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Abstract

Recent evidence has suggested that the dorsal (DH) and the ventral (VH) poles of the hippocampus are structurally,
molecularly and functionally different regions. While the DH is preferentially involved in the modulation of spatial
learning and memory, the VH modulates defensive behaviors related to anxiety. Acute restraint is an unavoidable
stress situation that evokes marked and sustained autonomic changes, which are characterized by elevated blood
pressure (BP), intense heart rate (HR) increases, skeletal muscle vasodilatation and cutaneous vasoconstriction,
which are accompanied by a rapid skin temperature drop followed by body temperature increases. In addition to
those autonomic responses, animals submitted to restraint also present behavioral changes, such as reduced
exploration of the open arms of an elevated plus-maze (EPM), an anxiogenic-like effect. In the present work, we
report a comparison between the effects of pharmacological inhibition of DH and VH neurotransmission on
autonomic and behavioral responses evoked by acute restraint stress in rats. Bilateral microinjection of the unspecific
synaptic blocker cobalt chloride (CoCl2, 1mM) into the DH or VH attenuated BP and HR responses, as well as the
decrease in the skin temperature, elicited by restraint stress exposure. Moreover, DH or VH inhibition before restraint
did not change the delayed increased anxiety behavior observed 24 h later in the EPM. The present results
demonstrate for the first time that both DH and VH mediate stress-induced autonomic responses to restraint but they
are not involved in the modulation of the delayed emotional consequences elicited by such stress.

Citation: Scopinho AA, Lisboa SFS, Guimarães FS, Corrêa FMA, Resstel LBM, et al. (2013) Dorsal and Ventral Hippocampus Modulate Autonomic
Responses but Not Behavioral Consequences Associated to Acute Restraint Stress in Rats. PLoS ONE 8(10): e77750. doi:10.1371/journal.pone.0077750

Editor: Patrizia Campolongo, Sapienza University of Rome, Italy

Received June 3, 2013; Accepted September 6, 2013; Published October 17, 2013

Copyright: © 2013 Scopinho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The present research was supported by grants from FAPESP (2011/06615-1; 2011/17281-7; 2012/09300-4), FAEPA and CNPq. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: samia@usp.br (SRLJ); leoresstel@yahoo.com.br (LBMR)

Introduction

Stress has been consistently shown as a risk factor for the
development of cardiovascular diseases. In animals, several
responses have been traditionally associated with stressor
exposure, including the neuroendocrine hypothalamo-pituitary-
adrenocortical (HPA) axis activation by the release of
glucocorticoids and adrenocorticotropin hormone- ACTH [1-3],
the autonomic system, indexed by peripheral catecholamine
release, heart rate, blood pressure, or core body temperature
measurements [4-10], and several behavioral responses
characterized by inhibition of locomotor activity, inhibition of
feeding and drinking [2,7,11,12] and the anxiogenic effect
observed in the elevated plus-maze (EPM) 24 h after the stress
[9,13,14]

Besides the hypothalamus and brain stem, which are
essential for autonomic and neuroendocrine responses to
stress, higher cognitive areas of the brain that play a key role in
memory, anxiety, and decision-making, may also participate in
the modulation autonomic and behavioral responses to stress.
It has been shown, for example, that the prefrontal cortex [15],
the lateral septal area [9,16] and the bed nucleus of stria
terminalis [17] play important roles in the modulation of the
cardiovascular and emotional components of the stress
reaction. Interestingly, the inactivation of the dorsal
hippocampus blocks the cardiovascular, but not the behavioral
responses to an aversive conditioned context (Resstel et al.,
2008b), suggesting that the emotional and the autonomic
components of the stress reaction could be dissociated within
this brain region.
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The hippocampus is a limbic structure that has been shown
to be involved in the modulation of cognitive processes, such
as in learning and memory [18-21] and in defensive behaviors
related to anxiety and behavioral adaptation to stress
[14,22,23]. Correlational and epidemiological studies have
implicated stress in human disorders that involve the
hippocampus, including dementia [24,25], depression [26,27],
schizophrenia [28] and anxiety [29]. In addition, genetic
predisposition accounts for only a fraction of diseases, such as
Alzheimer’s, where hippocampal dysfunction is profound
[30,31]. Aversive experiences, including stress, may contribute
to human and animal disorders associated with major
hippocampal dysfunction [32-34].

