
Br. J. Cancer (1994), 70, 893 899 C) Macmillan

Calcium-dependent photodynamic action of di- and tetrasulphonated
aluminium phthalocyanine on normal and tumour-derived rat pancreatic
exocrine cells

M. Al-Laith & E.K. Matthews

Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK

S_n.mary Important differences exist in the responses to photodynamic agents of normal and tumour-derived
pancreatic acinar cells. In the present study amylase release has been used to assess the mechanisms by which
the photodynamic drugs tetra- and disulphonated aluminium phthalocyanine (A1PcS4, AlPcS,) act on
pancreatic cells via energy and calcium-dependent activation and transduction pathways. The photodynamic
release of amylase was found to be energy dependent and inhibited by the chelation of free cytoplasmic
calcium but not by the removal of extracellular calcium. In contrast to their effects on normal acinar cells, the
photodynamic action of AlPcS4 and AIPcS2 was to inhibit amylase secretion from pancreatoma AR4-2J cells.
Removal of extracellular calcium reversed this inhibitory efect on AR4-2J cells and produced a significant
increase in amylase release, but chelation of free cytoplasmic calcium did not affect the inhibitory
photodynamic action of the phthalocyanines on amylase release from the tumour cells. Overall, these results
demonstrate further important distinctions between the photodynamic action of sulphonated aluminium
phthalocyanines on normal versus tumour exocrine cells of the pancreas and indicate that calcium plays an
important role in photodynamic drug action, since these agents affected intracellular calcium mobilisation at
some distal point in the membrane signal transduction pathway for regulated secretion. Furthermore. the
photodynamic inhibition of constitutive secretion in tumour cells may involve a calcium-dependent membrane
target site or modulation of membrane calcium channels by activation of protein kinase C.

The phthalocyanines form a new and important group of
compounds for the generation of singlet oxygen and use in
photodynamic therapy (PDT). Many are selectively taken up
in tumour tissue (Spikes, 1986), absorb photon radiation
strongly at the red end of the spectrum (650-700 nm) and
generate a high quantum yield of the excited triplet state with
an extended triplet lifetime, all features of importance in the
activation of ground-state oxygen for photodynamic action
on pancreatic exocrine cells (Matthews & Cui, 1990a,b; Al-
Laith et al., 1993a,b). It is also now well established that
stimulation of pancreatic acinar cells by receptor agonists
occurs via a dual-signalling transduction pathway (Williams
& Blevins, 1993), whereby receptor activation via G-proteins
initiates the hydrolysis of phosphatidyl 4,5-bisphosphate
(PIP2) by membrane-located phospholipase (phos-
phoinositidase) C to yield the twin intracellular second
messengers diacylglycerol (DAG) and inositol 1,4,5-
trisphosphate (1P3). The IP3 then increases the free cytosolic
calcium by release of ionised calcium from intracellular
stores, and this in turn triggers the secretion of enzymes,
including amylase, by regulated exocytosis from a preformed
store of zymogen granules.
The second product of PIP, breakdown, DAG. activates

endogenous protein kinase C to phoshorylate specific intra-
cellular proteins which can modulate the IP3-calcium path-
way (Berridge, 1987; Rogers et al., 1988). Increased levels of
intracellular calcium may also activate phospholipase A,
(PLA,) with the release of arachidonic acid and its
metabolites. In fact, we have shown recently that upon light
activation sulphonated aluminium phthalocyanine will induce
arachidonic acid mobilisation and prostaglandin E, (PGE2)
production from dispersed, perifused rat pancreatic acini (Al-
Laith et al., 1993a,b). However, we also demonstrated pari
passu an important distinction between these processes and
the initial photodynamic release of amylase from the acini
which appeared to involve a rapid activation of the signal
transduction pathway and the release of intracellular calcium
rather than being dependent simply upon a membrane
permeabilisation process.

