype stratification, and a “pure” target population make 
existing studies limited, thereby hindering the identification 
of genes or genetic risk factors for PACG. A strategic change 
in dividing PACG based on phenotype into different subtypes 
might be helpful to investigate the pathogenesis of PACG.

As a complex disease, PACG involves several inherit-
able traits, including hyperopic refraction, small cornea, 

Molecular Vision 2021; 27:734-740 <http://www.molvis.org/molvis/v27/734>
Received 24 September 2020 | Accepted 27 December 2021 | Published 29 December 2021

© 2021 Molecular Vision

734

Evaluation of MYRF as a candidate gene for primary angle closure 
glaucoma

Xiaowei Yu,1 Nannan Sun,1 Congcong Guo,2 Zhenni Zhao,1 Meifang Ye,1 Jiamin Zhang,1 Jian Ge,1 Zhigang 
Fan1,3

(The first two authors contributed equally to this work.)

1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key 
Laboratory of Ophthalmology and Visual Science, Guangzhou, China; 2Jiaojiang Center for Disease Control and Prevention, 
Taizhou, China; 3Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical 
University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China

Purpose: Primary angle-closure glaucoma (PACG) is a leading cause of blindness. Despite tremendous human effort 
and financial input, no definitive causative gene has been identified either through genome-wide association or Mende-
lian family studies. In the current study, novel candidate genes for PACG were investigated by studying the variants of 
nanophthalmos-associated genes.
Methods: A case-control study was conducted that included 45 PACG patients and 12 normal controls with short axial 
length (AL, less than 23.5 mm but more than 20.5 mm). Whole-exome sequencing (WES) was performed to screen the 
variants in previously identified nanophthalmos-associated genes, as well as other risk genes.
Results: The age range of the 45 PACG patients was 24 to 80 years, with an average AL of 21.87±0.65 mm (range: 
20.54–23.45 mm) in the right eye and 21.89±0.64 mm (range 20.60–23.23 mm) in the left eye. Four novel myelin regula-
tory factor (MYRF) gene missense variants (p.G117S, p.H1057R, p.H230R, and p.R316C) were identified in four out of 
the 45 enrolled PACG patients, respectively. No MYRF or other nanophthalmos-associated gene variants were detected 
in the 12 normal controls.
Conclusions: An appropriate approach was adopted to investigate the genetics of PACG through nanophthalmos-asso-
ciated genes. A genetic variant, MYRF, was identified in four out of 45 PACG patients, which might be a novel candidate 
gene for PACG.
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shallow anterior chamber, narrow iridocorneal angle, 
thickened lens with increased curvatures, and increased 
choroidal thickness. Nanophthalmos patients could present 
with all the phenotypes of PACG and are associated with a 
relatively large lens and an extremely small eye volume [8]. 
Several studies have reported the association of PACG with 
nanophthalmos-associated genes [9,10]. Zhang et al. inves-
tigated the association of the serine protease 56 (PRSS56) 
gene with PACG and high hyperopia [11], while Vithana 
et al. investigated the association of the MFRP gene with 
PACG [12]. However, no statistical difference in the distribu-
tion of variants between PACG cases and healthy controls 
was identified. Moreover, the rare missense variants of the 
PRSS56 and MFRP genes were detected in only 2.65% and 
1.90% of the PACG patients, respectively. The heterogeneity 
of the study population probably limits the identification of 
pathogenic variants and undermines interpretations. A stra-
tegic approach that explores all the genetic factors of PACG, 
rather than exploring a single or a few factors, as commonly 
performed in previous studies, might significantly increase 
the likelihood of identifying major functional components. 
Following this theoretical rationalization, nanophthalmos can 
lead to the identification of genetic factors for PACG, which 
might be an appropriate approach. The hypomorphic alleles 
of nanophthalmos genes might have moderate effects on the 
biometry of PACG and might also increase its risk.

From a molecular perspective, the mechanisms of 
anatomic angle closure can be categorized into the regulation 
of the developments in the ocular axial, the anterior chamber 
angle structures, including lens and lens zonules, and the 
retina-choroid-sclera complex [13-15]. Therefore, this study 
mainly included PACG patients with short axial length (AL, 
average: 21.87 mm in the right eye and 21.89 mm in the left 
eye) to reduce potential phenotypic heterogeneity.

