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Background: The tumor invasion of the frontal lobe induces changes in the executive
control network (ECN). It remains unclear whether epileptic seizures in frontal glioma
patients exacerbate the structural and functional alterations within the ECN, and whether
these changes can be used to identify glioma-related seizures at an early stage. This
study aimed to investigate the altered structural and functional patterns of ECN in frontal
gliomas without epilepsy (non-FGep) and frontal gliomas with epilepsy (FGep) and to
evaluate whether the patterns can accurately distinguish glioma-related epilepsy.

Methods: We measured gray matter (GM) volume, regional homogeneity (ReHo), and
functional connectivity (FC) within the ECN to identify the structural and functional
changes in 50 patients with frontal gliomas (29 non-FGep and 21 FGep) and 39 healthy
controls (CN). We assessed the relationships between the structural and functional
changes and cognitive function using partial correlation analysis. Finally, we applied a
pattern classification approach to test whether structural and functional abnormalities
within the ECN can distinguish non-FGep and FGep from CN subjects.

Results: Within the ECN, non-FGep and FGep showed increased local structure (GM)
and function (ReHo), and decreased FC between brain regions compared to CN.
Also, non-FGep and FGep showed differential patterns of structural and functional
abnormalities within the ECN, and these abnormalities are more severe in FGep than
in non-FGep. Lastly, FC between the right superior frontal gyrus and right dorsolateral
prefrontal cortex was positively correlated with episodic memory scores in non-FGep
and FGep. In particular, the support vector machine (SVM) classifier based on structural
and functional abnormalities within ECN could accurately distinguish non-FGep and
FGep from CN, and FGep from non-FGep on an individual basis with very high accuracy,
area under the curve (AUC), sensitivity, and specificity.
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Conclusion: Tumor invasion of the frontal lobe induces local structural and functional
reorganization within the ECN, exacerbated by the accompanying epileptic seizures.
The ECN abnormalities can accurately distinguish the presence or absence of epileptic
seizures in frontal glioma patients. These findings suggest that differential ECN patterns
can assist in the early identification and intervention of epileptic seizures in frontal
glioma patients.

Keywords: epileptic seizure, executive control network, functional connectivity, gray matter, frontal glioma,
pattern classification, regional homogeneity

INTRODUCTION

Glioma is the most common malignant tumor of the central
nervous system (Ostrom et al., 2019), and the incidence of
epilepsy in glioma can be as high as 40–90% (Pallud et al.,
2014; Fisher et al., 2017; Akeret et al., 2020; You et al., 2020).
Tumor-related epilepsy profoundly impacts patients’ prognosis
and quality of life (Maschio and Dinapoli, 2012). However,
how tumors induce epilepsy is still unclear. This poses a
significant challenge for antiepileptic therapy in patients with
newly diagnosed tumors (Siomin et al., 2005; Tremont-Lukats
et al., 2008). Tumor invasion of the frontal lobe induces changes
in the executive control network (ECN) (Liu Y. et al., 2020).
Similarly, the onset of epilepsy also leads to functional network
alterations (Cao et al., 2014; Fang et al., 2022). Therefore, an in-
depth understanding of the structural and functional patterns
of the ECN in glioma-associated epilepsy is required for the
early differentiation and diagnosis of glioma seizures and the
development of individualized intervention strategies.

Executive control network is a frontoparietal circuit involved
in executive functions (Crone et al., 2006; Sakai and Passingham,
2006; Dosenbach et al., 2007; Seeley et al., 2007, 2009; Brier et al.,
2012; Chen et al., 2016b). Tumor invasion of the frontal lobe
(located in ECN) affects the brain’s executive functions (Seeley
et al., 2009; Smith et al., 2009; Park et al., 2015; Zhang et al.,
2016; Liu et al., 2019). Recent studies have consistently indicated
that when the tumor invades the frontal lobe, the frontal glioma
shows structural [gray matter (GM) reorganization and reduction
in cortical thickness] (Kinno et al., 2020; Liu Y. et al., 2020) and
functional [functional reorganization and decreased functional
connectivity (FC)] abnormalities within the ECN (Liu et al., 2019;
Liu Y. et al., 2020; Tordjman et al., 2021). Furthermore, idiopathic
epilepsy reduces FC in networks (such as the salience network,
default network, and ECN) (Cao et al., 2014; Li et al., 2017).
In particular, some studies indicate that tumor-related epilepsy
induces topological changes in white matter (WM) networks
(Zhou et al., 2022) and functional networks (Fang et al., 2022).
Based on these findings, we hypothesize that tumor invasion of
the frontal lobe, accompanied by epileptic seizures, will lead to
disruption and reorganization of the ECN. This damage will be
aggravated compared to glioma patients without epilepsy.