In the present investigation amylase release has been
utilised as a readily measured parameter for assessing the
extent to which photodynamic drugs act via energy and
calcium-dependent cellular signalling and second-messenger
transduction mechanisms. It was important also to carry out
similar experiments on the pancreatoma cells of the AR4-2J
cell line because although these cells retain certain charac-
teristics of the differentiated phenotype. expressing
secretagogue receptors and possessing dual-signalling path-
ways, as well as containing amylase and other exocrine

enzymes (Jessop & Hay. 1980: Gallacher et al., 1990). they
secrete much of their enzyme content via a constitutive pro-
cess (Kelly, 1985: Swarovsky et al., 1988). We have shown
already that photon-activated phthalocyanine has func-
tionally distinct effects on the constitutive secretion of
amylase by these tumour cells and on that of amylase secre-
tion via the regulated secretory pathway of normal pancreatic
cells (Matthews & Cui. 1990a,b). Furthermore, in contrast to
normal cells (Hurley & Brinck. 1990), pancreatic tumour cells
possess voltage-dependent calcium channels (Gallacher et al..
1990; Kusano & Gainer, 1991a,b), and calcium influx
through these channels in the plasma membrane can be
selectively controlled by the activation of protein kinase C
(Gallacher et al., 199%). The objective of the present study
was therefore to examine the role of calcium and the par-
ticipation of signal transduction mechanisms in the release of
amylase from normal pancreatic acinar cells and from
tumour cells of the AR4-2J cell line when stimulated with
light-activated phthalocyanines. We have also taken advan-
tage of the availability of the tetra- and disulphonated
derivatives of aluminium phthalocyanine, which differ in
their lipophilic properties (Berg et al.. 1989). in order to
compare the photodynamic potency of the two compounds
on pancreatic cells. Some results of this study have been
briefly reported (Al-Laith & Matthews. 1992. 1994).

Materials and methods

Cellular preparations

Pancreatic acini from male Sprague- Dawley rats
(250-450 g). were freshly isolated by collagenase digestion as
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described previously (Matthews & CWii, 1990b). AR4-2J cells,
a cell lne derived from an a ine uced carcinoma of
the pancreas in the rat (Longnecker et al., 1979) were grown
in tissue culture dishes (90mm diameter) in RPMI nmdium
(Gibco) supplemeted with penclin-stptomycin (100 IU
ml-'), L-glutamine (2 mM) and fetal calf serum (final concen-
tration 10%) at 37C in a 95% air/5% carbon dioxide atmo-
sphere. The medium was changed every other day and cells
were used at 80-90% confluence. For passage, cells were
harvested by incubation with EDTA solution (0.025%
EDTA) for 5 min and then with trypsin solution (0.25%
trypsin, in phosphate buffer containing 0.025% EDTA, and
0.8% glucose). The cells from each dish were harvested and
divided between five further culture dishes. For experimental
use, the cells were harvested in a simplified buffer rm mM,
sodium chloride 118, potassium chloride 4.7, magnesum
chloride 1.16, calcium chloride 2.0, sodium phosphate 1.16
ghloe 14, HEPES 10; the pH was adjusted to 7.3 with
NaOH (5 N) and the solution was oxygenated) using a rubber
policeman and pelketA by centrifugation at 1,000 r.p.m. for
3 min. Up to five culture dishes of near-confluent cells were
used for each experiment.

Experimental procedure
After isolation 1 ml of a suspension of pancreatic acini or of
the harvested AR4-2J cells was mixed with P2 Biogel beads
(25 mg) then loaded into small perifusion chambers of 1 ml
capacity and perifuised at 0.5 ml min-' with oxygenated
simplified buffer at 3rC. When Ca2" was omitted from this
solution Mg2" was removed also to minimise any competitive

interaction at divalent cation binding sites. Fractions of the
perifusate were collected every 5 mm. Cells were exposed to
aluminium phthalocyanine di- or tetrasulphonate (AlPcS2, or
AlPcS4), IiJM unless otherwise indicated, for 10min, and
irradiated 20min later with a quartz-halogen light source
(Schott KL 1500, >570nm, 0.62 J cm-) for a period of
10 min as described previously (Matthews & Cui, 1990b).
Amylase release from perifused cells was assayed spect-
rophotonetricaly with amylose-azure as substrate (Mat-
thews & Cui, 1990b).

Statistics and data presentation

Following an initial perifusion for 50 min samples were col-
lete at 5 min intervals for amylase assay. Data are exp-
ressed by normaliston to the mean of the first two values
taken before cell activation, i.e. at 50-60 min (see Figure 1).
For the tests of signif between means, Student's t-test
(two-tailed and unpaired) was used and a P-value <0.05 was
taken as significant.