Previously, a novel nanophthalmos gene MYRF [16] was 
identified through the de novo variants trio analysis of fami-
lies with nanophthalmos. In the current study, whole-exome 
sequencing (WES) was performed to screen all the identified 
nanophthalmos-associated genes, including transmembrane 
protein 98 (TMEM98), bestrophin 1 (BEST1), PRSS56, 
crumbs cell polarity complex component 1 (CRB1), MFRP, 
and MYRF. Finally, MYRF missense variants were found in 
four out of the 45 recruited PACG patients with short AL (less 
than 23.5 mm but more than 20.5 mm).

METHODS

Subject recruitment: We consecutively recruited 45 Chinese 
PACG patients at Zhongshan Ophthalmic Center (ZOC), Sun 
Yat-sen University. Inclusion criteria were as follows: (1) at 

least 180° of peripheral anterior synechiae under gonioscopy; 
(2) elevated IOP measured by Goldmann applanation tonom-
etry; (3) glaucomatous optic neuropathy confirmed by corre-
lated structural and functional defects through optic nerve 
imaging, optical coherence tomography (OCT), and visual 
field tests; and (4) less than 23.5 mm but more than 20.5 mm 
of AL. Another 12 normal controls with short AL ranging 
from 20.5 mm to 23.5 mm were recruited. AL was measured 
by IOL Master. Subjects with uncontrolled ocular infection, 
severe systemic diseases, or who declined to participate were 
excluded. This study is strictly in accordance with the tenets 
of the Declaration of Helsinki, and was approved by the 
Ethics Committee of ZOC. All patients provided informed 
consent before recruitment.

Whole exome sequencing and mutational analysis: Genomic 
DNA was extracted from peripheral blood using an isola-
tion kit (OSR-M104-T1, Tiangen Biotech, Beijing, China). 
The coding DNA was enriched using the SureSelect Human 
All Exon Kit (Agilent V6, Santa Clara, CA), and paired-end 
sequencing was performed with the Novaseq 6000 sequencer 
(Illumina, San Diego, CA) with an average sequencing depth 
of 102.53X. The sequencing reads were processed with 
the Burrows-Wheeler Aligner (BWA) for alignment on the 
human reference genome of hg19 and the Genome Analysis 
Toolkit (GATK) for local realignment, quality recalibration, 
and variant calling. The Variant Call Format (VCF) files 
were then analyzed using ANNOVAR software. The vari-
ants were filtered using the following criteria: (1) low-quality 
variants were removed by GATK recommended filters; (2) 
variants present in the public genetic variant databases, 
Genome Aggregation Database (GnomAD v2.0.1), with an 
allele frequency <2% were included; and (3) nonsense vari-
ants, frameshift variants, splice site, or predicted damaging 
missense variants by Combined Annotation Dependent 
Depletion (CADD), Sorting Intolerant From Tolerant (SIFT), 
PolyPhen2, or MutationTaster were included. Nanophthalmos 
genes, including autosomal dominant genes (TMEM98, 
BEST1, and MYRF) and autosomal recessive genes (PRSS56, 
CRB1, and MFRP), were screened in these patients. Only 
exome variants could be detected by the methods used in 
the current study, while other variants such as intronic, copy 
number variations (CNVs), and structural variants (SVs) 
could not be detected.

The sequencing depth in subjects in the discovery stage 
ranged from 86.02 to 187.65. The mapping rate of clear data 
ranged from 94.43% to 99.95%, and the genome coverage 
ranged from 97.89% to 99.60% (Appendix 1).
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RESULTS

In this study, the average age of PACG patients was 
56.47±12.51 years old and that of normal controls was 
58.58±13.31 years old (p>0.05). The average AL in the 
right eye was 21.87±0.65 mm in the PACG group and 
21.66±0.70 mm in the control group (p>0.05), whereas for the 
left eye, the average was 21.89±0.64 mm for the PACG group 
and 22.01±0.65 mm for the control group (p>0.05; Table 1).

Four of the 45 PACG patients were identified with 
novel MYRF missense variants (Table 2). Three hetero-
zygous missense variants (NM_001127392: c.349G>A, 
p.G117S; c.689A>G, p.H230R and c.946C>T, p.R316C) 
and one homozygous missense variant (NM_001127392: 
c.3170A>G, p.H1057R) in the MYRF gene were identified in 
the PACG patients with short AL, which were confirmed by 
Sanger sequencing (Figure 1). The frequencies of p.G117S, 
p.H1057R, p.H230R, and p.R316C in GnomAD (8.49*10−6; 
6.98*10−5; 1.15*10−5; 3. 90*10−5, respectively) were all less 
than 2% (Table 3). All of these MYRF missense variants 
were predicted to be “damaging” by in silico prediction using 
SIFT and CADD (Table 3). Moreover, these variants were all 
located in conserved domains among various species (Figure 
2). On the other hand, the three heterozygous variants in the 
nanophthalmos-associated gene (CRB1, c.2585C>G p.T862S; 
BEST1, c.274C>G, p.R92G; MFRP, c.496C>G, p.P166A) were 
also identified in the PACG patients with short AL (Appendix 
2). Among these, the variant c.496C>G in the MFRP gene 
has been reported previously [17]. The frequencies of these 
variants in 1000G, GnomAD, and the exome aggregation 