Recent behavioral, anatomical, and gene expression studies
have suggested that the hippocampus would comprise two
distinct subregions along the dorsoventral axis: the rostral/
dorsal (DH) and the caudal/ventral (VH) zones. The DH, which
corresponds to the posterior hippocampus in primates, would
perform primarily cognitive functions, while the VH (anterior in
primates) would be more closely associated to stress, emotion
and affect regulation [35,36]. In accordance with that
hypothesis, lesions of the DH, but not of the VH, impair
behavioral performance in cognitive tests, while lesions of the
VH, but not of the DH, attenuate stress responses and
emotional behavior in tests predictive of anxiety-like behaviors
[22,23]. Moreover, it has recently been shown by means of
optogenetic techniques that the dorsal dentate gyrus control
exploratory drive and encoding of fear memory whereas the
ventral dentate gyrus has no effect on contextual learning but
powerfully controls behavioral responses associated to anxiety
(Keirbeck et al., 2013). However, it is important to note that
experimental evidence have been mixed, with some studies
reporting that the DH and VH are also able to play similar or
even complimentary roles regarding cognition and affect, as an
attempt to provide contextual specificity to the emotional
system and help in the discrimination between ambiguous and
emotionally charged information [37,38].

In addition to those cognitive and emotional functions, the
involvement of the hippocampus in the regulation of
cardiovascular system has also been described. Ruy and
Neafsey reported that electrical or chemical stimulation of
dorsal or ventral hippocampus, with L-glutamate (L-glu),
decreased heart rate, blood pressure and breathing rate, in
unanesthetized rats [39]. Also, the inactivation of the DH blocks
the cardiovascular, but not the behavioral responses to an
aversive conditioned context in rats [40], suggesting that this
structure play an important role on modulating cardiovascular
responses generated by this aversive situation. Despite this
aforementioned evidence, the involvement of the VH in the
modulation of autonomic responses to stress remains to be
investigated. In addition, there is no study aimed at comparing
possible functional differences between VH and DH in the
modulation of stress-induced autonomic responses, as well as
stress-induced delayed emotional consequences.

Acute restraint stress (RS) is a widely utilized experimental
model to study the emotional and autonomic responses to
stress. It is an unavoidable aversive situation where the animal
is placed in a plastic tube or metal, which restricts its

movements [41,42]. This stress model leads to hormonal
changes [43], cardiovascular responses characterized by
elevated blood pressure and heart rate [15,16] and skeletal
muscle vasodilatation and cutaneous vasoconstriction, which
are accompanied by a rapid skin temperature drop and
followed by a rise in body temperature [9,44,45]. In addition to
those autonomic responses, animals submitted to restraint also
present behavioral changes, such as reduced exploratory
activity in an open field [46-48], increased immobility in a forced
swimming test [49] and reduced exploration of the open arms
of an elevated plus-maze (EPM) [9,13,50]. Therefore, it is
possible to evaluate the consequences of this stress model
acutely by recording the autonomic responses during restraint
session, and later, 24 h after the restraint session, by analyzing
animals’ emotional state in the EPM.

Exposure to acute restraint stress induces the expression of
the proto-oncogene c-Fos, a marker of neuronal activation, in
several brain regions, including the hippocampus [51]. In
addition, administration of glutamate NMDA receptor
antagonists into the DH, immediately after RS, is able to
attenuate the development of the stress-induced behavioral
outcomes 24h later in the EPM [9,13,50] However, the
involvement of the hippocampus in the modulation of acute
autonomic responses to RS was not yet investigated. In
addition, it has not been investigated whether there would be
any functional difference between DH and VH in the
modulation of autonomic and behavioral responses elicited by
exposure to acute RS. Accordingly, the aim of this study was to
evaluate the effects induced by acute reversible inactivation of
the DH or VH neurotransmission by means of local
microinjection of a nonselective neurotransmission blocker,
cobalt chloride (CoCl2), in animals submitted to RS.

Experimental Procedures

2.1 Animals
Male Wistar rats weighing 230–250 g were used. The

animals were kept in the animal care unit of the Department of
Pharmacology, School of Medicine of Ribeirão Preto,
University of São Paulo. The rats were housed individually in
plastic cages with free access to food and water under a 12 h
light/dark cycle (lights on at 06.30 h). Experimental procedures
were carried out following protocols approved by the Ethical
Review Committee of the School of Medicine of Ribeirao Preto
(protocol n. 150/2010), which complies with the guidelines laid
down by the National Institutes of Health (NIH, Guide for the
Care and Use of Laboratory Animals).