MateriaU

Biogl beads (P2) (Biorad UK), BAPTA-AM (Molcular
Probes, OR, USA), antimycin A, oligomycin, 2-deoxy-D-
gh and behazehol chloride (Sigma, UK), alumnium
phthaboyanine tetra- or disulphonate (AIPc4, AlPcS2)
(Porphyrin Products Ic, Utah USA) and CCK-8 (26-33)
amide sula (Cambridge Resch Biohemicals Ltd
UK) were used.
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Fgwe I Effect of metabolic inhibitors on the rdease of amylase from perifused rat pancreatic acini. a, Amylase release indiued by
light-activated AIPcS4 (open horizontal bar) in the presence (A) or absence (A) of the metabolic inhibitors (n = 7-9). b, Amylase
release induced by light-activated AlPcS, (open horizontal bar) in the presence (0) or absence (0) of the metabolic inhibitors
(n = 5-10). c, Amylase release induced by the receptor agonist bethaechol (1 mm, black horizntal bar) in the prsmenc (0) or

absence (0) of the metabolic inhibitors (n = 7). d, Spontaneous amylase release in the presence (0) or absence (0) of metabolc
inhibitors (n = 6).
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Rsdts
Pancreatic acin: photodnwnic action ofAJPcS2 and APcS4
Previous experiments have shown that membrane-bound
chloroaluminium phthalocyanine sulphonate (Matthews &
Cui, 1990a.b), which is a mixture of the di-,tri- and tetrasul-
phonate, upon light activation elicits rapid release of amylase
from perifused rat acnar cls. We now report that the
resolved AlPcS2, which is more lipophiLic and can therefore
bind to the cell membrane with greater affinity than A1PN4,
(Berg et al., 1989), is more potent in inducing amylase release
from perifused pancreatic acini. The ratio of amylase release
taken from the peak value relative to the basal output at
70min was in the case of AIPcS2 11.75± 1.08, and for
AIPcS4 was 7.01 ± 0.41 (Figure la and b). On this basis the
molar potency of the disulphonate is 1.7 times that of the
tetrasulphonate.

Effect of metabolic inhibitors

Acini were exposed to the metabolic inhibitors antimycin A
(Iq1M), oligomycin (5*tM) and 2-deoxy-D-gucow (1 mM) for
20 min before activation by light or by an agonist.

These metabolic inhibitors had no effect on the spon-
taneous release of amylase (Figure ld). However, amylase
relase induced by both light-activated AIPcS, and by
AIPcS2, was decrea signifintly (P<0.01) by >70%, i.e.
from 7.01 ±0.41 to 1.98 ±0.5 and from 11.75± 1.08, to
3.30 ±1.08 respectively, in the presence of the metabolic
inhibitors (Figure la and lb). Amylase release induced by the
cholinergic receptor agonist bethanechol (1mm) was also
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inhibited in the presence of the metabolic blockers (Figure
Ic).

Effect ofBAPTA-AM and of Ca-free medium
Omitting extracellular Ca2 from the perifusion buffer had
no effect on amylase release from rat pancreatic acin induced
by photon activation of AlPcS2 or A1NS4, but depleig the
free intracellular Ca2+ by treating the cells with BAPTA-AM
(5#LM) for 20 min before cell activation did inhibit
signifantly the release of amylase induced by A1PS2, from
11.75± 1.08 to 3.24± 0.63 (P<0.01) (Figure 2b), and by
AIPcS4, from 7.54 ± 0.65 to 2.97 ± 0.24 (P<0.01) (Figure
2a). BAPTA-AM itself had no effect on the basal output of
amylase (Figure 2d). In contrast to the lack of effect on
amylase rekase induced by light activation of A1PcS2 and
AlPcS4, the release of amylase by bethanechol (1 mm) was
significantly reduced from 5.01 ± 0.59 to 2.08± 0.29
(P>0.01) when Ca'+ was omitted from the perifusion buffer.
BAPTA-AM was also effective in blocking the amylase
release induced by bethanechoL i.e. from 5.01 ± 0.59 to
0.98 ± 0.04 (Figure 2c).

AR4-2J cells: photodynanic effects of AJPcS2 and AIPcS4
The photodynamic effects of phthalocyanine on AR4-2J cells
clearly differ from those on normal pancreatic cells (Mat-
thews & Cul, 1990a,b). We report here the photodynamic
action of the resolved phathalocyanines A1PcS2 and AlPcS4
on this cell line. In fact, on exposure to AIPcS2 (l(OM) the
disulphonate was twice as potent in inhibiting amylase
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0

*1
0

0

E
Uto
0
0
U9;

u

4-1

l

4 92-

1

I
I

-
I . 9. w v a



896 M. AL-LAITH & E.K. MATITHEWS

a)Co

CD

0

E

0
0
Co4..

r

Time (min)

1.8

Co
' 1.4
Co
CD
(D

>- 1.0
E
m

Co 0.2
er

0.2

0)