In glioma surgery, after tumor control, treatment of glioma-
related epilepsy is the second primary purpose (You et al.,
2020). When combined with preoperative individualized and
standardized antiepileptic therapies, glioma surgery can be
highly effective in epilepsy control (You et al., 2020). However,

identifying epileptic seizures early in glioma and administering
individualized anti-seizure medicine is a significant challenge in
clinical practice. As the clinical importance of radiomics and
artificial intelligence (AI) has increased in recent years, deep
learning and machine learning (ML) combined with multimodal
imaging features have been widely used to predict glioma grades
(Vamvakas et al., 2019; Abdelaziz Ismael et al., 2020), survival
(Sanghani et al., 2018; Peeken et al., 2019; Choi et al., 2020),
and molecular phenotype (Tan et al., 2019; Bangalore Yogananda
et al., 2020). Furthermore, AI-based ML methods have been
applied to various areas of epilepsy research, such as structural
connectome and diffusion tensor imaging features (Munsell
et al., 2015; Gleichgerrcht et al., 2018; Abbasi and Goldenholz,
2019). With this knowledge, we theorize that the combination
of ML and multimodal neuroimaging data may be helpful in
the early identification of glioma seizures. In particular, the
structural and functional abnormalities of the ECN may be
used for the early identification of frontal glioma-associated
epileptic seizures.

This study aimed to investigate the altered structural and
functional patterns of ECN in non-FGep and FGep subjects and
to evaluate whether these patterns can accurately distinguish
glioma-associated epileptic seizures. Based above-mentions
studies (Liu et al., 2019; Liu Y. et al., 2020; Tordjman et al.,
2021), we hypothesized that non-FGep and FGep would show
structural (i.e., GM) and functional [i.e., regional homogeneity
(ReHo) and FC] abnormalities of ECN and display differential
damage patterns. Furthermore, we hypothesize that the altered
patterns can accurately distinguish tumor invasion of the frontal
lobe with or without an epileptic seizure. To test the hypothesis,
we identified structural and functional changes within the ECN
in non-FGep and FGep patients. Next, we applied a pattern
classification approach to test how well structural and functional
abnormalities within ECN could distinguish non-FGep and FGep
from CN subjects.

MATERIALS AND METHODS

Subjects
We recruited 50 patients with frontal gliomas from inpatients at
the Department of Neurosurgery, Yijishan Hospital of Wannan
Medical College (China). Patients were divided into 29 non-
FGep (no clear history of seizures) and 21 FGep (clear history of
seizures). The diagnosis of glioma-related epilepsy was based on
clinical markers and electroencephalography findings. The CN
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were recruited through advertisements and matched to patients
with frontal gliomas according to age, gender, and education
(Table 1). The subjects signed written informed consent forms
approved by the Human Participants Ethics Committee of
Yijishan Hospital of Wannan Medical College (China).

The inclusion criteria for the patient groups were as follows:
(1) tumor pathology was confirmed as primary glioma by
surgery, (2) the tumor invaded the frontal lobe, (3) the
extension of the tumor had not reached the central sulcus,
(4) glioma had unilateral tumor invasion, (5) glioma had no
brain injury, and (6) no history of biopsy, radiotherapy, or
chemotherapy. The exclusion criteria were: (1) multiple lesion
foci, (2) history of substance abuse, (3) magnetic resonance
imaging (MRI) contraindications, and (4) gliomas involving
bilateral prefrontal lobes.

Neuropsychological Assessments
A neuropsychological battery was utilized to assess episodic
memory (auditory verbal learning test- 20-min delay recall,
AVLT-20-DR), information processing speed (trail making test-
A, TMT), visuospatial function (clock drawing test, CDT),
and executive function (digit span test, DST). All subjects
underwent a standardized clinical interview and comprehensive
neuropsychological assessments that were evaluated by two
neuropsychologists. These are senior doctors with more than
15 years of experience. Now we have added this information in
section “Materials and Methods.” Specific characteristics for all
subjects are provided in Table 1.