2.2 Surgery procedure
Five days before the experiment, the rats were anesthetized

with 2,2,2-tribromoethanol (Sigma, St Louis, Missouri, USA)
(250 g/kg, intraperitoneally). After scalp anesthesia with 2%
lidocaine, the skull was surgically exposed and stainless steel
guide cannulae (0.55 mm) were implanted bilaterally into the
DH or VH using a stereotaxic apparatus (Stoelting, Wood Dale,
Illinois, USA). Stereotaxic coordinates for cannula implantation
in the hippocampus were chosen based on the rat brain atlas
of Paxinos and Watson (1997): DH- AP: -4 mm from bregma,
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L: +2.6 mm from the medial suture, V: -2.1 mm from the skull,
or VH- AP: -5 mm from bregma, L: +5 mm from the medial
suture, V: -4 mm from the skull. The incisor bar position was
set at +3.2 mm. Cannulae were fixed to the skull with dental
cement and one metal screw.

Twenty-four hours before the restraint stress (RS) session,
the rats had a catheter (4 cm PE-10 segment heat-bound to a
13 cm PE-50 segment, Clay Adams, Parsippany, NJ, USA)
inserted into the abdominal aorta through the femoral artery for
blood pressure recording as described by 40. After each
surgery, animals were treated with a polyantibiotic preparation
of streptomycins and penicillins i.m. (Pentabiotico, Fort Dodge,
Brazil) to prevent infection and with the nonsteroidal anti-
inflammatory flunixine meglumine (2.5 mg/kg s.c.; Banamine,
Schering Plough, Brazil) for post-operative analgesia.

2.3 Drugs
The following drugs were used: CoCl2 (Sigma, St. Louis,

MO), tribromoethanol (Sigma) and urethane (Sigma).

2.4 Acute Restraint
In the morning period (07–12 h), the animals were

transported to the experimental room in their home cages.
Mean arterial pressure (MAP) and HR were recorded with a
HP-7754A amplifier (Hewlett Packard, Palo Alto, CA)
connected to a signal acquisition board (Biopac M-100, Goleta,
CA) and were computer processed. After 15 min of baseline
recording, rats received bilateral microinjection into the DH or
VH through a dental needle (0.3 mm OD) introduced into the
guide cannula. The injection needle was 1 mm longer than the
cannula. Saline (vehicle, 0.9% NaCl) or CoCl2 (1 mM) was
bilaterally microinjected in a final volume of 200 nL into the DH
or VH over a 10-sec period, using a 1-µL syringe (7001KH;
Hamilton Co., Reno, NV). After microinjection, the injection
needle was left in place for 30 sec before being removed to
avoid reflux. Ten minutes later, rats were submitted to a 60-min
restraint period in a plastic cylindrical restraining tube (diameter
5 6.5 cm and length 5 15 cm). After restraint, the animals were
returned to their cages. Each animal was submitted to only one
restraint session.

2.5 Temperature measurements
Besides the cardiovascular parameters, variations in

cutaneous temperature (CT) were recorded with the thermal
camera Multi-Purpose Thermal Imager IRI 4010 (InfraRed
Integrated Systems Ltd Park Circle, Tithe Barn Way Swan
Valley Northampton, USA) at a distance of 50 cm.

2.6 Elevated plus maze (EPM)
The EPM test was conducted as described before [50].

Briefly, the apparatus consisted of two opposite open arms (50
X 10 cm) crossed at a right angle by two arms of the same
dimensions enclosed by 40 cm high walls with no roof. The
maze was located 50 cm above the floor. Rodents naturally
avoid the open arms of the EPM and anxiolytic compounds
typically increase the exploration of these arms without
changing the number of enclosed-arm entries [9,52]. The

AnyMazeTM software (version 4.7, Stoelting) was employed for
behavioral analysis. It detects the position of the animal in the
maze and calculates the number of entries and time spent in
open and enclosed arms.

2.7 Histological procedure
At the end of the experiments, rats were anesthetized with

urethane (1.25 g/kg, i.p.) and 100 nL of 1% Evan’s blue dye
was bilaterally injected into the DH or VH to stain the injection
sites. The chest was surgically opened, the descending aorta
occluded, the right atrium severed and the brain perfused with
10% formalin through the left ventricle. Brains were postfixed
for 24 h at 4°C, and 40 mm sections were cut using a cryostat
(CM-1900, Leica, Germany). Sections were stained with 1%
neutral blue and injection sites were identified.