Co3Co
Co

E
Co

to

c:

Time (min)

Fgure 3 The photodynamic action on the release of amylase
from AR4-2J cells induced by (a) AlPcS4 (open horizontal bar)
in the presence (*) or absence (0) of extracellular Ca-
(n = 4 -9). b. The photodynamic action of AlPcS, (open honrzon-
tal bar) in the presence (@) or absence (0) of extracellular Ca2-
(n = 4- 7).

release from AR4-2J cells relative to the basal output as the
tetrasulphonate. AIPcS4 (lO*M), i.e. to 0.5 ± 0.09 and to
0.75 ± 0.12 respectively at 70 min. However, this inhibitory
effect was overcome by omitting Ca2+ from the perifusion
buffer. Irradiation of cells with light after exposure to A1PcS4
(Figure 3a). or to AIPcS. (Figure 3b), in the absence of
extracellular Ca2' reversed the inhibitory effect and produced
an actual increase in the secretion of amylase. In the case of
AlPcS4 the release of amylase was increased at time 70 min
from its inhibited level of 0.75 ± 0.12 (relative to control) to
1.44±0.18 in Ca2--free buffer (P<0.02). and for AIPcS,
amylase release increased from 0.51 ± 0.09 to 1.53 ± 0.08
(P<0.01). In total contrast, BAPTA-AM (5pM) did not
reverse the inhibitory action induced by the photodynamic
action of A1PcS4 (Figure 4a) or AIPcS2 (Figure 4b).

Effect of agonists on AR4-2J cells

AR4-2J cells express functional receptors for a variety of
agonists. We have found that cells of the undifferentiated
AR4-2J phenotype respond to bethanechol (1 mM), substance
P (lpM) and CCK-8 (1 nM) in our perifused system with a
peak amylase output relative to the basal level of 1.39 ± 0.08
(n = 6), 2.39 ± 0.20 (n = 6) and 1.82 ± 0.08 (n = 6) respec-
tively. However, in contrast to the photodynamic drugs (see
above), omitting Ca2' from the perifusion medium inhibited
the effect of CCK-8 on AR4-2J cells. Furthermore, treating
the cells with BAPTA-AM (5iM) also abolished the effect of
CCK-8 (Figure 5).

Time (min)

Fgure 4 The effect of BAPTA-AM on amylase release from
AR4-2J cells a, induced by AIPcS4 (0) and b, induced by
AlPcS& (0). The closed triangles show the effect of light-
activated AlPcS4 or AlPcS, in the absence of BAPTA-AM. The
open circles in a, show the spontaneous release of amylase in the
presence of BAPTA-AM (5 LM) and in b. the spontaneous release
in the presence of extracellular Ca2t. Light was applied for the
duration (10 min) indicated by the open horizontal bar.
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Upon light activation AlPcS2 was found to possess, in molar
terms, almost twice the potency of AlPcS4 in inducing
amylase release from normal rat pancreatic acini. With short
periods of exposure, i.e. 10 min, the sulphonated
phthalocyanines are likely to act in close proximity to the cell
membrane to which they would be confined by their net
negative charge (Matthews & Cui, 1990a,b; Rosenthal, 1991).
If these assumptions are correct then the disulphonated
molecule, being less negatively charged and more lipophilic
(Berg et al., 1989), should accumulate to a greater extent in
the cell membrane (Paquette et al., 1988) and be a more
effective photodynamic agent than AlPcS4, as we have
found. Yet interestingly, in spite of the greater potency of
AlPcS,, the release of amylase by both agents was blocked to
a similar extent i.e. by approximately 70% when the acinar
cells were treated with metabolic inhibitors. This suggests
that both compounds, though differing in potency, exert their
photodynamic action on amylase release by a common
energy-dependent mechanism. We have shown previously in
ultracytological studies that no major structural changes
occur in acini when the pancreatic cells are stimulated
photodynamically with aluminium phthalocyanine (Matthews
& Cui, 1990a,b), thus confirming that under the experimental
conditions we have employed exocrine cells are capable of
releasing secretory products such as amylase and arachidonic
acid metabolites as a result of cellular stimulation by photon
activation of the phthalocyanine and the generation of reac-
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Fie 5 Amylase release from AR4-2J cells induced bv the
receptor agonist CCK-8 (I nm. black horizontal bar). in the

presence (A) or in the absence of Ca:' from the penrfusion buffer
(0). and the presence of BAPTA-AM (5OM) (@) (n=6-1O).