Magnetic Resonance Imaging Data
Acquisition
The MRI data from 2019 to 2021 were scanned preoperatively.
Pre-surgery MRI images were acquired with a 3.0 GE Signa
HDxt scanner with an 8-channel head-coil in the department
of radiology, Yijishan Hospital of Wannan Medical College.

TABLE 1 | Demographic and cognitive measures of CN, non-FGep,
and FGep subjects.

Items CN (n = 39) Non-FGep (n = 29) FGep (n = 21)

Age (years) 53.49 (5.79) 53.34 (13.20) 53.05 (14.98)

Gender (M/F) 18/21 17/12 12/9

Education level (years) 11.97 (2.52) 11.93 (2.77) 11.57 (2.91)

Cognitive function

AVLT 0.23 (0.80) 0.30 (0.84) −0.83 (1.13)a,b

DST 0.25 (1.24) −0.22 (0.69) −0.17 (0.76)

TMT 0.46 (1.00) −0.41 (0.54)a −0.28 (1.17)a

CDT 0.11 (0.88) 0.03 (1.13) −0.17 (0.76)

Values are expressed as the mean (standard deviation, SD). aSignificant differences
were found between CN and non-FGep, CN, and FGep, bSignificant differences
were found between non-FGep and FGep. Raw cognitive scores were converted
to Z scores based on the mean and SD of the raw scores for three group subjects.
Notably, for TMT measured by timing, the raw scores of TMT were defined as the
reciprocal of the time required for the test. CN, healthy controls; non-FGep, frontal
glioma without epilepsy; FGep, frontal glioma with epilepsy; AVLT, Auditory Verbal
Learning Test – 20-min delayed recall; DST, Digit Span Test; TMT, Trail Making Test;
CDT, Clock Drawing Test.

High-resolution T1-weighted MR images were obtained by a 3D
magnetization-prepared rapid gradient-echo (MPRAGE) with
the following parameters: repeat time (TR) = 1900 milliseconds
(ms), echo time (TE) = 2.49 ms, time inversion (TI) = 900 ms,
matrix = 256 × 256, flip angle (FA) = 90◦, thickness = 1
millimeter (mm), gap = 0.5 mm, slices = 176. Resting-state
functional images, including 240 volumes, were obtained using
a gradient-recalled echo-planar imaging (GRE-EPI) sequence,
with TR = 2000 ms, TE = 30 ms, FA = 90◦, acquisition
matrix = 64 × 64, field of view (FOV) = 220 mm × 220 mm,
thickness = 4.0 mm, gap = 0 mm, number of slices = 36, and voxel
size = 3.4 mm × 3.4 mm × 4 mm.

Image Pre-processing
Magnetic resonance imaging data were pre-processed using
Matlab (Math Works Inc., Natick, MA, United States) and SPM8.
The image processing procedure was conducted per published
studies (Liu Y. et al., 2020; Chen et al., 2022). Briefly, the
functional MRI (fMRI) image pre-processing steps included
discarding the first 10 volumes, slice-timing, head motion
corrections, spatial normalization, spatial smoothing, denoising,
and temporal filtering (Liu Y. et al., 2020; Chen et al., 2022).
A total of 2 non-FGep patents and 1 FGep patent were excluded
from the subsequent analysis due to the excessive head movement
(cumulative translation or rotation > 3.0 mm or 3.0◦). We found
no significant differences in head motion parameters between the
groups (Power et al., 2012; Van Dijk et al., 2012).

During fMRI image pre-processing, the Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL) algorithm was used to normalize and segment
the structural images into GM, WM, and cerebrospinal fluid
(CSF) partitions (Ashburner and Friston, 2009). The native
and DARTEL versions were used to compute total intracranial
volumes (TIV). TIV was obtained by calculating the sum of GM,
WM, and CSF tissues of all voxels in native space by using internal
code. The structural and functional image processing procedure
details are provided in the Supplementary Methods 1.

Executive Control Network Functional
Connectivity Analysis
Referring to previously published studies (Zhang et al., 2018),
we made patients’ group GM mask without tumor area before
performing FC analysis. Subsequent FC analysis was constrained
within this GM mask. The details regarding the construction
of group GM mask without tumor area are provided in the
Supplementary Methods 2.