2.8 Data Analysis
All autonomic responses were continuously recorded for 15

min before and during the 60-min of restraint stress period.
Data were expressed as means ±SEM changes (respectively
MAP, HR or CT) and were sampled at 5 min intervals as a
mean of the changes during each 5 min. Points sampled during
the 15 min before restraint were used as control baseline
value. The autonomic values changes during restraint were
analyzed using two-way ANOVA with treatment as independent
factor and time as repeated measurement factor. The basal
values changes were analyzed before and after vehicle or
CoCl2 administration by Student’s t Test. The percentage of
entries (100 x open/total entries) and time spent in the open
arms (100 x open/open+enclosed) of the EPM were calculated
for each rat. These data, together with the number of enclosed
arm entries, were analyzed by one-way ANOVA followed by
Bonferroni’s post hoc test. Values of P<0.05 were taken as
showing statistically significant differences between means.

Results

A representative diagrammatic representation indicating the
injection sites into the DH and VH can be seen in Figure 1.

3.1 Effects of DH or VH inactivation on autonomic
responses to acute restraint

The microinjection of CoCl2 into either the DH (n=6) or the
VH (n=6) did not affect the baseline values of MAP (DH: F3,20

=0.06, P>0.05 and VH: F3,20 =0.06, P>0.05), HR (DH: F3,20 =0.4,
P>0.05 and VH: F3,20 =0.4, P>0.05) or CT (DH: F3,20 =0.4,
P>0.05 and VH: F3,20 =0.4, P>0.05). Acute restraint caused
significant increases in both MAP (F14,165=57.85, P<0.001), HR
(F14,165=31.3, P< 0.001) and a significant and long-lasting
decrease of CT (F14,165 = 20.11, P<0.001).

The CoCl2 injection into the DH significantly reduced MAP
increases (F1,165=211.5, P<0.001), HR (F3,165=161.0, P<0.001),
and blocked the fall in the CT evoked by RS (F1,165=124.7,
P<0.001). In the same way, inhibition of VH with CoCl2
attenuated MAP (F 1,165=89.5, P<0.01) and HR (F1,165=118.8,
P<0.001) increase, and blocked the fall in the cutaneous
temperature evoked by RS (F1,165=273.2, P<0.001) (Figure 2).
Representative infrared digital images of representative rats
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that received either CoCl2 or vehicle into DH are presented in
Figure 3.

3.2 Effects of DH or VH inactivation in the delayed
anxiogenic effect induced by restraint exposure

Animals submitted to acute restraint (n = 6) had a significant
decrease in the percentage of time spent (F2,17 = 6.47, P<0.05)
and in the number of entries in the open arms (F2,17 = 4.28,
P<0.05) compared with unrestrained controls (n = 6). The
CoCl2 administration into the DH (n= 6) or VH (n= 6), however,
failed to change these effects (P>0.05, both) (Figure 4).

Discussion

Acute restraint is an uncontrollable stress situation which
produces several emotional and autonomic responses. The
autonomic responses includes mean arterial pressure (MAP)
and heart rate (HR) increases [16,17,53-55] skeletal muscle
vasodilatation and cutaneous vasoconstriction, which are
accompanied by a rapid skin temperature drop and followed by
body temperature increases [44,45]. In addition to those
autonomic responses, animals submitted to restraint also
present behavioral changes such as reduced exploratory
activity in an open field [46-48], increased immobility in a forced
swimming test [49] and reduced exploration of the open arms
of an elevated plus-maze (EPM) 24 h after the stress
session [13,50]. Therefore, it is possible evaluated the
consequences of this stress model acutely by autonomic
responses during restraint session and later, 24 h after the
restraint session, by anxiogenic like effect in EPM. Thus, our

results showed that local neurotransmission within the DH and
VH have similar influences on autonomic responses associated
with acute RS. DH or VH neurotransmission inhibition reduced
hypertension, tachycardia and skin temperature decreases
elicited by RS exposure. However, local neurotransmission
inhibition in the DH or VH before restraint did not change the
delayed increased anxiety behavior observed 24 h later in the
EPM, suggesting that this inhibition failed to prevent behavioral
consequences of RS exposure.

Studies employing Fos protein/mRNA as a marker of
neuronal functional activation have shown that exposure to
stress, including restraint stress [51], promotes cellular
activation in the hippocampus [56-58], therefore suggesting
that this brain region is engaged in the modulation of stress
reactions/responses. Our results are in agreement with that
assumption, since the administration of the synaptic blocker
CoCl2 into the VH or DH reduces the autonomic responses
elicited by RS, showing that these hippocampal subregions
may have similar roles in the modulation of autonomic
responses associated with stress.