tive species. especially singlet oxygen. and not simply as a
direct consequence of widespread membrane lysis and cellular

disintegration. We have established also that photodynamic
amylase release precedes PGE, production (Al-Laith et al..
1993) and any plasma membrane permeabilisation by singlet
oxygen (Matthews & Cui. 1990b). Amylase release coincides
with photon activation of the absorbed phthalocyanine.
diminishing following the light pulse; it is also energy depen-
dent. These observations together suggest that the initial

photodynamic release of amylase from the normal pancreatic
acinar cell hinges upon the activation of some aspect of the
membrane signal transduction pathway. resulting in the
release of intracellular calcium in a similar way to that
evoked by cellular secretagogues. rather than being the result
of the influx of external calcium as seems to occur in

myeloma cells (Specht & Rodgers. 1991).
Amylase release from rat pancreatic acini elicited by

cholinergic and peptide receptor agonists is known to be both
energy and calcium dependent (Bauduin et al.. 1969; Pandol
et al.. 1987; Marty. 1991). As in many cells. receptor activa-
tion of pancreatic acinar cells leads via G-protein transduc-
tion to IP3 formation. the second messenger IP, then rapidly
releasing calcium from an energy-dependent store. It is this
increase in cytoplasmic calcium which finally activates the
regulated exocytosis of amylase. In our experiments.
bethanechol-induced amylase release was inhibited markedly
by metabolic inhibitors. It was also inhibited partially by the
omission of extracellular calcium which, in the receptor-
operated transduction process, may be required for the
refilling and maintenance of intracellular calcium stores (Pan-
dol et al.. 1987) and, moreover, it was totally abolished by
BAPTA-AM. BAPTA-AM is the permeant esteratic form of
BAPTA and once in the cytoplasm is hydrolysed to the free
acid, which in turn chelates the free intracellular calcium
upon which the amylase release process depends.

In contrast to the action of the bethanechol on pancreatic
acini, the photodynamic release of amylase induced by
photon-activated AlPcS.and AlPcS4 was not affected by the
removal of extracellular calcium. On the other hand. pre-
incubation of the cells with BAPTA-AM to chelate intracel-
lular free ionised calcium in the cytoplasm did inhibit
photodynamically evoked amylase release. The photo-
dynamic action of AlPcS, and AlPcS4 may therefore activate
membrane receptors or G-proteins to initiate the release of
ionised calcium from its stored form and so trigger amylase
secretion. This would explain why depleting the free intracel-
lular calcium inhibits the release of amylase. However.
photodynamic drug action does not reproduce agonist action
exactly because. whereas removal of extracellular calcium

partially inhibited receptor-activated amylase release. it had
no effect on amylase release evoked by photodynamic drug
action. This indicates that photodynamic agents may be
acting at some more distal (but energy-dependent) point in
the signal transduction pathway. thereby causing a more
persistent release of calcium from intracellular storage sites
located close to the plasma cell membrane and possibly also
blocking the reuptake of calcium into the store or affecting
its efflux across the cell membrane. Some support for this
interpretation comes from the demonstration in lymphoma
cells of phthalocyanine-induced Ca-+ release from internal
stores triggered by IP3 (Agarwal et al.. 1993).