Several studies have agreed that the dorsolateral prefrontal
cortex (DLPFC) is the critical brain region within the ECN
(Seeley et al., 2007; Fransson and Marrelec, 2008; Smith et al.,
2009). According to converging evidence (Seeley et al., 2007;
Fransson and Marrelec, 2008; Smith et al., 2009; Dong et al.,
2020; Liu et al., 2021), this study selected the right DLPFC (MNI
space: 48, 12, 34) to draw 6-mm spheres as seed region of interest
(ROI) (Seeley et al., 2007; Fransson and Marrelec, 2008; Smith
et al., 2009; Dong et al., 2020; Liu et al., 2021). We performed
a voxel-wise cross-correlation analysis between the individual
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averaged time series for all voxel within DLPFC and the whole
brain within the patients’ group GM mask (Chen et al., 2016a,
2022; Liu et al., 2021).

Regional Homogeneity Analysis
As described in previous studies (Zang et al., 2004; Liu Y.
et al., 2020), we measured ReHo to characterize the homogeneity
of the time series in a local neighborhood of voxels within
the ECN. The details of the ReHo analysis are provided in
Supplementary Methods 3.

Pattern Classification Based on the Altered Gray
Matter, Regional Homogeneity, and Functional
Connectivity Within Executive Control Network
As described in previous studies (Chen et al., 2022), an support
vector machine (SVM) approach was applied to test how well
GM, ReHo, and FC within ECN could distinguish non-FGep and
FGep from CN subjects. We performed a linear SVM classifier
using the LIBSVM software.1 We assess the generalization of this
SVM classifier and its accuracy, sensitivity, and specificity using
a leave-one-out cross-validation (LOOCV) strategy. Accuracies
obtained for each tested subject were averaged to obtain the
LOOCV accuracy. The AUC was used to assess the classification
power of the SVM classifier. The details of the LOOCV strategy
are provided in Supplementary Methods 4.

Statistical Analysis
Demographic, Neuropsychological Data, and Head
Rotation Parameters
We performed a one-way analysis of variance (ANOVA) and
chi-square test (only applied in the comparison of gender)
to compare differences in demographic data (age, gender,
and education level), cognitive measures, and head rotation
parameters among CN, non-FGep, and FGep subjects (p < 0.05).
For each neuropsychological test, the individual raw scores
were transformed to Z scores to improve the statistical power
for cognitive measures, according to the mean and standard
deviation of the scores for all subjects. Notably, for tests measured
in time (TMT), the raw scores were defined as the reciprocal of
the time required for the test. Post hoc analysis was performed to
investigate the source of ANOVA differences.

Group-Level Intrinsic Connectivity Analysis
To determine the ECN patterns for the CN, non-FGep, and FGep
subjects, the FC spatial maps of each group were submitted to a
random-effect analysis using a one-sample t-test after controlling
for age, sex, education, and TIV. A stringent threshold of
p< 0.001 was set using the permutation test with Threshold-Free
Cluster Enhancement (TFCE) (Smith and Nichols, 2009) and the
family wise error (FWE) correction for the whole brain to reveal
regions that are most robustly correlated with each seed.

We used two-sample t-tests to assess the between-group
differences of FCs of ECN after controlling for the effects of age,
sex, education, and TIV. A stringent threshold of p < 0.001 was

1https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

set using the permutation test with TFCE and the false discovery
rate (FDR) correction.

Clinical Behavioral Significance of Altered Gray
Matter, Regional Homogeneity, and Functional
Connectivity
To assess the clinical behavioral significance of altered GM,
ReHo, and FC, we extracted the values of the regions
showing differential patterns among CN, non-FGep, and FGep
subjects. We performed a correlation analysis to assess the
relationships between the extracted GM, ReHo, and FC values
and cognition after controlling for age, sex, and education. The
significance level was set to p < 0.05 using FDR correction for
multiple comparisons.

RESULTS

Demographic and Neuropsychological
Data
As shown in Table 1, no significant differences in age, gender, and
education level were found between CN, non-FGep, and FGep
groups (p > 0.05). The non-FGep showed significant deficits in
information processing indicated by lower TMT scores. Similarly,
FGep showed a substantial decrease in episodic memory (lower
AVLT scores) and information processing speed (lower TMT
scores) relative to CN (p-values < 0.05).