Microinjection of CoCl2 has been used by several
researchers to promote the reversible inactivation of different
brain nuclei, in order to understand their functional role
[5,59-65]. CoCl2 evokes a reversible inactivation by reducing
Ca2+ pre-synaptic influx and thus interfering with
neurotransmitter release that leads to a synaptic blockage,
without interfering with fibers of passage [66,67]. Thus, the use
of CoCl2 causes temporary inactivation of local
neurotransmission and, thus, minimizes several problems
associated with lesion techniques.

Figure 1.  A diagrammatic representation based on the rat brain atlas of Paxinos and Watson (1997) indicating injections
sites of vehicle or CoCl2 (closed circle) into the Dorsal Hippocampus (DH) and Ventral Hippocampus (VH).  cc- corpus
callosum; IA- Inter aural.
doi: 10.1371/journal.pone.0077750.g001
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Figure 2.  Time-course of bilateral microinjection of 200 nL of vehicle (n=6/ DH and VH) or 1 mM of CoCl2 (Cobalt, n=6/ DH
and VH) administered into DH or VH on changes in mean arterial pressure (∆MAP), heart rate (∆HR) and cutaneous
temperature (∆Temp) of animals submitted to 60 min of restraint stress.  Symbols represent the means and bars the SEM.
*P<0.05, Bonferroni’s post-hoc test.
doi: 10.1371/journal.pone.0077750.g002
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Corroborating our results, Resstel and co-workers
demonstrated that the administration of CoCl2 into the DH
attenuated the cardiovascular responses elicited by the re-
exposure to an aversively conditioned context, but failed to
modify its behavioral (freezing) consequences [40]. This finding
suggests that the DH would play a preferential role in the
modulation of the autonomic component of the stress response
during an acute aversive situation. Similarly, Antoniadis and
McDonald (2001) showed that hippocampal excitotoxic lesion
with NMDA before conditioning did not modify freezing
behaviour in the test session [68]. Together, these data
suggest that the hippocampus appears to be important for
autonomic modulation during aversive situations, although this
structure has not yet received much attention in the field of
research studying the central control of autonomic activity.

Anatomical studies have indicated that the input and output
connections of the DH and VH are distinct [69]. Spatial memory
appears to depend on DH [70] while VH, but not DH, lesions
alter stress responses and emotional behavior [71]. Lesions
limited to DH evoked impairment on this task while lesions
limited to VH resulted in enhanced learning [72].On the other
hand, data of literature showed that either dorsal or ventral
hippocampus NMDA lesions disrupt the rapid acquisition of
new place information [37]. However, recently, the
neuroanatomical bases for the functional differences found
between the DH and VH were unclear. The DH present
connections with bed nucleus of stria terminallis, lateral septal
area and medial prefrontal cortex [69], structures that are
known to modulate cardiovascular responses during RS
[9,15-17]. The VH present bidirectional connectivity with

basolateral, medial and central amygdalar nuclei [73-75].
Additionally, the VH and these amygdalar nuclei also share
intimate bidirectional connectivity with the medial prefrontal
cortex and agranular insular cortices [76-79] and also with bed
nucleus of stria terminalis [36,80,81]. The bed nucleus of stria
terminallis is one critical relay station for the hippocampal
regulation of the hypothalamic-pituitary-adrenal response to
psychological stress [82-84] and plays an important role in
anxiety and cardiovascular regulation [17,85,86].

Although the DH and VH display distinctive patterns of
connectivity and regulate several functions in different ways,
both subareas of the hippocampus are connected with
structures involved in cardiovascular modulation and it seems
that both the DH and VH are similarly involved in modulation of
cardiovascular responses caused by RS. Moreover, it has been
previously suggested that the involvement of both DH and VH
on the modulation of cardiovascular responses. Electrical and
chemical stimulation of both VH and DH evoked marked
decreases in heart rate and blood pressure [39]. In this
situation, both VH and DH were able to similarly modulate
cardiovascular responses. Therefore, it appears that both DH
and VH are important for modulation of cardiovascular system.

In agreement with the decreased cardiovascular responses
to stress, VH and DH inhibition also reversed the stress-
induced temperature changes. This finding indicates that
during restraint stress both VH and DH could be modulating the
activity of spinal sympathetic cardiomotor neurons and the
sympathetic neurons controlling temperature changes. These
latter neurons include those that control the cutaneous vascular
tone in the tail skin.