consortium (ExAC) were less than 2% and predicted to be 
“damaging” by the in silico prediction (Table 3). Importantly, 
none of the variants in the nanophthalmos-associated genes 
were detected in the 12 control subjects.

DISCUSSION

In the current study, four novel MYRF missense variants 
(NM_001127392: c.349G>A, p.G117S; c.689A>G, p.H230R; 
c.946C>T, p.R316C; and c.3170A>G, p.H1057R) were 
detected in 8.9% of PACG patients with short AL. In addi-
tion, another three nanophthalmos-associated gene variants 
(CRB1, c.2585C>G, p.T862S; BEST1, c.274C>G, p.R92G; 
MFRP, c.496C>G, p.P166A) were detected in this study. No 
variants in nanophthalmos-associated genes were detected in 
the 12 controls.

Although the molecular function of MYRF in PACG is 
not yet known, several MYRF variants have been confirmed 
to be associated with nanophthalmos/high hyperopia as 
reported in our previous study [16], as well as by Garnai et 
al. [18] and Xiao et al. [19], suggesting the important role of 
MYRF in the regulation of AL. Recently, we reported the 
functional role of Myrf in the retina and zonule using mouse 
models, which indicated the underlying function of MYRF in 
eye development [20,21]. In addition, Sun et al. [22] indicated 
that PACG was frequently associated with MYRF-associated 
high-hyperopia. However, nanophthalmos genes, including 
MYRF, are primarily involved in the intra-uterus and early 
post-birth period ocular development, while genetic and 
environmental factors contributing to refractive (myopic) 

Table 1. Demographic characteristics of PACG cases and controls.

Parameter PACG Control P
Number 45 12  
Age, years (Mean ± SEM) 56.47±12.52 53.58±13.31 0.62
AL/OD, mm (Mean ± SEM) 21.87±0.65 21.66±0.70 0.35
AL/OS, mm (Mean ± SEM) 21.89±0.64 22.01±0.65 0.57

Age represents age at recruitment

Table 2. Clinical data and genetic findings of four patients with MYRF variant.

Case 
number

Age 
(years) Gender

Axial length (AL), mm Lens thickness, mm Refraction, D
Variant

OD OS OD OS OD OS
1 59 Male 20.54 20.71 5.33 5.62 −1.75 3 c.349G>A, p.G117S
3 31 Male 20.8 20.6 - - - - c.3170A>G, p.H1057R
9 64 Male 23.45 23.23 4.78 4.73 0.5 0.75 c.689A>G, p.H230R
36 70 Female 21.51 21.73 5.5 5.46 1 0.5 c.946C>T, p.R316C

Age represents age at recruitment. Refraction was measured before surgery with phakic.
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Figure 1. Identification of MYRF 
variants (c.349G>A, p.G117S; 
c.3170A>G, p.H1057R; c.689A>G, 
p.H230R; c.946C>T, p.R316C) 
in PACG patients by Sanger 
sequencing.

Table 3. The Allele Frequencies and silico prediction for the variants found in patients.

Gene variant
GnomAD, 
ALL

GnomAD, 
EAS GERP++_RS CADD SIFT Polyphen-2 MutationTaser

MYRF c.349G>A, p.G117S (het) 8.49*10−6 1.11*10−5 C (4.44)
D 
(17.09) D B N

MYRF c.3170A>G, p.H1057R 
(hom) 6.98*10−5 9.66*10−4 C (4.26) D 

(15.63) D PD D

MYRF c.689A>G, p.H230R 
(het) 1.15*10−5 1.52*10−4 C (4.35) D (23.2) D D D

MYRF c.946C>T, p.R316C (het) 3.90*10−5 1.50*10−4 C (2.55) D (25.1) D PD D

CRB1 c.2585C>G, p.T862S 
(het) 7.98*10−6 1.09*10−4 C (5.34) D (22.5) D D D

BEST1 c.274C>G, p.R92G (het) - - C (5.03) D (32) D D D

MFRP c.496C>G, p.P166A 
(het) 4.67*10−4 0.00598 C (2.06) D (21.6) T D D

het=heterozygous; hom=homozygous; ALL=all population; EAS=East Asian populations; C=conserved; D=damaging; T=tolerable; 
PD=possibly damaging; B=benign; n=polymorphism.