Functional Connectivity Patterns and
Inter-Group Differences Within the
Executive Control Network
Functional connectivity patterns within the ECN are shown in
Figure 1. CN, non-FGep, and FGep showed differential FC
patterns within ECN (p < 0.001 corrected by TFCE-FWE).
Compared with CN, non-FGep had reduced FC between the
right DLPFC and left precentral gyrus (PreCG), insula (INS),
middle cingulate and paracingulate gyri (MCC), postcentral
gyrus (PoCG), inferior parietal gyrus (IPG), and bilateral
supramarginal gyrus (SMG) within the ECN (Figure 2A and
Table 2, p< 0.001 corrected by TFCE-FDR). The FGep group had
decreased FC between the right DLPFC and left PreCG, bilateral
superior frontal gyrus (SFGdor), bilateral middle frontal gyrus
(MFG), right inferior frontal gyrus, opercular part (IFGoperc),
right inferior frontal gyrus, and triangular part (IFGtriang)
within the ECN, compared to CN (Figure 2B, p< 0.001 corrected
by TFCE-FDR). Comparing non-FGep and FGep, within the
ECN, FGep had diminished FC between the right DLPFC
and the right ANG and bilateral SFGdor, and increased FC
between the right DLPFC and left PoCG (Figure 2C, p < 0.001
corrected by TFCE-FDR).

Differences in Gray Matter and Regional
Homogeneity Within the Executive
Control Network
Compared with CN, non-FGep showed increased GM in left
PoCG and left IPG (Figure 3A and Table 2, p < 0.05 corrected
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FIGURE 1 | Resting-state functional connectivity patterns of the executive
control network within group maps in CN (A), non-FGep (B), and FGep (C)
subjects. CN, healthy controls; non-FGep, frontal glioma without epilepsy;
FGep, frontal glioma with epilepsy; PreCG, Precentral gyrus; L, left
hemisphere; R, right hemisphere.

by FDR) and increased ReHo in left INS and left PreCG
(Figure 3C and Table 2, p < 0.05 corrected by FDR). The FGep
showed increased GM in left PreCG and right SFGdor than CN
(Figure 3B and Table 2, p < 0.05 corrected by FDR).

Clinical Behavioral Significance of
Altered Gray Matter, Regional
Homogeneity, and Functional
Connectivity
The correlation analysis demonstrated that FC between right
DLPFC and left PoCG within the ECN was positively correlated
with the AVLT score in FGep and non-FGep (Figure 4, r = 0.390,
p = 0.007, FDR correction). Moreover, no significant correlations
were found between GM, ReHo, FC, and other cognitive
functions (p-values < 0.05).

Classification of CN, Non-FGep, and
FGep Patients Based on the Altered Gray
Matter Volumes, Regional Homogeneity,
and Functional Connectivity
As shown in Figure 5, the SVM classifier’s classification accuracy
was 94.12% for non-FGep from CN, 86.67% for FGep from CN,
and 76% for FGep from non-FGep. The ROC curve of the SVM
classifier showed a high power for distinguishing non-FGep from
CN, FGep from CN, and FGep from non-FGep on an individual
subject basis, with high AUC (99.0, 89.0, and 83.0%, respectively),
sensitivity (97.0, 82.0, and 76.0%, respectively), and specificity
(97.0, 86.0, and 86.0%, respectively).

DISCUSSION

To our best knowledge, this was the first study to evaluate
structural and functional abnormalities of ECN in patients with
frontal glioma-related epilepsy and to investigate whether the
abnormalities can accurately identify glioma-related seizures.
Three main results of the study should be emphasized. First,
compared with CN, non-FGep and FGep showed convergent
and divergent altered patterns of ECN based on the structural
and functional level of the brain. Second, FC between right SFG
and right DLPFC was positively correlated with the AVLT scores
in non-FGep and FGep. Lastly, the SVM classifier based on
structural and functional abnormalities within the ECN could
accurately differentiate non-FGep and FGep from CN, and FGep
from non-FGep on an individual basis with very high accuracy,
AUC, sensitivity, and specificity. These findings indicate that
specific functional changes can assist in the early identification
and intervention of epileptic seizures in frontal glioma patients.