Figure 3.  Infrared digital images of representative rats which received either CoCl2 (indicated by A) or vehicle (indicated
by B) into DH, in its home cage and during the first minute, thirty and sixty minutes of restraint.  Note the drop in cutaneous
tail temperature during the restraint in vehicle treated animal and the absence of this drop in CoCl2 treated animal. The same
effects were observed in VH treated animals. All images use the same color-coding for temperature.
doi: 10.1371/journal.pone.0077750.g003
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The cutaneous temperature in rats depends on the blood
flow and the sympathetic vasoconstrictor tone in the skin
arteries [44,45]. Aversive situations cause a reduction in the tail
blood flow in rats [44,87]. The fall of the tail blood flow would
occur to prevent blood loss due to injuries, by keeping low
amounts of blood in the skin, and another function would be the
redistribution of blood to more important organs during a stress
situation. The cutaneous tail temperature can be used as an
indirect measurement of blood flow redistribution by the
sympathetic nervous system in the rat [44,45,87]. Since that
RS caused a fall in the tail temperature in control rats and
pretreatment of the both DH and VH with CoCl2 inhibited the
fall in tail temperature caused by the restraint, our results
suggest that the hippocampus is an important modulator of the
sympathetic tonus in the tail artery during the exposure to an
aversive situation.

Acute restraint decreased the exploration of the open arms
of the EPM 24 h after RS without changing the number of
enclosed arms, corroborating with results in the literature
[9,50]. The decreased exploratory activity is sensitive to
systemic and intra-cerebral injection of anxiolytic and

antidepressant drugs, suggesting that it reflects a delayed
emotional effect induced by stress exposure [46-48,50]. In
contrast with the results observed with autonomic parameters,
DH and VH inactivation did not change the anxiogenic effects
of RS. This result was not expected since that previous works
showed that this structure plays an important role in the
modulation of anxiety-related behaviors [22,88,89] and innate
defensive responses to various threat stimuli [40,90-92]. The
reasons for these contradictory results could involve the use of
different pharmacological tools and experimental paradigms.
For example, the fact that CoCl2 affects synapses terminations
by reducing Ca2+ pre-synaptic influx and thus interferes with
several neurotransmitter release, without a specific effect on
one particular neural mechanism [66,67]. In addition, the
experimental design of previous studies contrasts with the
experimental design used herein, since we investigated the
effects induced by DH or VH manipulation on the delayed
emotional consequences induced by RS, 24h later. In fact, our
data is supported by a previous report where it is described
that the blockade of NMDA receptors in the DH, before the RS
exposure, failed to attenuate the anxiogenic effect observed in

Figure 4.  Effects of bilateral microinjection of 200 nL of vehicle (n=6/ DH and VH) or 1 mM of CoCl2 (n=6/ DH and VH)
administered into DH or VH immediately before a 1-h restraint period on behavior observed 24 h later in the elevated plus-
maze (EPM).  A non-stressed group was used as control. Columns represent the means and the bars the SEM. *P<0.05,
Bonferroni’s post-hoc test.
doi: 10.1371/journal.pone.0077750.g004
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the EPM 24h later [50]. However, when the NMDA antagonist
was administered into the DH immediately after RS or before
the EPM test, 24h later, then it was able to attenuate the
stress-induced anxiogenic effect [50]. One possible explanation
for such results is that, since the hippocampus would not be
inhibited after RS exposure, the consolidation of the aversive
memory of that situation would have allowed the development
of its emotional consequences. In fact, there are reports
suggesting that the hippocampus would have a pivotal role in
mediating the consolidation of aversive memories and that its
inhibition would favor behavioral adaptation to stress by
inhibiting the consolidation of such memories, and
consequently, of its emotional outcomes [93,94]. In agreement
with that proposal, the DH inactivation with CoCl2, immediately
after footshock stress was able to attenuate the expression of
fear conditioning, 24h after such stress [40].

In summary, the present study examined the possible
differential participation of DH and VH on autonomic and
behavioral responses evoked by RS. It was demonstrated for
the first time that both, DH and VH, mediate autonomic

responses associated with RS. On the other hand, DH and VH
activity during an acute RS exposure does not contribute to the
development of its delayed emotional consequences. Perhaps
more significantly, our findings provide further evidences that
the autonomic and behavioral components of the stress
response are dissociated within the DH and VH.
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