For direct comparison with normal cells of the rat pan-
creatic acinus we have used tumour cells of the AR4-2J cell
line. This relatively undifferentiated cell line was cloned
originally from an azaserine-induced rat pancreatic tumour
(Longnecker et al.. 1979). AR4-2J cells contain amylase and
other enzymes characteristic of cells of the exocrine type
(Jessop & Hay. 1980). but release them primarily via a
constitutive pathway. with very little release occumng
through a 'regulated' granule pathway as in normal acinar
cells. This was confirmed in the present experiments. in which
we have found stimulation of the AR4-2J cells with CCK-8.
bethanechol or substance P to produce only a small. approx-
imately 2-fold. increase in amylase release which will be
superimposed on a high basal constitutive release (Cui. 1989).
A further important distinction between normal and tumour
cells is that over a wide. 100-fold. concentration range
(0.1 10gM) the photodynamic effect of the phthalocyanines
on the AR4-2J cells was to inhibit amylase release rather
than to increase it. a difference we have reported previously
(Matthews & Cui. 1990a.b). We have also established in the
present study that light activation of membrane-bound
AlPcS. is more effective than AlPcS in inhibiting the release
of amylase. again with a molar potency ratio of approx-
imately 2 (see above). Surprisingly. this photodynamic
inhibitory action was overcome by the removal of extracel-
lular calcium. Photon irradiation of the AR4-2J cells after
exposure to either Al PcS. or Al PcS4 in the absence of
extracellular calcium reversed the inhibitory effect and pro-
duced a small but rapid initial increase in amylase release.
The photodynamic inhibition of amylase release is evidently
dependent on extracellular but not intracellular calcium
because it was not blocked bv BAPTA-AM. However.
BAPTA-AM did block the reversal of the photodynamic
inhibition because no stimulant effect was observed. Thus.
any stimulant photodynarmic action in AR4-2J cells is depen-
dent on intracellular calcium (as in normal cells) and is only
revealed by removal of the photodynamic inhibition of
amylase release. which predominates unless extracellular cal-
cium is omitted. This small stimulant photodynamic effect
seems to mimic the release of amylase produced by agonists.
e.g. CCK-8. presumably by inducing intracellular calcium
release and consequently the release of amylase from a
limited store via the regulated pathway because the effect was
not seen in AR4-2J cells treated with BAPTA-AM. Stimula-
tion of AR4-2J ceUls by receptor agonists is known to initiate
a transient rise in intracellular calcium. but to sustain this
increase some extracellular calcium is also required (Bird et
al., 1991) as it is also in normal cells (Hurley & Brinck,
1990). In our experiments on both normal and AR42J cells
the agonist-induced release of amylase was at least partially
dependent on extracellular calcium. whereas in neither cell
type was the photodynamic stimulant effect on amylase
release (including the unmasked stimulant effect on AR4-2J
cells) dependent on extracellular calcium. This again points
to a photodynamic action on intracellular calcium mobilisa-
tion at some distal point in the transduction pathway for
regulated secretion. However. although the removal of ext-
racellular calcium and chelation of intracellular calcium has
enabled the photodynamic actions of phthalocyanines to be
better resolved. the main photodynamic action on AR4-2J
cells at normal extracellular calcium concentrations remains
one of an inhibition of amylase secretion. The simplest.
although not the only. explanation for these results is that
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the target for inhibition of the high basal constitutive secre-
tion by photon activation of the photodynamic agent and the
generation of reactive species, especially singlet oxygen, is a
calcium-dependent membrane site. Alternatively, in the
presence of external calcium, photodynamic activation may
cause an excessive influx of calcium which inhibits cons-
titutive secretion. A protein kinase C-mediated opening of
the voltage-sensitive calcium channels found in AR4-2J
tumour cells, but not in normal cells, may contribute to such
an action because a modulatory effect on these channels in
AR4-2J cells of protein kinase C has been identified (Gal-
lacher et al., 1990) and in other cell types oxidative reactions
have been found to activate the regulatory domain of protein
kinase C (Gopalakrishna & Anderson, 1989) and to increase
influx through voltage-operated calcium channels (Josephson
et al., 1991). If this explanation is correct it leaves open the
question of why BAPTA-AM fails to oppose the
photodynamic inhibition of constitutive amylase release
unless the influx is sufficient to overwhelm a limited intracel-
lular pool of BAPTA. Resolution of this possibility must
await the application to pancreatic cells of any analysis of
photodynamic calcium influx and mobilisation by fluorimet-
ric techniques which have provided useful information about
photodynamic drug action in other cell types (Ben-Hur et al.,
1991; Ben Hur & Dubbelman, 1993).

Finally, it is important to consider the functional and
therapeutic implications of the differential action of

photodynamic drugs on normal versus tumour cells that we
have previously observed (Matthews & Cui, 1990a,b) and
further defined here, i.e. on the one hand an increase in
amylase output from normal cells and on the other an inhibi-
tion of amylase release from tumour cells. Our experiments
suggest that differences in the calcium-handling c
tics of the normal and tumour cells may play a role in the
elevation of intracellular calcium and response to photosen-
sitiser action. This difference may, at least in part, account
for the greater in vio susceptibility of pancreatic tumour cells
to PDT, i.e. to the cytolytic action of photodynamic drugs.
Alternatively, although perhaps less likely, it is possible that
photodynamic drug action causes an increase in the secretion
of some protective agent, e.g. superoxide dismutase or
aminothiols, from normal cells that protects these cells from
further local oxidative attack by free radicals and singlet
oxygen generated by the activated photosensitiser. Based on
our knowledge of amylase as a secretory marker, the release
of such protective compounds might be severely reduced in
tumour cells. Further experiments are therefore required to
define more fully the molecular basis of the differential action
of photodynamic drugs on normal and on tumour cells of the
pancreas.
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