This study found that non-FGep had reduced FC within
ECN, mainly distributed in PreCG, INS, MCC, PoCG, IPG,
and SMG. FGep also showed decreased FC within ECN,
distributed primarily in PreCG, SFGdor, MFG, IFGoperc, and
IFGtriang. These results suggest that non-FGep and FGep
showed convergent and divergent altered patterns of ECN.
These ECN network findings are supported by behavioral results
with significantly lower executive function scores (TMT scores)
in both non-FGep and FGep. Our results are inconsistent
with previous studies (Liu et al., 2019; Liu Y. et al., 2020;
Tordjman et al., 2021), which showed that frontal glioma patients
have the clinical compensation phenomenon of intact executive
function and increased FC within ECN. Their interpretation
is that tumor invasion induces FC reorganization of the
ECN. This inconsistency could be because compensation and
decompensation coexist dynamically in disease progression, and
our study subjects may have been in the decompensation stage
(Belleville et al., 2011; Chen et al., 2015, 2016a; Liu Y. et al.,
2020). Another reason could be that the method for driving FC
analysis of ECN in this study is inconsistent with their approach.
Our research adopts a seed-based, data-driven approach in the
whole brain for calculating FC. In contrast, their research used an
independent component analysis and FC between regions within
the ECN mask. Furthermore, our findings suggest that tumor
invasion in non-FGep was more likely to diminish FC in remote
brain regions, while tumor invasion in FGep was more likely to
decrease FC in nearby brain regions. These findings support the
idea that tumor invasion of cortical lesions leads to the disruption
of connections between local and remote brain regions in the
form of functional networks (Vigneau et al., 2006; Carter et al.,
2010; Xiang et al., 2010; Briganti et al., 2012).

Notably, FGep showed decreased FC in ANG, PoCG,
and SFG.dor within ECN compared to non-FGep and CN.
Contrastingly, non-FGep showed no difference in FC in
SFG.dor. FC between right SFG and right DLPFC was also
positively correlated with AVLT scores in non-FGep and FGep.
These findings suggest that tumor invasion of the frontal
lobe accompanied by epileptic seizures exacerbates functional
abnormalities within ECN, and the reduced FC contributes
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FIGURE 2 | Comparison of FC within the executive control network between CN, non-FGep, and FGep subjects. (A) Altered regions of FC within the executive
control network in non-FGep patients compared with CN. The bar chart on the right shows the quantitative comparison of FC in these altered regions. ***p < 0.001.
(B) Altered regions of FC within the executive control network in FGep patients compared with CN. The bar chart on the right shows the quantitative comparison of
FC in these altered regions. ***p < 0.001. (C) Different regions of FC within the executive control network between FGep and non-FGep patients. The bar chart on
the right shows the quantitative comparison of FC in these different regions. ***p < 0.001. CN, healthy controls; non-FGep, frontal glioma without epilepsy; FGep,
frontal glioma with epilepsy; L, left hemisphere; R, right hemisphere; PreCG, Precentral gyrus; INS, Insula; MCC, Middle Cingulate and paracingulate gyri; PoCG,
Postcentral gyrus; IPG, Inferior parietal gyrus; SMG, Supramarginal gyrus; SFGdor, Superior frontal gyrus, dorsolateral; MFG, Middle frontal gyrus; IFGoperc, Inferior
frontal gyrus, opercular part; IFGtriang, Inferior frontal gyrus, triangular part; ANG, Angular gyrus; FC, functional connectivity.

to episodic memory impairment in FGep. Clinical behavioral
results support this theory, wherein non-FGep showed intact
episodic memory indicated by AVLT scores, while FGep showed
significant episodic memory impairment. Indeed, previous
studies have confirmed the interaction between the ECN and the
episodic memory network with the frontal lobe as the interactive
hub (Yuan et al., 2016; Xu et al., 2020). Therefore, we propose
that the frontal lobe (SFG) may be an early neuroimaging marker
of episodic memory decline during epileptic episodes in patients
with frontal glioma.