Figure 2. Evolutionary conserva-
tion of MYRF variants (p.G117S; 
p.H1057R; p.H230R, p.R316C) 
across different species.

http://www.molvis.org/molvis/v27/734
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development, especially in industrialized and near-work 
societies, play important roles in later days [23]. These two 
components are combined to determine the final AL in the 
eye (phenotype). Therefore, the effects of genetic and envi-
ronmental factors on PACG patients with short AL need to 
be further investigated.

Generally, variants in the MYRF gene cause nanoph-
thalmos with AL <20.0 mm [16,18]; yet the AL of the PACG 
patients with MYRF variants in this study ranged from 
20.5 mm to 23.5 mm. Therefore, PACG patients with MYRF 
variants might be clinically “atypical” in nanophthalmos if 
they are defined by the genetic factor, because their short AL 
might gradually increase because of environmental factors. 
For the detection of this type of glaucoma, a genetic diagnosis 
and the potential phenotypic stratification of PACG based on 
genetics might be helpful. Furthermore, PACG is associated 
with serious perioperative complications, such as choroidal 
effusion and malignant glaucoma, making the eye extremely 
overcrowded in its anterior ocular structures and pathologi-
cally thickened in its choroid and sclera. Therefore, genetic 
screening might be needed for nanophthalmos-associated 
genes.

In this study, all the frequencies of variants, including 
four MYRF variants, one CRB1 variant, one BEST1 variant, 
and one MFRP variant, obtained through large open data-
bases, were less than 2%. Furthermore, all these missense 
variants were predicted to be “damaging” by the in silico 
analysis. Taken together, these findings suggest that nanoph-
thalmos-associated genes, especially MYRF, might play a 
vital role in the pathogenesis of at least some PACG patients. 
People with short AL caused by variants in the MYRF gene or 
other nanophthalmos-associated genes are more susceptible 
to developing PACG.

Most of the MYRF variants, which have been previously 
reported, are truncating variants, while only several missense 
variants have been identified in nanophthalmos patients and 
include c.1433G>C, p.R478P [16] and c.1553C > T, p.T518M 
[24]. However, the variants identified in this study were all 
missense, and the associated phenotype was not as severe 
as the one reported in patients with truncating MYRF vari-
ants. Therefore, the pathogenicity of these MYRF missense 
variants might be slightly lower than that of the truncating 
MYRF variants; this requires further functional evidence. In 
particular, the variant p.H1057R found in the current study 
was a homozygous variant, and nanophthalmos is inherited in 
an autosomal dominant manner. The homozygous missense 
variant of the autosomal dominant gene might have more 

serious phenotypes than the heterozygous; yet, in this study, 
the phenotype was less severely associated with the MYRF 
homozygous variant.

Some limitations of this study should be considered. 
First, the sample size of the normal controls with short AL 
was very small, and we can hardly rule out MYRF as solely 
a gene for AL, yet people with short AL without no ocular 
diseases are rarely observed. Therefore, only 12 normal 
controls and 45 PACG patients with short AL were recruited 
during the same period. Further validation in a large multi-
center clinical collection of larger trios and sporadic patients 
with more controls is needed in future studies. Second, the 
potential function of the missense variants found in this 
study needs to be further investigated, as the pathogenicity 
of the variants is still unclear even after in silico prediction. 
Specifically, it should be noted that the homozygous variant 
p.H1057R was more common in East Asian populations 
(allele frequency was 9.66*10−4 in GnomAD, EAS). It remains 
unknown whether the four MYRF missense variants act by 
haploinsufficiency or by dominant negativity. However, 
knockdown of the MYRF gene resulted in a smaller eye 
size in zebrafish [22], while our previous study found that 
the MYRF variant in mice caused reduced anterior chamber 
depth [20]. This supports the potential effect of MYRF on the 
anterior chamber development and pathology of PACG. In 
summary, we report that MYRF is a potential candidate gene 
for PACG, which requires further studies to be confirmed.

APPENDIX 1.

Summary of variants detected in patients by whole exome 
sequencing. To access the data, click or select the words 
“Appendix 1.”

APPENDIX 2.

Clinical data and genetic findings of three patients with 
nanophthalmos-associated gene variants. To access the data, 
click or select the words “Appendix 2.”
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