Another unique contribution of this study is that tumor
invasion of the frontal lobe induced local structural (GM volume)
and functional (ReHo) reorganization only, regardless of an
epileptic seizure. These results align with previous studies that
found that tumor invasion induces the brain’s structural and

functional reorganization (Liu et al., 2019; Hu et al., 2020;
Liu D. et al., 2020; Liu Y. et al., 2020). However, unlike these
studies, our results found reorganization occurred at perilesional
and remote recruitment (Duffau, 2014; Almairac et al., 2018).
It is also possible that different isocitrate dehydrogenase 1
(IDH1) mutation statuses lead to different patterns of network
reorganization (Qi et al., 2022). This study did not identify the
IDH1 mutation status. Interestingly, reorganization of tumor
invasion with seizure occurred in perilesional recruitment,
whereas reorganization without seizure occurred in remote
recruitment. This suggests that the seizures may have more
to do with the tumor itself. Therefore, seizure-induced brain
reorganization is more likely to occur around the lesion.

This study also showed that non-FGep and FGep showed
compensatory activity in the same brain region: PreCG.
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TABLE 2 | Comparison of GM, ReHo, and FC of ECN between CN, non-FGep,
and FGep subjects.

Brain regions L/R MNI T-values Cluster
size (mm3)

x y z

Functional connectivity of ECN

CN vs. Non-FGep

PreCG L 39 4 16 5.901 3591

INS L −36 3 12 6.0199 1242

MCC L −15 −36 39 4.8353 2403

PoCG L −36 −15 42 3.9927 2781

IPG L −39 −44 49 4.2246 7425

SMG L −57 −27 36 3.8981 2673

SMG R 51 −18 24 4.5986 3240

CN vs. FGep

PreCG L −33 −9 45 5.0824 2295

SFGdor L −33 0 66 3.6972 1215

SFGdor R 18 0 50 3.5153 4968

MFG L −27 −3 48 3.6 2430

MFG R 27 51 3 3.1439 3942

IFGoperc R 39 3 24 3.5776 1593

IFGtriang R 42 27 0 3.5805 3186

Non-FGep vs. FGep

ANG R 30 −60 36 3.8094 783

PoCG L −33 −21 42 −3.5288 702

SFGdor L −18 21 57 3.2738 1080

SFGdor R 27 57 −3 3.7863 1053

GM

CN vs. Non-FGep

IPG L −38 −44 50 −5.6639 2336

PoCG L −64 −16 34 −4.5346 464

CN vs. FGep

SFGdor R 14 0 76 −6.5057 528

PreCG L −30 8 64 −4.8559 400

Non-FGep vs. FGep

None

ReHo

CN vs. Non-FGep

INS L −24 −3 9 −9.7065 2673

PreCG L −33 −12 39 −6.1399 2052

CN vs. FGep

None

Non-FGep vs. FGep

None

CN, healthy controls; non-FGep, frontal glioma without epilepsy; FGep, frontal
glioma with epilepsy; PreCG, Precentral gyrus; INS, Insula; MCC, Middle Cingulate
and paracingulate gyri; PoCG, Postcentral gyrus; IPG, Inferior parietal gyrus; SMG,
Supramarginal gyrus; SFGdor, Superior frontal gyrus, dorsolateral; MFG, Middle
frontal gyrus; IFGoperc, Inferior frontal gyrus, opercular part; IFGtriang, Inferior
frontal gyrus, triangular part; ANG, Angular gyrus; GM, gray matter; ReHo, regional
homogeneity. MNI, Montreal neurological institute.

The PreCG is associated with sensorimotor and visuo-spatial
functions (Davion et al., 2021; Li et al., 2022). Our behavioral
results showed that visuospatial cognitive function was intact
in both groups. Therefore, we suggest that tumor invasion
induced structural and functional reorganization of the PreCG
compensated for the visuospatial cognitive function of the
patients. Although the SFG.dor was compensated in FGep,
its FC decreased significantly, and episodic memory was
impaired. This indicates that seizures in glioma patients may

FIGURE 3 | Comparison of ReHo and GM within the executive control
network among CN, non-FGep, and FGep subjects. (A) Altered regions of GM
within the executive control network in non-FGep patients compared with CN.
The bar chart on the right shows the quantitative comparison of GM in these
altered regions. ***p < 0.001. (B) Altered regions of GM within the executive
control network in FGep patients compared with CN. The bar chart on the
right shows the quantitative comparison of FC in these altered regions.
***p < 0.001. (C) Altered regions of ReHo within the executive control network
in non-FGep patients compared to CN. The bar chart on the right shows the
quantitative comparison of ReHo in these different regions. ***p < 0.001. CN,
healthy controls; non-FGep, frontal glioma without epilepsy; FGep, frontal
glioma with epilepsy; PreCG, Precentral gyrus; INS, Insula; PoCG, Postcentral
gyrus; IPG, Inferior parietal gyrus; SFGdor, Superior frontal gyrus, dorsolateral;
GM, gray matter; ReHo, regional homogeneity.

accelerate the progression from the compensatory to the
decompensated stage.

Our most fascinating finding was that by combining structural
and functional abnormalities within the ECN, the SVM classifier
could accurately differentiate non-FGep and FGep from CN
and FGep from non-FGep on an individual basis with very
high accuracy, AUC, sensitivity, and specificity. Structural and
functional features within ECN may reflect epilepsy susceptibility
in patients with frontal glioma and can effectively detect frontal
glioma-related epilepsy. Although, in recent years, some studies
have constructed prediction models of epileptic seizures in
glioma by using radiomic features and ML (Liu et al., 2018; Gao
et al., 2021), they only use the information of segmented and
masked tumor lesions. These models have some limitations. First,
there are many manual factors in the segmentation and selection
of tumors. Second, most glioma-related seizures are not located
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FIGURE 4 | Clinical behavioral significance of brain regions with differential FC
between non-FGep and FGep subjects. non-FGep, frontal glioma without
epilepsy; FGep, frontal glioma with epilepsy; SFG, superior frontal gyrus; FC,
functional connectivity; AVLT, Auditory Verbal Learning Test- 20-min delayed
recall.

in the lesion but the peripheral or remote brain region. The
radiomic features based on tumor lesions cannot truly reflect the
characteristics of epileptic seizures.

Furthermore, some studies suggest that tumor invasion affects
brain function over the whole network rather than isolated

regions (Vigneau et al., 2006; Xiang et al., 2010; Briganti
et al., 2012). In particular, some studies indicated that tumor-
related epilepsy induces topological changes in WM networks
(Zhou et al., 2022) and functional networks (Fang et al., 2022).
Therefore, the network-based features and the structural features
outside the tumor lesion can reflect more information about
glioma-related epilepsy. The effective neuroimaging features will
be highly conducive to the prediction of seizures. In addition,
radiomic analysis can incorporate too many features in a small
sample of data, which can easily result in over-fitting or bias
of the prediction model. Our study included the structural and
functional abnormalities within the ECN that have the highest
association with the impact of tumor invasion of the frontal lobe
as features of the model, which improved the predictive power
and generalization of the model.

However, this study has certain limitations: First, a relatively
small sample size, especially for patients with glioma with seizures
(n = 21). Larger samples will be needed in the future to verify our
results. Second, we only evaluated the GM volume, and future
studies need more indicators to assess the structure, such as
fiber integrity measured by diffusion tensor technology. Finally,
this study was a single-center study that could not evaluate the

FIGURE 5 | Classification power of the MRI-based “classifier” in distinguishing individuals as non-FGep vs. CN, FGep vs. CN, and non-FGep vs. FGep. (A) The
schematic diagram indicated a support vector machine “classifier” based on altered structural (GM) and functional (ReHo and FC) characteristics within the executive
control network. (B) ROC curve showing the classification power of the MRI-based “classifier.” The values of ACC, AUC, sensitivity, and specificity are marked in the
lower right of the figure. CN, healthy controls; non-FGep, frontal glioma without epilepsy; FGep, frontal glioma with epilepsy; ACC, accuracy; AUC, area under the
curve; GM, gray matter; ReHo, regional homogeneity; FC, functional connectivity.
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model’s generalization. The stability of the model needs to be
verified in independent samples. Future multi-center studies are
needed to verify the generalization of our model in distinguishing
glioma epileptic seizures.

CONCLUSION

Tumor invasion of the frontal lobe induces local structural
and functional reorganization within the ECN. These structural
and functional abnormalities are exacerbated by accompanying
epileptic seizures. ECN abnormalities, which are related to
cognitive impairment, can be used to accurately distinguish the
presence or absence of epileptic seizures in patients with frontal
glioma at an early stage. Our findings raise the possibility that
specific functional changes can assist in the early identification
and intervention of epileptic seizures in frontal glioma patients.
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